文档库 最新最全的文档下载
当前位置:文档库 › 参数估计习题 题目

参数估计习题 题目

参数估计习题 题目
参数估计习题 题目

1.设

,0()0, 0

x e x f x x θθ-?>=?

≤?,求θ的矩估计。

Ex=

2. 岩石密度的测量误差服从正态分

布,随机抽测12个样品,得2.0=s ,求2

σ的

置信区间()1.0=α。

(总体均值未知,求2σ的置信区间)

3. 一地质学家研究密歇根湖湖地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数。假设这100次观察相互独立,并由过去经验知,它们都服从参数为n=10,P 的二项分布。P 是该地区一块石子是石灰石的概率。求p 的极大似然估计值,该地质学家所得的数据如下

4. 设X 1,X 1,…,X n 为总体的样本,求各未知参数的极大似然估计值和估计量

(1)

?

?

?>=+-其它,0,)()1(c

x x c θx f θθ

其中c >0为已知,θ>1,θ

为未知参数。

(2)

??

??

?≤≤=-.,01

0,)(1其它x x θx f θ

其中θ>0,θ为未知参数。

5. 设某电子元件的寿命服从正态分布),(2σμN ,抽样检查10个元件,得样本均值)(1200h x =,样本标准差)(14h s =。求 总体均值μ置信水平为%99的置信区间;

6. 设样本12,,n X X X 来自总体~(,0.25)

X N u ,如果要以99.7%的概率保证0.1X

u -<,试问样本容量n 应取多大?

7. 为了解灯泡使用时数均值μ及标准差σ,测量了10个灯泡,得1650

=x 20s =小时。如果已知灯泡使用时间服从正态分布,求μ和σ的95%的置

信区间。

8. 设总体X 具有分布律

X

P k

其中θ(0<θ<1)为未知参数。已知取得了样本值x1=1,x2=2,x3=1,试求θ的矩估计值和最大似然估计值。

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

参数估计练习题

第七章参数估计练习题 一.选择题 1.估计量的含义是指() A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 %的置信水平是指() A.总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4.根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关 D。与置信水平的平方成反比 6.当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关 D。与样本量的平方根成正比 7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。这种评价标准称为() A.无偏性 B.有效性 C. 一致性 D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显著性D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由() A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t分布 C.χ2分布 D. F分布 11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()

总时差双代号网络图时间计算参数-计算题及答案

总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工作在不影响总工期的前提下所具有的机动时间。用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。 自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。用紧后工作的最早开始时间与该工作的最早完成时间之差表示。 网络图时间参数相关概念包括: 各项工作的最早开始时间、最迟开始时间、最早完成时间、最迟完成时间、节点的最早时间及工作的时差(总时差、自由时差)。 1总时差=最迟完成时间—尚需完成时间。计算结果若大于0,则不影响总工期。若小于0则影响总工期。 2拖延时间=总时差+受影响工期,与自由时差无关。 3自由时差=紧后最早开始时间—本工作最早完成时间。 自由时差和总时差-----精选题解(免B) 1、在双代号网络计划中,如果其计划工期等于计算工期,且工作i-j的完成节点j在关键线路上,则工作i-j的自由时差()。 A.等于零 B.小于零 C.小于其相应的总时差 D.等于其相应的总时差 答案:D 解析:

本题主要考察自由时差和总时差的概念。由于工作i-j的完成节点j在关键线路上,说明节点j为关键节点,即工作i -j的紧后工作中必有关键工作,此时工作i-j的自由时差就等于其总时差。 2、在某工程双代号网络计划中,工作M的最早开始时间为第15天,其持续时间为7天。 该工作有两项紧后工作,它们的最早开始时间分别为第27天和第30天,最迟开始时间分别为第28天和第33天,则工作M的总时差和自由时差()天。 A.均为5 B.分别为6和5 C.均为6 D.分别为11和6 答案:B 解析: 本题主要是考六时法计算方法 1、工作M的最迟完成时间=其紧后工作最迟开始时间的最小值所以工作M 的最迟完成时间等于[28,33]=28 2、工作M的总时差=工作M的最迟完成时间-工作M的最早完成时间等于28-(15+7)=6 3、工作M的自由时差=工作M的紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值: [27-22;30-22]= 5。 3、在工程网络计划中,判别关键工作的条件是该工作()。

应用统计学:参数估计习题及答案

简答题 1、矩估计的推断思路如何?有何优劣? 2、极大似然估计的推断思路如何?有何优劣? 3、什么是抽样误差?抽样误差的大小受哪些因素影响? 4、简述点估计和区间估计的区别和特点。 5、确定重复抽样必要样本单位数应考虑哪些因素? 计算题 1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准 2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少? 3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少? 4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公

顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973) 5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下: 试推断: (1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围 (2)以同样条件推断其合格率的可能范围 (3)比较两车间产品质量 6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求: (1)计算样本合格品率及其抽样平均误差

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

参数估计习题

第5章参数估计练习题 一?选择题 1?估计量的含义是指() A. 用来估计总体参数的统计量的名称 B. 用来估计总体参数的统计量的具体数值 C. 总体参数的名称 D ?总体参数的具体取值 2. —个95%的置信区间是指() A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 3.95%的置信水平是指() A. 总体参数落在一个特定的样本所构造的区间内的概率是95% B. 在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C. 总体参数落在一个特定的样本所构造的区间内的概率是5% D ?在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4?根据一个具体的样本求出的总体均值的95%的置信区间() A .以95%的概率包含总体均值 B .有5%的可能性包含总体均值 C.一定包含总体均值 D .要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A. 随着置信水平的增大而减小 B..随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6. 当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B.随着样本量的增大而增大 C.与样本量的大小无关 D.与样本量的平方根成正比 7. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与 总体参数的离差越小越好。这种评价标准称为() A .无偏性 B.有效性C. 一致性D.充分性 8. 对一总体均值进行估计,得到95%的置信区间为(24, 38),则该总体均值的点估计为() A. 24 B. 48 C. 31 D.无法确定

【重磅】双代号网络图时间参数计算

双代号网络图时间参数计算 双代号网络图时间参数计算 双代号网络图是应用较为普遍的一种网络计划形式。它是以箭线及其两端节点的编号表示工作的网络图。 双代号网络图中的计算主要有六个时间参数: ES:最早开始时间,指各项工作紧前工作全部完成后,本工作最有可能开始的时刻; EF:最早完成时间,指各项紧前工作全部完成后,本工作有可能完成的最早时刻 LF:最迟完成时间,不影响整个网络计划工期完成的前提下,本工作的最迟完成时间;LS:最迟开始时间,指不影响整个网络计划工期完成的前提下,本工作最迟开始时间;TF:总时差,指不影响计划工期的前提下,本工作可以利用的机动时间; FF:自由时差,不影响紧后工作最早开始的前提下,本工作可以利用的机动时间。 双代号网络图时间参数的计算一般采用图上计算法。下面用例题进行讲解。 例题:试计算下面双代号网络图中,求工作C的总时差? 早时间计算: ES,如果该工作与开始节点相连,最早开始时间为0,即A的最早开始时间ES=0; EF,最早结束时间等于该工作的最早开始+持续时间,即A的最早结束EF为0+5=5; 如果工作有紧前工作的时候,最早开始等于紧前工作的最早结束取大值,即B的最早开始FS=5,同理最早结束EF为5+6=11,而E工作的最早开始ES为B、C工作最早结束(11、8)

取大值为11。 迟时间计算: LF,如果该工作与结束节点相连,最迟结束时间为计算工期23,即F的最迟结束时间LF=23;LS,最迟开始时间等于最迟结束时间减去持续时间,即LS=LF-D; 如果工作有紧后工作,最迟结束时间等于紧后工作最迟开始时间取小值。 时差计算: FF,自由时差=(紧后工作的ES-本工作的EF); TF,总时差=(本工作的最迟开始LS-本工作的最早开始ES)或者=(本工作的最迟结束LF-本工作的最早结束EF)。 该题解析: 则C工作的总时差为3. 总结: 早开就是从左边往右边最大时间 早结=从左往右取最大的+所用的时间 迟开就是从右边往右边最小时间 迟开=从右往左取最小的+所用的时间 总时差=迟开-早开;或者;总时差=迟结-早结 自由差=紧后工作早开-前面工作的早结 希望你看懂啦。呵呵 工作最早时间的计算:顺着箭线,取大值 工作最迟时间的计算:逆着箭线,取小值 总时差:最迟减最早 自由时差:后早始减本早完 1.工作最早时间的计算(包括工作最早开始时间和工作最早完成时间):“顺着箭线计算,依次取大”(最早开始时间--取紧前工作最早完成时间的最大值),起始结点工作最早开始时间为0。用最早开始时间加持续时间就是该工作的最早完成时间。 2.网络计划工期的计算:终点节点的最早完成时间最大值就是该网络计划的计算工期,

参数估计习题参考答案2014

参数估计习题参考答案 班级: 姓名: 学号: 得分 一、单项选择题: 1. 区间估计表明的是一个 ( B ) (A )绝对可靠的范围 (B )可能的范围 (C )绝对不可靠的范围 (D )不可能的范围 2. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称 ( D ) (A )甲是充分估计量 (B )甲乙一样有效 (C )乙比甲有效 (D )甲比乙有效 3. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均值的置信区间长度将 ( D ) (A )增加 (B )不变 (C )减少 (D )以上都对 4.设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。若想对完成工作所需时间构造一个90%置信区间,则 ( A ) A.应用标准正态概率表查出z 值 B.应用t-分布表查出t 值 C.应用二项分布表查出p 值 D.应用泊松分布表查出λ值 5. 100(1-α)%是 ( C ) A.置信限 B.置信区间 C.置信度 D.可靠因素 6.参数估计的类型有 ( D ) (A )点估计和无偏估计(B )无偏估计和区间估计 (C )点估计和有效估计(D )点估计和区间估计 7.在其他条件不变的情况下,提高抽样估计的可靠程度,其精度将 (C ) (A )增加 (B )不变 (C )减少 (D )以上都对 二、计算分析题 1、12,, ,n X X X 是总体为2 (, ) N μσ的简单随机样本.记1 1n i i X X n ==∑,2 21 1()1n i i S X X n ==--∑,221T X S n =-.请证明 T 是2 μ的无偏估计量. 解 (I) 因为2 (,)X N μσ,所以2 (, )X N n σμ,从而2 ,E X DX n σμ= = . 因为 221()()E T E X S n =-221 ()E X E S n =- 221()()DX E X E S n =+-222211 n n σμσμ=+-= 所以,T 是2μ的无偏估计 设总体X ~N (μ,σ 2 ),X 1,X 1,…,X n 是来自X 的一个样本。试确定常数c 使2 1 1 21 )(σX X c n i i i 为∑-=+-的无偏估计。 解:由于

参数估计习题课

第21讲 参数估计习题课 教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。 教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。 教学难点:矩估计,最大似然估计,正态总体参数的区间估计。 教学时数:2学时。 教学过程: 一、知识要点回顾 1. 矩估计 用各阶样本原点矩n k i i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =L 。若有参 数2g(,(),,)k E X E X E X θ=L ()(),则参数θ的矩估计为 n n n 2i=1i=1i=1 111?(,,,)k i i i X X X n n n θ=∑∑∑L 。 2. 最大似然估计 似然函数1()(;)n i i L f x θθ==∏,取对数ln[()]L θ,从 ln() d d θθ =0中解得θ的最大似然估计θ ?。 3. 无偏性,有效性 当θθ=?E 时,称θ?为θ的无偏估计。 当21?D ?D θθ<时,称估计量1?θ比2 ?θ有效。 二 、典型例题解析 1.设,0()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。 解 ,0 dx xe EX x ?+∞ -=θθ设du dx u x x u θ θ θ1 ,1 ,= = = 则0 0011 1()0()u u u EX ue du ue e du e θθθθ+∞+∞--+∞ --+∞????==-+=+-??? ?????=θ 1

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

单代号搭接网络计划时间参数计算

单代号搭接网络计划时间参数计算 在一般的网络计划(单代号或双代号)中,工作之间的关系只能表示成依次衔接的关系,即任何一项工作都必须在它的紧前工作全部结束后才能开始,也就是必须按照施工工艺顺序和施工组织的先后顺序进行施工。但是在实际施工过程中,有时为了缩短工期,许多工作需要采取平行搭接的方式进行。对于这种情况,如果用双代号网络图来表示这种搭接关系,使用起来将非常不方便,需要增加很多工作数量和虚箭线。不仅会增加绘图和计算的工作量,而且还会使图面复杂,不易看懂和控制。例如,浇筑钢筋混凝土柱子施工作业之间的关系分别用横道图、双代号网络图和搭接网络图表示,如下图所示。 施工过程 名 称 施工进度(天) 1 2 3 4 5 6 7 8 9 10 11 一.搭接关系的种类及表达方式 单代号网络计划的搭接关系主要是通过两项工作之间的时距来表示的,时距的含义,表示时间的重叠和间歇,时距的产生和大小取决于工艺的要求和施工组织上的需要。用以表示搭接关系的时距有五种,分别是STS (开始到开始)、STF (开始到结束)、FTS (结束到开始)、FTF (结束到结束)和混合搭接关系。 (一)FTS (结束到开始)关系 结束到开始关系是通过前项工作结束到后项工作开始之间的时距(FTS )来表达的。如下图所示。 扎钢筋 浇筑混凝土 支模1 支模2 支模3 1 2 4 3 5 6 8 7 9 10 支模1 2 支模2 2 支模3 2 扎筋2 1 扎筋3 1 扎筋1 1 浇筑混凝土1 2 浇筑混 凝土2 2 浇筑混 凝土3 2 支模 6 扎钢筋 3 浇筑 6 STS=4 FTF=1 STS=1 FTF=4 i j FTS i j FTS D i D j

参数估计习题参考答案

参数估计习题参考答案

参数估计习题参考答案 班级:姓名:学号:得分 一、单项选择题: 1、关于样本平均数和总体平均数的说法,下列正确的是( B ) (A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值 (C)两者都是随机变量(D)两者都是确定值 2、通常所说的大样本是指样本容量( A ) (A)大于等于30 (B)小于30 (C)大于等于10 (D)小于10 3、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将( B ) (A)增加(B)减小(C)不变(D)无法确定 4、某班级学生的年龄是右偏的,均值为20岁,标准差

为 4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为( A ) (A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布 (C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布 5. 区间估计表明的是一个( B ) (A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围 6. 在其他条件不变的情形下,未知参数的1-α置信区间,( A ) A. α越大长度越小 B. α越大长度越大 C. α越小长度越小 D. α与长度没有关系 7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D ) (A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效 8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

[优质文档]第7章参数估计习题及答案

第7章 参数估计 ----点估计 一、填空题 1、设总体X 服从二项分布),(p N B ,10<

α是未知参数, n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计. 解:因? ?++=+= 10 1 1α1α1αdx x dx x x X E a )()()(2 α1 α2α1α102++= ++= +|a x 令2 α1α ++==??)(X X E X X --=∴112α ?为α的矩估计 因似然函数1212 (,, ;)(1)()n n n L x x x x x x ααα=+ ∑=++=∴n i i X n L 1 α1αln )ln(ln ,由∑==++=??n i i X n L 101ααln ln 得, α的极大似量估计量为)ln (?∑=+-=n i i X n 1 1α 2、设总体X 服从指数分布 ,0 ()0, x e x f x λλ-?>=??其他 ,n X X X ,,21是来自X 的样本,(1) 求未知参数λ的矩估计;(2)求λ的极大似然估计.

参数估计习题参考答案

参数估计习题参考答案 班级: __________ 姓名: ______________ 学号: __________ 得分 ___________ 、单项选择题: 1、关于样本平均数和总体平均数的说法,下列正确的是 (A )增加 (B )减小 (C )不变 (D )无法确定 4. 某班级学生的年龄是右偏的,均值为 20岁,标准差为4.45.如果 采用重复抽样的方法从该班抽取容量 为100的样本,那么样本均值的分布为 (A ) (A )均值为20,标准差为0.445的正态分布(B )均值为20,标准差为4.45的正态分布 (C )均值为20,标准差为0.445的右偏分布(D )均值为20,标准差为4.45的右偏分布 5. 区间估计表明的是一个 (B ) (A )绝对可靠的范围 (B )可能的范围 (C )绝对不可靠的范围 (D )不可能的范围 6. 在其他条件不变的情形下,未知参数的 1-a 置信区间, (A ) C. a 越小长度越小 D. a 与长度没有关系 7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称 (D ) (A )甲是充分估计量 (B )甲乙一样有效 (C )乙比甲有效 (D )甲比乙有效 8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总 体均值的置信区间长度将 (D ) (A )增加 (B )不变 (C )减少 (D )以上都对 9 ?在其他条件不变的前提下,若要求误差范围缩小 1 / 3,则样本容量 (C ) (A )增加9倍 (B )增加8倍 (C )为原来的2.25倍 (D )增加2.25倍 10设容量为16人的简单随机样本,平均完成工作时间 13分钟,总体服从正态分布且标准差为 若想对完成工作所需时间构造一个 90%置信区间,则 (A ) A.应用标准止态概率表查出 z 值 B.应用 t-分布表查出t 值 C.应用一项分布表查出 p 值 D.应用泊松分布表查出 入值 11. 100(1- a % 是 (C ) A.置信限 B.置信区间 C.置信度 D.可靠因素 12. 参数估计的类型有 (D (A )点估计和无偏估计(B )无偏估计和区间估计 (C )点估计和有效估计(D )点估计和区间估计 13、抽样方案中关于样本大小的因素,下列说法错误的是 (C ) A 、总体方差大,样本容量也要大 B 、要求的可靠程度高,所需样本容量越大 (A )前者是一个确定值,后者是随机变量 (B )前者是随机变量,后者是一个确定值 (C )两者都是随机变量 (D )两者都是确定值 2、通常所说的大样本是指样本容量 (A )大于等于30 ( B )小于30 (C )大于等于10 3、从服从正态分布的无限总体中分别抽取容量为 4,16, 36 标准差将 (A ) (D )小于10 的样本,当样本容量增大时,样本均值的 (B ) A. a 越大长度越小 B. a 越大长度越大 3分钟。

(整理)参数估计习题.

参数估计习题 一、填空题 1、设总体2 (,) X Nμσ,若2σ已知,总体均值μ的置信度为1α - 的置信区间为:x x ? -+ ? ,则λ=; 2、设由来自正态总体2 (,0.9) X N μ的样本容量为9的简单随机样本,得样本均值5 x=,则未知参数μ的置信度0.95的置信区间为; 3、设 12 , X X为来自总体2 (,) X Nμσ的样本,若 12 1 1999 CX X +为μ的一个无偏估计,则C=; 4、设 12 ,,, n X X X为来自正态总体2 (,) Nμσ的样本,,a b为常数,且0a b <<,则随机区间 22 11 ()() , n n i i i i X X b a μμ == ?? -- ?? ?? ∑∑的长度L的数学期望为; 5、设?θ是未知参数θ的估计量,若称?θ为θ的无偏估计量,则 ?() Eθ=; 6、设 12 ??,θθ为总体未知参数θ的两个无偏估计量,若称 1 ?θ比 2 ?θ更有效, 则 1 ?() Dθ 1 ?() Dθ; 7、设θ为总体的未知参数,若由样本确定的两个统计量 1 ?θ和 2 ?θ,且 12 ?? θθ <,对于预先给定的α值(01 α <<),满足 12 ?? {}1 Pθθθα <<=-,则称随机区间 12 ?? (,) θθ 为θ的1α -或100(1)% α -置信区间,其中为置信上限,为置信下限, 称为置信度; 8、设 12 ,,, n X X X为来自正态总体2 (,) Nμσ的一个样本,样本均值 1 1n i i X X n= =∑ 是的无偏估计量; 9、设 12 ,,, n X X X是取自总体X的一个样本,2 () D Xσ =,则 22 1 1 () 1 n i i S X X n= =- - ∑为的无偏估计量;

第7章参数估计习题及答案

第7章参数估计----点估计 一、填空题 1、设总体X 服从二项分布 B(N, p) , O : P : 1 , X 1 ,X 2…X n 是其一个样本,那么矩估 计量? X - N — X i _,样本的似然函数 n 亠— X i “ J^X i 为』P 〈-P) ‘―。 i =1 i ∣1 2 2 n 1 -—j (X ^M ) 似 然函数 L(X I )Xr L ,X n ;巴<τ ) =_□ 2& id √2πσ 、计算题 1、设总体 X 具有分布密度 f(x;1)x[ O . x : 1,其中〉-1是未知参数, 求未知参数'的矩估计;(2)求’的极大似然估计 2、 设总体X ?B(1,p), 其中未知参数O ::: P ::: 1 ,X l ,X2…,X n 是X 的样本, 3、 设X 1,X 2,…,x n 是来自总体X ~ Ngf 2 )的 2 样本,则有关于亠及匚 X 1,X 2,…X n 为一个样本,试求参数 的矩估计和极大似然估计 1 解:因 E(X)= o x(α 1)X a dX 1 -I d =o (α 1)x α dx = α 1 a ?21 1 α ' 1 α ■ 2x l θ 一 α ■ 2 令 E(X)=X= α 2 2X —1 .α = 1 为〉的矩估计 1 -X 因似然函数 L(x 1,x 2,…x n 「)=G ?1)n (x 1x√ X n )I n In L =n ln( α 1) Q ln X i ,由 i# n …二 In X i=O 得, iT n :■的极大似量估计量为 ? = -(V- ) 二 In X i i d 2、设总体X 服从指数分布 f(x) = e ,x O 10,其他 X 1,X 2∕ X n 是来自X 的样本,(1)

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

双代号网络图时间参数的计算

双代号网络图时间参数的计算 参数名称符号英文单词 工期 计算工期TCComputer Time 要求工期TR RequireTime 计划工期T P Plan Time 工作的 时间参数 持续时间D i-jDay 最早开始时间ES i-j Earliest Starting Tim e 最早完成时间EF i—j Earliest Finishing Time 最迟完成时间LFi—jLatest Finishing Time 最迟开始时间LSi—jLatest Starting Time 总时差TFi-j Total Float Time 自由时差FF i-j Free Float Time 二、工作计算法 【例题】:根据表中逻辑关系,绘制双代号网络图,并采用工作计算法计算各工作的时间参数。 工作A B C DEFGHI 紧前-A A B B、C C D、E E、 F H、G 时间333854422

(一)工作的最早开始时间ESi—j —-各紧前工作全部完成后,本工作可能开始的最早时刻。 (二)工作的最早完成时间EF i—j EF i-j=ES i-j + D i—j 1。计算工期Tc等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间的最大值,即T c=max{EF i—n} 2.当网络计划未规定要求工期Tr时, Tp=T c 3.当规定了要求工期Tr时,T c≤T p,T p≤T r —-各紧前工作全部完成后,本工作可能完成的最早时刻。

(三)工作最迟完成时间LFi-j 1.结束工作的最迟完成时间LFi-j=T p 2.其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算. --在不影响计划工期的前提下,该工作最迟必须完成的时刻。 (四)工作最迟开始时间LS i-j LSi—j=LFi—j—D i-j --在不影响计划工期的前提下,该工作最迟必须开始的时刻。

极坐标全参数方程高考练习含问题详解(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

参数估计习题

第3章参数估计习题 一. 选择题 1. 当样本量一定时,置信区间的长度( ). A. 随着显著水平α的提高而变短. B. 随着置信水平1-α的降低而变长 C. 与置信水平α?1无关 D. 随着置信水平1-α的降低而变短 2. 置信水平α?1表达了置信区间的( ). A. 准确性. B. 精确性. C. 显著性. D. 可靠性. 3. 设12 ??(,)θθ是参数θ的置信水平为1α?的区间估计,则以下结论正确的是( ). A. 参数θ落在区间(,12 )??之内的概率为1α?. θθB. 参数θ落在区间12 ??(,)θθ之外的概率为α. C. 区间12 ??(,)θθ包含参数θ的概率为1α?. D. 对不同的样本观测值,区间12 ??(,)θθ的长度相同. 4. 通过矩估计法求出的参数估计量( ). A. 是唯一的. B. 是无偏估计量. C. 不一定唯一. D. 不唯一,但是无偏估计. 5. 下列命题错误的是( ). A. 最大似然估计可能不唯一. B. 最大似然估计不一定是无偏估计. C. 最大似然估计一定存在. D. 似然函数是样本的函数. n x x x ,,,21 6. 设总体服从],0[θ上的均匀分布,为样本,记n X X X ,,,21 X 为样本均值,则下列统计量不是θ的矩估计量的是( ).

A. X 2 1?1=θ. B. ∑=?=n i i X X n 122)(12?θ. C. ∑==n i i X n 1 233?θ. D. X 2?4=θ. 7. 设总体的密度函数为,参???<<=?其它 o x x x P 10),(1θθθ0>θ,为样本,记n X X X ,,,21 ∑===n i k i k k X n A 1 3.2,1,1,则以下结论中错误的是( ). A. 是1A θ的矩估计量. B. 111A A ?是θ的矩估计量. C. 2212A A ?是θ的矩估计量. D. 3 313A A ?是θ的矩估计量. 8. 样本12(,,,)n X X X 取自总体X ,()E X μ=,2()D X σ=,则以下结论不成立的是( ). A.i X ()均是μ的无偏估计. B.1 1n i i X X n ==∑是μ的无偏估计. C.121()是μ的无偏估计. D. 1 11n i i X n =?∑是μ的无偏估计. 2X X +9. 样本来自总体,则总体方差的无偏估计为( ). n X X X ,,,21 ),(2σμN 2σA. ∑=??=n i i X X n S 1221 (11. B. ∑=??=n i i X X n S 1222)(21. C. ∑=?=n i i X X n S 1223 )(1. D. ∑=?+=n i i X X n S 1224(11.

相关文档