中考复习讲义1——数与式

教学内容 数与式

【中考回顾】

1.(2015年河南中考)下列各数中最大的数是( )

A. 5

B.3

C. π

D. -8

2.(2015年河南中考)据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( )

A. 4.0570×109

B. 0.40570×1010

C. 40.570×1011

D. 4.0570×1012

3.(2015年河南中考)计算:(-3)0

÷3-1

= .

4.(2015年河南中考)先化简,再求值:

)1

1(22222a

b b a b ab a -÷-+-,其中15+=a ,15-=b . 解析:

5.(2014年河南中考)下列各数中,最小的数是( ) (A). 0 (B). (C).- (D).-3 答案:D

解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<- <0< , ∴最小的数是﹣3,故选A .

6.(2014年河南中考) 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( ) (A) 10 (B) 11 (C).12 (D).13 答案:B

解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的

值以及n 的值.3875.5亿=3.8755×1011,故选B. 7.(2014年河南中考)计算:3272--= . 8.先化简,再求值:

222

x 1x 12x x x ??

-+÷+ ?-??

,其中x=2-1 原式=()()()2x 1x 12x x 1x x 1x

+-++÷

-…………………………………………………4分 =

()

2

x 1x

x x 1++ =

1

x 1

+…………………………………………………………………………6分 当x=2-1时,原式=1211-+=12=2

2

……………………………………8分

9.(2013年河南中考)-2的相反数是( ) A . 2 B . 2-- C .

21 D . 21

-

10.(2013年河南中考)计算:._______43=--

11.(2013年河南中考)(8分)先化简,再求值:(x +2)2

+(2x +1)(2x -1)-4x (x +1),其中2-=x .

12.(2012年河南中考)下列各数中,最小的是( ) (A )-2 (B)-0.1 (C)0 (D)|-1|

13.(2012年河南中考)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )

(A )5

6.510-? (B )6

6.510-?

(C )7

6.510-?

(D )6

6510-?

14.(2012年河南中考)计算:02(2)(3)-+-=

15.(2012年河南中考)(8分)先化简22

444

()2x x x x x x

-+÷--,然后从55x -<<的范围内选取一个合适的整数作为x 的值代入求值。

解析:原式=2

2(2)4

(2)x x x x x

--÷

- =2

(2)(2)(2)(2)

x x

x x x x -?

-+- =

12

x + ∵55x -<<,且x 为整数,∴若使分式有意义,x 只能取-1和1。 当x =1时,原式=

1

3

.[或者:当x =-1时,原式=1] 16.

17.

考情分析:

1、会出1-2道选择题,第一道主要考察实数比较大小、相反数、倒数及绝对值与数轴的结合,孩子应准确掌握实数大小,相反数的判断及性质,会区分倒数和相反数,会灵活运动绝对值与数轴的化简题

2、第二道选择常考科学计数法,应让孩子掌握科学技术法的计算及含有小数点的科学计数法

3、会有一道填空题考察运算,涉及绝对值、二次根式、0指数幂、负指数幂的运算或者考察分式有无意义及分式值为0等计算。

4、会出一道8分的大题,化简求值题,主要运用到分式的加减(分式通分)、

分式乘除(分式乘法公式)、及完全平方公式、平方差公式的灵活运用。

【知识梳理】

【考点梳理】考点一、实数的有关概念、性质

1.实数及其分类

实数可以按照下面的方法分类:

实数还可以按照下面的方法分类:

要点诠释:

整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.

2.数轴

规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.

要点诠释:

实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.

3.相反数

实数a和-a叫做互为相反数.零的相反数是零.

一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.

要点诠释:

两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.

4.绝对值

一个实数的绝对值就是数轴上表示这个数的点与原点的距离.

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即

如果a>0,那么|a|=a;

如果a<0,那么|a|=-a;

如果a=0,那么|a|=0.

要点诠释:

从绝对值的定义可以知道,一个实数的绝对值是一个非负数.

5.实数大小的比较

在数轴上表示两个数的点,右边的点所表示的数较大.

6.有理数的运算

(1)运算法则(略).

(2)运算律:

加法交换律 a+b=b+a;

加法结合律 (a+b)+c=a+(b+c);

乘法交换律 ab=ba;

乘法结合律 (ab)c=a(bc);

分配律 a(b+c)=ab+ac.

(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.

算式里如果有括号,先进行括号内的运算.

如果只有同一级运算,从左到右依次运算.

7.平方根

如果x2=a,那么x就叫做a的平方根(也叫做二次方根).

要点诠释:

正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.

8.算术平方根

正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.

要点诠释:

从算术平方根的概念可以知道,算术平方根是非负数.

9.近似数及有效数字

近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.

10.科学记数法

把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.

考点二、二次根式、分式的相关概念及性质

1.二次根式的概念

形如a (a ≥0) 的式子叫做二次根式. 2.最简二次根式和同类二次根式的概念

最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;

(2)被开方数中不含能开得尽方的因数或因式.

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:

把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式: (1)a a 与互为有理化因式;

(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;

(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质

(1)0(0)a a ≥≥; (2)

()

2

(0)a a a =≥;

(3)2(0)

||(0)a a a a a a ≥?==?

-

(4)积的算术平方根的性质:(00)ab a b a b =?≥≥,;

(5)商的算术平方根的性质:(00)a a

a b b b

=≥>,. 4. 二次根式的运算 (1)二次根式的加减

二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除

二次根式相乘除,把被开方数相乘除,根指数不变.

要点诠释:

二次根式的混合运算:

1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;

2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;

3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.

5.代数式的有关概念

(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.

用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.

代数式的分类:

(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式.

(3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式.

整式包括单项式和多项式.

(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义.

6.整式的运算

(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.

(2)整式的乘法:

①正整数幂的运算性质:

m n m n

a a a+

=;

a a

=;

()m n mn

=;

()m m m

ab a b

m n m n

a a a-

÷=(a≠0,m>n).

其中m、n都是正整数.

②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的

和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.

多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

③乘法公式:

22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.

④零和负整数指数:在m

n

m n

a a a

-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定0

1a =;

当m <n 时,如m-n =-p(p 是正整数),规定1p

p

a a -=

. 7.因式分解

(1)因式分解的概念

把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:

①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.

②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法

①提公因式法:ma+mb+mc =m(a+b+c).

②运用公式法:2

2

()()a b a b a b -=+-;2

2

2

2()a ab b a b ±+=±;

③十字相乘法:2

()x a b x ab +++()()x a x b =++.

(3)因式分解的步骤

①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 8.分式

(1)分式的概念 形如

A

B

的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质

分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.

A A M

B B M

?=?,A A M B B M ÷=÷.(其中M 是不等于零的整式)

(3)分式的运算 ①加减法:

a b a b c c c ±±=,a c ad bc b d bd ±±=. ②乘法:a c ac

b d bd

=. ③除法:a c a d ad

b d b

c bc

÷==.

④乘方:n

n n a a b b ??

= ???

(n 为正整数).

要点诠释:

解分式方程的注意事项:

(1)去分母化成整式方程时不要与通分运算混淆;

(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.

【典型例题】

类型一、实数的概念、运算

1.实数2-,0.3,

1

7

,2,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 (1)字母型:如π是无理数,

24

ππ

、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;

(3)根式型:3

256、、,

…都是一些开方开不尽的数; (4)三角函数型:sin35°、tan27°、cos29°等. 2.下列各数中,最大的是( ) A. 0 B. 2 C. -2 D. -

2

1

【解析】根据正数大于0和一切负数可得,0、2、-2、- 2

1

中最大的数是2. 3.在下列各数中,最小的数是( )

A. 0

B. -1

C.

2

3

D. -2 4.2的相反数是( )

A. 2-

B. 2

C.

1

2

D.2 5、|-

71

|=( ) A. - 71 B. 7

1

C. -7

D. 7

6、若一个数的相反数是3,则这个数是( ) A. -

31 B.3

1

C. -3

D. 3

7、2016年3月15日,河南省现代服务业开放合作洽谈会在郑州举行.据统计,签约项目达235个,总投资达3120亿元,将3120亿用科学记数法表示为( ) A. 3.12×1012 B. 3.12×1011 C. 31.2×1010 D. 312×109/

8、一种微粒的半径是0.00004米,这个数据用科学记数法表示为( ) A. 4×106 B. 4×10-6 C. 4×10-5 D. 4×105

解析:把一个正小数用科学记数法表示成a×10n 的形式,其中0

9、某种计算机完成一次基本运算的时间约为0.000000001s ,把0.000000001s 用科学记数法可表示为( ) A. 80.110-?s B. 90.110-?s C. 8110-?s D. 9

110-?s 【答案】D

10、将2.05×310-用小数表示为 ···················· ( )

A .0.000205

B .0.0205

C .0.00205

D .-0.00205

【答案】C

11、计算:(-1)0

+(

2014

1 )1

-= .

【解析】本题考查实数的运算,由(-1)0=1,( 2014

1

)-1=2014,得原式=1+2014=2015. 实数运算的一般步骤:

(1)先计算每一小项的值(如绝对值、平方、开方、立方、0次幂等); (2)根据实数的运算顺序计算; (3)最后得到结果 12、

3

-8 +(- 3 )2=___1___.

13、 4 的算术平方根为_2____. 14、 16的平方根是____.

15、计算:02(3.142)(3)-+- =___________. 【答案】10

【解析】解:原式=1+9=10.故答案为10.

16、计算2-2

+(3)0= .

【答案】4

5

17.(2015山东省聊城市,14,3分)计算:(

)

24322

-+= 。

【答案】5

【解析】按照实数运算的法则、顺序进行即可

18、计算

1

-0212)

(+的值为 . 19、(2015年四川省宜宾市,17,10分)(1)计算:()

()

1

-2015

211-3--3-??

?

??++ 【答案】解:(1)()

()1

-2015

211-3--3-??

? ??++ =1-3-1+2 = -1

20、(2015四川省遂宁市,16,7分)计算:()0

3

1276sin 60 3.145π--+?+-+-.

【答案】5. 【解析】

原式=3

133********--+?

++=-++=.

22. (2015四川省巴中市,21,5分)计算:()

1

12320152sin 60+3π-??

---+?- ???

【答案】解:原式=3

2312322

--+?-=-.

23.(2015浙江省丽水市,17,6分)计算:011

4(2)()2

--+--.

【答案】解:原式=4+1-2=3.

24、在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.

【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】

由上图可得b <c <0<a , ∴ a-b >0,a-c >0,b+c <0.

∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .

【总结升华】由绝对值的定义我们知道:

如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.

要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.

25、(2015山东省威海市,5,3分)已知实数b a ,在数轴上的位置如图所示,下列结论错误的是( )

A. a <1<b

B.1 <a - <b -

C. 1 < a <b

D. b - <a <-1

【答案】A

【解析】由题意可知﹣1<a <0,b >1,故a 、b 异号,显然|a |和|b |都大于1,所以A 错误.故选A.

类型二、整式运算 一、 代数式求值

例1.若m+n=0,则2m+2n+1= _______. 二 整式运算

1、下列运算正确的是( ). A .a ·a 3

=a 4

B .2(a -b)=2a -b

C .(a 3)2=a 5

D .a 2-2a 2=-a 2

2、下列计算正确的是( ) A .()3

36a a =

B .632a a a ÷=

C .235a b ab +=

D .325a a a =

3、下列运算正确的是 A.

8-3=5 B. b 3·b 2=b 6 C.4a -9a =-5 D.(ab 2)3=a 3b 6

4、计算:3

2

7

2

32a a a a ?-÷= . 5、分解因式:2

x -4=____________. 6、计算(-a2)3的结果是_____. 7、计算:(-a)

10

÷(-a)3

的结果是

8、因式分解:x+5x=

9、先化简,再求值:(2x+1)2-2(2x+1)+3,其中x=-1

10、先化简,再求值:(x+2)2

+(2x+1)(2x-1)-4x(x+1),其中x=-2.

类型三、分式化简运算 类型一、满足分式有意义的条件

1、代数式 1

||-1x 有意义时,x 应满足的条件为_______.

2、若分式 24

1x x +- 的值为零,则x 的值为( )

A. 0

B. 2

C. -2

D. 1 类型二、分式化简及求值

1、

2、 化简:22

11211

1a a a

a a a a --?--++-的结果为_____. 3、计算222

2

14(2)244x x x x x x x x x +--??-÷-

?--+??

. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】

222

2

14(2)244x x x x x x x x x +--??-÷-

?--+??

2221(2)(2)(2)4

x x x

x x x x x ??

+-=--??---??

222

21

(2)(2)(2)

4(2)4

x x x x

x x x x x x x +-=-------

22444x x x x x --=---22(4)()

4

x x x x ---=-

4

14

x x -=

=-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.

4、 先化简,再求值:

231

(1)22x x x --÷

++ 在-2,-1,0,1四个数中选一个合适的代入求值.

5、分式化简求值:先化简:

22244(2)11x x x x x x -+--+÷

-- , 然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.

类型四、二次根式的运算

类型一、 二次根式有意义的条件 例1、要使式子

1

1

m m +-有意义,则实数m 的取值范围是( )

A. m >-1

B. m≥-1

C. m >-1且m≠1

D. m≥-1且m≠1

例2、

类型二、 二次根式的估值

1、a ,b 是两个连续整数,若a < 7 <b ,则a ,b 分别是

)如图,数轴上A ,B ,C ,D 四点中,与数3-表示的点最接近的是( ) A.点A

B.点B

C.点C

D.点D

【答案】B

与无理数31最接近的整数是( )

A. 4

B. 5

C. 6

D. 7

【课后作业】

1.(2015四川省巴中市,1,3分)-2的倒数是( ) A .2 B .

1

2 C .12

-

D .-2

【答案】 C .

2.(2015四川省巴中市,2,3分)下列计算正确的是( ) A .()3

36a a =

B .632a a a ÷=

C .235a b ab +=

D .325a a a =

【答案】 D .

3.(2015四川省遂宁市,1,4分)计算:11()3

--=(

).

A .23

B .23-

C .43

D .43-

【答案】C .

【解析】

11()

3--=1+13=43.

4.(2015四川省遂宁市,2,4分)下列运算正确的是( ). A .a ·a 3

=a 4

B .2(a -b)=2a -b

C .(a 3)2=a 5

D .a 2-2a 2=-a 2

【答案】D . 【解析】

解:对于A :a ·a 3

=a 4

,故A 错;对于B :2(a -b)=2a -2b ,故B 错;对于C :(a 3)2

=a 6

,故C 错; 对于D :a 2

-2a 2

=-a 2,正确.

5.(2015年四川省宜宾市,3,3分)地球绕太阳每小时转动经过的路程约为110000米,将110000用科学

记数法表示为( )

A.11×104

B.0.11×107

C.1.1×106

D.1.1×105

【答案】D

【解析】科学记数法就是把一个数表示成()

10110<≤?a a n 的形式,当数字是一个很大的数时,n 等于整数位数减1.

6. (2015年四川省宜宾市,1,3分)5

1

-的相反数是( ) A.5 B.51 C.5

1

- D.-5 【答案】B

【解析】求一个数的相反数就是在这个数的前面加上“-”,然后根据实数运算的符号法则化简即可,如:求-2的相反数,就是 -(-2)=2,5的相反数就是 -5。

7.(2015四川省自贡市,1,4分)1

2

-的倒数是 ············· ( )

A .-2

B .2

C .

1

2 D .12

-

【答案】A

8.(2015四川省自贡市,2,4分)将2.05×310-用小数表示为 ······· ( )

A .0.000205

B .0.0205

C .0.00205

D .-0.00205

二、填空题

1.(2015山东省青岛市,9,3分)计算:3

2

7

2

32a a a a ?-÷= .

【答案】5

a

2.(2015四川省巴中市,11,3分)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资

8400万元,请你将8400万元用科学记数法表示为 元. 【答案】 8.4×107

3. (2015四川省遂宁市,11,4分)把96000用科学记数法表示为___.

【答案】9.6×104.

【解析】科学记数法,是将一个数表示成a ×10n

的形式,其中1≤a <10,n 是整数. 所以96000=9.6×104

4. (2015四川省自贡市,11,4分)化简:32-=________. 【答案】23-

5. (2015四川省自贡市,12,4分)若两个连续整数x ,y 满足y <51+<y ,则x y +值是________. 【答案】7

6. (2015重庆B 卷,13,4分)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为_______. 【答案】7

6.510?

【解析】解:65000000=7

6.510?.故答案为7

6.510?.

7. (2015重庆B 卷,15,4分)计算:02(3.142)(3)-+- =___________. 【答案】10

【解析】解:原式=1+9=10.故答案为10.

8.(2015四川省巴中市,20,3分)定义:a 是不为1的有理数,我们把

1

1a

-称为a 的差倒数,如:2的

相关推荐
相关主题
热门推荐