文档库 最新最全的文档下载
当前位置:文档库 › 扩散硅压阻式压力传感器

扩散硅压阻式压力传感器

扩散硅压阻式压力传感器
扩散硅压阻式压力传感器

贵州大学实验报告

学院:电气工程学院专业:测控技术与仪器班级:测仪111

扩散硅压力传感器(MPX10)

MPX10有4个引出脚,1脚接地、

时,输出为正;P1

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

压阻式压力传感器

压阻式压力传感器 利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制(见加速度计)。 压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。 发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可

扩散硅压阻式压力传感器的压力测量实验讲解

实验四扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+4V、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,,形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。平时敏感芯片没有外加压力作用,内部电桥处于平衡状态,当传感器受压后芯片电阻发生变化,电桥将失去平衡,给电桥加一个恒定电压源,电桥将输出与压力对应的电压信号,这样传感器的电阻变化通过电桥转换成压力信号输出。 四、实验内容与步骤 1.扩散硅压力传感器MP×10已安装在压力传感器模块上,将气室1、2的活塞退到20ml处,并按图4-1接好气路系统。其中P1端为正压力输入、P2端为负压力输入,P×10有4个引出脚,1脚接地、2脚为 Uo+、3脚接+5V电源、4脚为Uo ﹣;当P1>P2时,输出为正;当P1<P2时,输出为负。 2.检查气路系统,分别推进气室1、2的两个活塞,对应的气压计有显示压力值并能保持不动。 3. 接入+4V、±15V直流稳压电源,模块输出端Uo2接控制台上数显直流电压表,选择20V档,打开实验台总电源。

4. 调节Rw2到适当位置并保持不动,用导线将差动放大器的输入端Ui短路,然后调节Rw3使直流电压表200mV档显示为零,取下短路导线。 5. 退回气室1、2的两个活塞,使两个气压计均指在“零”刻度处,将MP×10的输出接到差动放大器的输入端Ui,调节Rw1使直流电压表200mv档显示为零。 6. 保持负压力输入P2压力零不变,增大正压力输入P1的压力,每隔0.005Mpa记下模块输出Uo2的电压值。直到P1的压力达到0.095Mpa;填入表4-1。 P(KP Uo2(V 7. 保持正压力输入P1压力0.095Mpa不变,增大负压力输入P2的压力,每隔 0.005Mpa记下模块输出Uo2的电压值。直到P2的压力达到0.095Mpa;填入表4-2。 P(KP Uo2(V 8. 保持负压力输入P2压力0.095Mpa不变,减小正压力输入P1的压力,每隔 0.005Mpa记下模块输出Uo2的电压值。直到P1的压力达到0.0Mpa;填入表4-3。P(KP Uo2(V 9. 保持负压力输入P1压力0Mpa不变,减小正压力输入P2的压力,每隔 0.005Mpa记下模块输出Uo2的电压值。直到P2的压力达到0.0Mpa;填入表4-4

扩散硅压阻式压力传感器的压力测量讲解

传感器课程设计报告 题目:扩散硅压阻式压力传感器的差压测量 专业班级:BG1003 姓名:桑海波 时间:2013.06.17~2013.06.21 指导教师:胥飞 2013年6月21日

摘要 本文介绍一种以AT89S52单片机为核心,包括ADC0809类型转换器的扩散硅压阻式压力传感器的差压测量系统。简要介绍了扩散硅压阻式压力传感器电路的工作原理以及A/D变换电路的工作原理,完成了整个实验对于压力的采样和显示。与其它类型传感器相比,扩散硅压阻式电阻应变式传感器有以下特点:测量范围广,精度高,输出特性的线性好,工作性能稳定、可靠,能在恶劣的化境条件下工作。由于扩散硅压阻式压力传感器具有以上优点,所以它在测试技术中获得十分广泛的应用。 关键字:扩散硅压阻式压力传感器,AT89S52单片机,ADC0809,数码管

目录 1.引言 (1) 1.1课题开发的背景和现状 (1) 1.2课题开发的目的和意义 (1) 2.设计方案 (2) 2.1设计要求 (2) 2.2设计思路 (2) 3.硬件设计 (3) 3.1电路总框图 (3) 3.2传感器电路模块 (3) 3.3A/D变换电路模块 (4) 3.4八段数码管显示 (8) 3.5AT89S52单片机 (9) 3.6硬件实物 (12) 4.实验数据采集及仿真 (13) 4.1数据采集及显示 (13) 4.2实验数据分析 (13) 5.程序设计 (16) 5.1编程软件调试 (16) 5.2软件流程图 (17) 5.3程序段 (18) 6.结果分析 (19) 7.参考文献 (20)

1.引言 1.1 课题开发的背景和现状 传感器是一种能够感受规定的被测量的信息,并按照一定规律转换成可用输出信号的的器件或装置,通常由敏感元件、转换元件、测量电路三部分组成。传感器技术是现代信息技术的三大支柱之一,其应用的数量和质量已被国际社会作为为衡量一个国家智能化、数字化、网络化的重要标志。 近年来,随着国家资金投入大的增加,我国压阻式传感器有了较快的发展,某些传感器如矩形双岛膜结构的6KPa微压传感器的性能甚至优于国外,其非线性滞后、重复性均小于5×10-4FS,分辨率优于20Pa,具有较高的过压保护范围以及可靠性。但是就总体而言,我国压阻式传感器的研究,在产量和批量封装等方面还存在不足,精度、可靠性、重复性尚待提高,离市场需求级国际水平还有较大差距。 1.2 课题开发的目的和意义 日常生活和生产中,我们常常想了解温度、流量、压力、位移、角度等一系列参数,压力传感器技术在诸多领域中相对而言最为成熟。根据工作原理的不同,压力传感器通常可以分为机械膜片、硅膜片电容性、压电性、应变性、光纤、霍尔效应、压阻式压力传感器等。压阻式传感器又包括扩散硅型和应变片型传感器,扩散硅压阻式传感器由于具有结构简单、可微型化、输出信号大、精度高、分辨率高、频响高、低功耗、体积小、工作可靠等突出特点而在压阻式压力传感器市场中占据更大的份额。

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

压阻式压力传感器的压力测量实验

实验二压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理: 扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。 图一压阻式压力传感器压力测量实验 三、需用器件与单元: 主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。 四、实验步骤: 1、将压力传感器安装在实验模板的支架上,根据图二连接管路和电路(主机箱内的气源部分,压缩泵、贮气箱、流量计已接好)。引压胶管一端插入主机箱面板上气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连。压力传感器引线为4芯线: 1端接地线,2端为U0+,3端接+4V电源, 4端为Uo-,接线见图9-2。

2、实验模板上R W2用于调节放大器零位,R W1 调节放大器增益。按图9-2将实 验模板的放大器输出V02接到主机箱(电压表)的Vin插孔,将主机箱中的显示选 择开关拨到2V档,合上主机箱电源开关,R W1 旋到满度的1/3位置(即逆时针旋 到底再顺时针旋2圈),仔细调节R W2 使主机箱电压表显示为零。 3、输入气压,压力上升到4Kpa左右时调节调节Rw2(低限调节),,使电压表显示为相应的0.4V左右。再仔细地反复调节旋钮使压力上升到19Kpa左右时调节差动放大器的增益电位器Rw1(高限调节),使电压表相应显示1.9V左右。 4、再使压力慢慢下降到4Kpa,调节差动放大器的调零电位器,使电压表显示为相应的0.400V。再仔细地反复调节汽源使压力上升到19Kpa时调节差动放大器的增益电位器,使电压表相应显示1.900V。 5、重复步骤4过程,直到认为已足够精度时仔细地逐步调节流量计旋钮,使压力在4-19KPa之间变化,每上升3KPa气压分别读取电压表读数,将数值列于表1。 作业: 1、画出实验曲线,并计算本系统的灵敏度和非线性误差。实验完毕,关闭所有电源。

压力传感器的工作原理

压力传感器的工作原理 您需要登录后才可以回帖登录|注册发布 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变

化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极 引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接 成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条?,两条受拉应力的电阻条与另两条受压应力的电阻条构 成全桥。 电子血压计中压力传感器的原理应用及常见故障 压力传感器是工业生应用中最为常见的一种传感器,其广泛应 用于各种工业自控环境,在医用中常见于电子血压计,下面,便来为您简单介绍一些压力传感器原理应用及常见故障。 电子血压计压力传感器的工作原理及应用 压力传感器一般有电容式的和压阻式的。电容式的利用两片金 属间的电容变化来对应压力值,压阻式利用电阻值变化来对应压力值。 电子血压计压力传感器的常见问题

实验三 扩散硅压阻式压力传感器实验

北京XXX大学 实验报告 课程(项目)名称:实验三扩散硅压阻式压力传 感器实验 学院:专业: 班级:学号: 姓名:成绩: 2013年12月10日

一、任务与目的 了解扩散硅压阻式压力传感器的工作原理和工作情况。 二、实验仪器(条件) 所需单元及部件:主、副电源、直流稳压电源、差动放大器、F/V显示表、压阻式传感器(差压)、压力计。 旋钮初始位置:直流稳压电源±4V档,F/V表切换开关置于2V档,差放增益适中或最大,主、副电源关闭。 三、原理(条件) 扩散硅压阻式压力传感器是利用单晶硅的压阻效应制成的器件,也就是在单晶硅的基片上用扩散工艺(或离子注入及溅射工艺)制成一定形状的应变元件,当它受到压力作用时,应变元件的电阻发生变化,从而使输出电压变化。 四、内容与步骤 (1)了解所需单元、部件、传感器的符号及在仪器上的位置。(见附录三) (2) 如图30A将传感器及电路连好,注意接线正确,否则易损坏元器件。 图30A (3) 如图30B接好传感器供压回路。 图30B

(5) 将加压皮囊上单向调节阀的锁紧螺丝拧松。 (6)开启主、副电源,调整差放零位旋钮,使电压表指示尽可能为零,记下此时电压表读数(7) 拧紧皮囊上单向调节阀的锁紧螺丝,轻按加压皮囊,电压表有压力指示时,记下此时的读数,并将数据填入表格中记录。 注:根据所得的结果计算系统灵敏度S= ΔV/ΔP,并作出V-P关系曲线,找出线性区域。 五、数据处理(现象分析) (1)拧紧皮囊上单向调节阀的锁紧螺丝,轻按加压皮囊,电压表的读数随压力的变化如下表: (2)根据所得的结果计算系统灵敏度S= ΔV/ΔP,并作出V-P关系曲线,找出线性区域。 六、结论 通过实验进一步了解了扩散硅压阻式压力传感器的工作原理,并且观察了实过程中的工作状况,通过对实验数据的整理计算,得出实验仪器的灵敏度为S=92.35 V/Kpa

扩散硅压力传感器技术简介

扩散硅压力传感器技术简介 一、一般介绍: 硅单晶材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯凳电桥,利用硅材料的弹性力学特性,在同一切硅材料上进行各向异性微加工,就制成了一个集力敏与力电转换检测于一体的扩散硅传感器。给传感器匹配一放大电路及相关部件,使之输出一个标准信号,就组成了一台完整的变送器。 二、技术特点: 1、灵敏度高 扩散硅敏感电阻的灵敏因子比金属应变片高50~80倍,它的满量程信号输出在80-100mv左右。对接口电路适配性好,应用成本相应较低。由于它输入激励电压低,输出信号大,且无机械动件损耗,因而分辨率极高。 2、精度高 扩散硅压力传感器的感受、敏感转换和检测三位一体,无机械动件连接转换环节,所以重复性和迟滞误差很小。由于硅材料的刚性好,形变小,因而传感器的线性也非常好。因此综合表态精度很高。 3、可靠性高 扩散硅敏感膜片的弹性形变量在微应变数量级,膜片最大位移量在来微米数量级,且无机械磨损,无疲劳,无老化。平均无故障时间长,性能稳定,可靠性高。 4、频响高 由于敏感膜片硅材料的本身固有频率高,一般在50KC。制造过程采用了集成工艺,膜片的有效面积可以很小,配以刚性结构前置安装特殊设计,使传感器频率响应很高,使用带宽可达零频至100千赫兹。

5、温度性能好 随着集成工艺技术进步,扩散硅敏感膜的四个电阻一致性得到进一步提高,原始的手工补偿已被激光调阻、计算机自动修整技术所替代,传感器的零位和灵敏度温度系数已达10-5/℃数量级,工作温度也大幅度提高。 6、抗电击穿性能好 由于采用了特殊材料和装配工艺,扩散硅传感器不但可以做到130℃正常使用,在强磁场、高电压击穿试验中可抗击1500V/AC电压的冲击。 7、耐腐蚀性好 由于扩散硅材料本身优良的化学防腐性能好,即使传感器受压面不隔离,也能在普通使用中适应各种介质。硅材料又与硅油有良好的兼容性,使它在采用防腐材料隔离时结构工艺更易于实现。加之它的低电压、低电流、低功耗、低成本和本质安全防爆的特点,可替代诸多同类型的同功能产品,具有最优良的性能价格比。 三、选项型提要 1、传感器、变送器的选择 用户根据自己所测压力的性质,首先应确定选择表压(相对于当地大气压)、差压、绝对压力或负压品种。如果测量液位,还要确定液位上方是自由大气压还是密封容器压力。如果测量密封承压容器内的液位就应该选用差压产品。 2、产品量程的确定 从产品绝对安全考虑,一般选择使工作压力值在标准量程值的60%-80%为宜,整个测量系统中可能出现的异常情况所导致的过载压力不得超过产品允许的最大 过载。测量动态管路液体压力时,还应考虑水垂效应,适当增大产品载量。 3、产品精度选择 产品等级按多项参数分档,档级越高,价格越贵。用户可依据所检测工况要求各项和某单项参数精度指标,以便用较低的价格实现较高的精度要求。产品给出的三项精度指标是采用国际最小二乘法或端基平移法计算的。选用传感器时。精度等级确定应根据测量系统分配发给传感器的最大误差选项取。有时还应考虑零位时漂、零位和满度温度系数带入的附加误差。

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。 1.2 电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。 箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。如下图所示。B 为栅宽,L 为基长。 材料的电阻变化率由下式决定: d d d R A R A ρρ=+ (1) 式中; R —材料电阻

由材料力学知识得; [(12)(12)]dR R C K μμεε=++-= (2) K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得 R L K K R L ε??== (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括 测中压用的膜片——应变筒式压力传感器 测高压用的应变筒式压力传感器 1.3.1膜片——应变筒式压力传感器的特点 该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2 膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性较大。但小压力测量中由于变形很小,非线性误差可小于0.5%,同时又有较高的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片—应变筒式压力传感器相比,自振频率较低,因此在低ρ—材料电阻率

实验二 扩散硅压阻式传感器模块 d1

实验二扩散硅压阻式压力传感器实验模块 2.1实验目的: 实验2.1.1:了解扩散硅压阻式压力传感器测量压力的原理和方法。 工作原理:是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 转换原理: 在具有压阻效应的半导体材料上用扩散或离子注入法,,形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。平时敏感芯片没有外加压力作用,内部电桥处于平衡状态,当传感器受压后芯片电阻发生变化,电桥将失去平衡,给电桥加一个恒定电压源,电桥将输出与压力对应的电压信号,这样传感器的电阻变化通过电桥转换成压力信号输出。 压阻效应: 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 实验2.1.2:了解利用压阻式压力传感器进行差压测量的方法。 2.2实验设备和元件: 2.2.1 实验设备:实验台所属各分离单元和导线若干。 2.2.2 其他设备:2号扩散压阻式压力传感器实验模块,14号交直流,全桥,测量,差动放大实验模块,数显单元20V,直流稳压源+5V,+_12V电源。 2.3实验内容: 2.3.1扩散压阻式压力传感器 一般介绍: 单晶硅材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯凳电桥,利用硅材料的弹性力学特性,在同一切硅材料上进行各向异性微加工,就制成了一个集力敏与力电转

扩散硅压力变送器

测量仪器在现今市场遍地开花,质量和性能问题仍旧是最广大消费者最在意的方面。扩散硅压力变送器作为正负压力测量仪器,其质量和性能都是得到市场所认可的,更是消费者所信赖的。 扩散硅压力变送器具有工作可靠、性能稳定、安装使用方便、体积小、重量轻、性能价格比高等点,能在各种正负压力测量中得到广泛应用。采用进口扩散硅或芯体作为压力检测元件,传感器信号经高性能电子放大器转换成0-10mA或4-20mA统一输出信号。 可替代传统的远传压力表,霍尔元件、差动变送器,并具有DDZ-Ⅱ及DDZ-Ⅲ型变送器性能。能与各种型号的动圈式指示仪、数字压力表、电子电位差计配套使用,也能与智能调节仪或计算机系统配套使用。 本公司生产的扩散硅变送器选用进口扩散硅压力芯片制成,当外界液位发生变化时,压力作用在不锈钢隔离膜片上,通过隔离硅油传递到扩散硅压力敏感元件上引起电桥输出电压变化,经过精密的补偿技术、信号处理技术、转换成标准的电流信号。该电流信号的变化正比于液位的变化。

1)使用被测介质广泛,可测油、水及与316不锈钢兼容的糊状物,具有一定的防腐能力。 2)高准确度、高稳定性、选用进口原装传感器,线性好,温度稳定性高。 3)体积小、重量轻、安装、调试、使用方便 4)不锈钢全封闭外壳,防水好。 5)压力传感器直接感测被测液位压力,不受介质起泡、沉积的影响。 安徽皖控自动化仪表有限公司成立于2012年,是专业从事工业自动化仪表研究开发、制造的专业厂家之一,注册资金5510万元。自公司成立以来被评为高新技术企业、规模企业、成立有滁州市工业在线检测仪表工程技术研研究中心、获得青年文明号、民营科技企业的称号,市认定企业技术中心证书、高新技术产品认证证书、市科技进步奖。展望未来,安徽皖控自动化仪表有限公司将会不断创新,通过提供具有国际水准的优质产品和卓越的服务为客户创造价值,在发展成为国内过程自动化仪表行业顶级企业的同时,促进中国自动化技

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V 。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d 为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为Uo+、3脚接+5V 电源、4脚为Uo -;当P1>P2时,输出为正;P1

硅压阻式微传感器的制造工艺研究

硅压阻式压力微传感器的设计与制 造工艺研究 指导老师:来五星 作者:张勇杰潘挺周晶张晶渝 魏佳易伟铭杨昆

硅压阻式压力微传感器的设计与制造工艺 研究 摘要:硅压阻式压力传感器是最早开始研究并实用化的微传感器之一,它结构简单、体积小、成本低、应用范围广,且已经实现大批量生产,在某些领域已经取代传统传感器。进一步研制小体积高精度的微传感器,扩大其适用范围是未来的趋势。本文首先叙述了压阻式压力微传感器的原理和设计方法,然后针对硅压阻式压力微传感器的制造,给出了两种不同的制造工艺流程,并接着对其优缺点进行了横向比较,以期优化该种传感器的工艺。 关键词:微传感器;压阻式;制造工艺;设计 一、引言 压力传感器是用来测量流体或气体压力,大规模生产的计量或传感单元。传统的压力传感器体积大、笨重、输出信号弱、灵敏度低。应用微电子技术,在单晶硅片的特定晶向上,制成应变电阻构成的惠施顿电桥,同时利用半导体材料的压阻效应和硅的弹性力学特性,用集成电路工艺和微机械加工技术研制固态压阻压力传感器,它们具有体积小、灵敏度高、动态特性好、耐腐蚀和灵敏度系数好等优点。 二、压阻式压力微传感器原理

图2-1 硅杯式压力传感器原理结构 由图2-1可知,当压力作用于微型硅膜片上时,硅膜片将发生弯曲和内应变(应力)。基于硅的压阻效应,当其内应变化时,必将引起相应的电阻变化。当压力P 按图示方向作用在膜片上,桥路上的压敏电阻R1和R3的值增加,R2和R4的值将下降。 若桥路由恒压压源V8供电时,其输出电压V0可用下式表示,即: 0p s V S pV ?=? (2-1) 或写成: 01 p s V S p V ?=? (2-2) 式中,p S 称为压力灵敏度。 式(2-2)表明,输出电压与被测压力成正比,测量0V ?,即 可得被测的对应压力p ?。因为电阻变化通常在0.01%~0.1%量级,故电桥输出电压很小,需要配置放大电路。

硅压阻式充油芯体(扩散硅传感器)

一、硅压阻式充油芯体(扩散硅传感器)一般介绍: 硅单晶材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯凳电桥,利用硅材料的弹性力学特性,在同一切硅材料上进行各向异性微加工,就制成了一个集力敏与力电转换检测于一体的扩散硅传感器。给传感器匹配一放大电路及相关部件,使之输出一个标准信号,就组成了一台完整的变送器。

硅压阻式充油芯体(扩散硅传感器)技术特点: 1、灵敏度高 扩散硅敏感电阻的灵敏因子比金属应变片高50~80倍,它的满量程信号输出在80-100mv左右。对接口电路适配性好,应用成本相应较低。由于它输入激励电压低,输出信号大,且无机械动件损耗,因而分辨率极高。 2、精度高 扩散硅压力传感器的感受、敏感转换和检测三位一体,无机械动件连接转换环节,所以重复性和迟滞误差很小。由于硅材料的刚性好,形变小,因而传感器的线性也非常好。因此综合表态精度很高。 3、可靠性高 扩散硅敏感膜片的弹性形变量在微应变数量级,膜片最大位移量在来微米数量级,且无机械磨损,无疲劳,无老化。平均无故障时间长,性能稳定,可靠性高。 4、频响高 由于敏感膜片硅材料的本身固有频率高,一般在50KC。制造过程采用了集成工艺,膜片的有效面积可以很小,配以刚性结构前置安装特殊设计,使传感器频率响应很高,使用带宽可达零频至100千赫兹。 5、温度性能好随着集成工艺技术进步,扩散硅敏感膜的四个电阻一致性得到进一步提高,原始的手工补偿已被激光调阻、计算机自动修整技术所替代,传感器的零位和灵敏度温度系数已达10-5/℃数量级,工作温度也大幅度提高。 6、抗电击穿性能好由于采用了特殊材料和装配工艺,扩散硅传感器不但可以做到130℃正常使用,在强磁场、高电压击穿试验中可抗击1500V/AC电压的冲击。 7、耐腐蚀性好由于扩散硅材料本身优良的化学防腐性能好,即使传感器受压面不隔离,也能在普通使用中适应各种介质。硅材料又与硅油有良好的兼容性,使它在采用防腐材料隔离时结构工艺更易于实现。加之它的低电压、低电流、低功耗、低成本和本质安全防爆的特点,可替代诸多同类型的同功能产品,具有最优良的性能价格比。

压阻式压力传感器

第二节压阻式传感器 固体受到作用力后,电阻率就要发生变化,这种效应称为压阻效应。半导体材料的这种效应特别强。利用半导体材料做成的压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成的粘贴式应变片;另一类是在半导体材料的基片上用集成电路工艺制成扩散电阻,称扩散型压阻传感器。压阻式传感器的灵敏系数大,分辨率高。频率响应高,体积小。它主要用于测量压力、加速度和载荷参数。 因为半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。 1.基本工作原理 根据式(2-3) 式中,项,对金属材料,其值很小,可以忽略不计,对半导体材料, 项很大,半导体电阻率的变化为 (2-22) 式中为沿某晶向的压阻系数,σ为应力,为半导体材料的弹性模量。如半导体硅材料,, ,则 ,此例表明,半导体材料的灵敏系数比金属应变片灵敏系数(1+2μ)大很多。可近似认为。 半导体电阻材料有结晶的硅和锗,掺入杂质形成P型和N型半导体。其压阻效应是因在外力作用下,原子点阵排列发生变化,导致载流子迁移率及浓度发生变化而形成的。由于半导体(如单晶硅)是各向异性材料,因此它的压阻系数不仅与掺杂浓度、温度和材料类型有关,还与晶向有关。所谓晶向,就是晶面的法线方向。 晶向的表示方法有两种,一种是截距法,另一种是法线法。

1.截距法设单晶硅的晶轴坐标系为x、y、z, 如图2-29所示,某一晶面在轴上的截距分别为r、s、t (2-23) 1/r、1/s、1/t为截距倒数,用r、s、t的最小公倍数分别相乘,获得三个没有公约数的整数a、b、c,这三个数称为密勒指数,用以表示晶向,记作〈a b c〉,某数(如a)为负数则记作〈 b c〉。例如图2-30(a),截距为-2、- 2、4,截距倒数为-、-、,密勒指数为〈1〉。图2-30(b)截距为 1、1、1,截距倒数仍为1、1、1,密勒指数为〈1 1 1〉。图2-30(c)中ABCD 面,截距分别为1、∞、∞,截距倒数为1、0、0,所以密勒指数为〈1 0 0〉。 2.法线法如图2-29所示,通过坐标原点O,作平面的法线OP,与x、y、z轴的夹角分别为α、β、γ。 (2-24)

扩散硅压力传感器技术应用与选型

扩散硅压力传感器技术应用与选型 一、一般介绍: 硅单晶材料在受到外力作用产生极微小应变时(一般步于400微应变),其内部原子结构的电子能级状态会发生变化,从而导致其电阻率剧烈变化(G因子突变)。用此材料制成的电阻也就出现极大变化,这种物理效应称为压阻效应。利用压阻效应原理,采用集成工艺技术经过掺杂、扩散,沿单晶硅片上的特点晶向,制成应变电阻,构成惠斯凳电桥,利用硅材料的弹性力学特性,在同一切硅材料上进行各向异性微加工,就制成了一个集力敏与力电转换检测于一体的扩散硅传感器。给传感器匹配一放大电路及相关部件,使之输出一个标准信号,就组成了一台完整的变送器。 二、技术特点: 1、灵敏度高 扩散硅敏感电阻的灵敏因子比金属应变片高50~80倍,它的满量程信号输出在80-100mv左右。对接囗电路适配性好,应用成本相应较低。由于它输入激励电压低,输出信号大,且无机械动件损耗,因而分辩率极高。 2、精度高 扩散硅压力传感器的感受、敏感转换和检测三位一体,无机械动件连接转换环节,所以不重复性和迟滞误差很小。由于硅材料的刚性好莱坞,形变小,因而传感器的线性也非常好。因此综合表态精度很高。 3、可靠性高 扩散硅敏感膜片的弹性形变量在微应变数量级,膜片最大位移量在来微米数量级,且无机械磨损,无疲劳,无老化。平均无故障时间长,性能稳定,可靠性高。

4、频响高 由于敏感膜片硅材料的本身固有频率高,一般在50KC。制造过程采用了集成工艺,膜片的有效面积可以很小,配以刚性结构前置安装特殊设计,使传感器频率响应很高,使用带宽可达零频至100千赫兹。 5、度性能好 随着集成工艺技术进步,扩散硅敏感膜的四个电阻一致性得到进一步提高,原始的手工补偿已被激光调阻、计算机自动休整技术所替代,传感器的零位和灵敏度温度系数已达10-5/℃数量级,工作温度也大幅度提高。 6、抗电击穿性能好 由于采用了特殊材料和装配工艺,扩散硅传感器不但可以做到130℃正常使用,在强磁场、高电压击穿试验中可抗击1500V/AC电压的冲击。 7、耐腐蚀性好 由于扩散硅材料本身优良的化学防腐性能好,即使传感器受压面不隔离,出能在普通使用中适应各种介质。硅材料又与硅油有良好的兼容性,使它在采用防腐材料隔离时结构工艺更易于实现。加之它的低电压、低电流、低功耗、低成本和本质安全防爆的特点,可替代诸多同类型的同功能产品,具有最优良的性能价格比。 三、选项型提要 1、传感器、变送器的选择 用户根据自己所测压力的性质,首先应确定选择表压(相对于当地大气压)、差压、绝对压力或负压品种。如果测量液位,还要确定液位上方是自由大气压还是密封容器压力。如果测量密封承压容器内的液位就应该选用差压产品。 2、产品量程的确定

相关文档
相关文档 最新文档