文档库 最新最全的文档下载
当前位置:文档库 › 螺旋矩阵算法

螺旋矩阵算法

螺旋矩阵算法
螺旋矩阵算法

数据结构算法:螺旋矩阵算法

这个问题看似很难,但是其实只有有了正确的,规范的逻辑思想算法以后(就像看了这个算法以后),感觉其实这个问题很简单,于是我们不但要学习高深的算法,还要掌握一流的逻辑思维理念。这个算法值得我们学习的地方就是他的数学建模思想,把复杂的问题抽象出来,成为了4个方向的结构式模块组合,于是复杂的问题就简单化了!!!

#include

#include

using namespace std;

void right(); //向左输入的赋值函数

void down();

void left();

void up();

void show(); //显示函数

void sort(); //控制方向的函数

int value;

int direction = 0; //控制方向

int rightNum = 0; //向右输入一行的次数

int downNum = 0;

int leftNum = 0;

int upNum = 0;

int arrayNum = 0; //自增赋值数

int row = 0; //保存行下标

int col =0; //保存列下标

int array[100][100]; //保存数组

int main(int argc, char *argv[])

{

cout<<\"N*N, enter N:\"<

cin>>value;

sort();

show();

system(\"pause\");

return 0;

}

void sort()

{

while(arrayNum != value*value) //循环跳出条件,赋值完毕

{

switch(direction)

{

case 0:

right();

break;

case 1:

down();

break;

case 2:

left();

break;

case 3:

up();

break;

default:

break;

}

}

return;

}

void right()

{

int m = row;

int n = col;

if(m==0&&n==0)

{

array[m][n] = ++arrayNum;

}

for(int i=n+1; i

array[m][i] = ++arrayNum;

n++;

}

row=m;

col=n;

rightNum++;

direction = 1;

return;

}

void down()

{

int m = row;

int n = col;

for(int i=m+1; i

array[i][n] = ++arrayNum;

m++;

}

row=m;

col=n;

downNum++;

direction = 2;

return;

}

void left()

{

int m = row;

int n = col;

for(int i=n-1; i>=leftNum;i--) {

array[m][i] = ++arrayNum;

n--;

}

row=m;

col=n;

leftNum++;

direction = 3;

return;

}

void up()

{

int m = row;

int n = col;

for(int i=m-1; i>upNum; i--) {

array[i][n] = ++arrayNum;

m--;

}

row=m;

col=n;

upNum++;

direction = 0;

return;

}

void show()

{

int n =0;

for(int i=0; i

{

for(int j=0; j

{

cout<

cout<

}

}

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

矩阵算法经典题目

经典题目 这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1: 右面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵: 矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?因为交换后两个矩阵有可能不能相乘。为什么它又满足结合律呢?假设你有三个矩阵A、B、C,那么(AB)C和 A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n 为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

三元组表示稀疏矩阵的转置(一般算法和快速算法)

一、设计要求 1.1 问题描述 稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行存储和计算可以大大节省存储空间,提高计算效率。求一个稀疏矩阵A的转置矩阵B。 1.2需求分析 (1)以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现稀疏矩阵的转置运算。(2)稀疏矩阵的输入形式采用三元组表示,运算结果则以通常的阵列形式列出。 (3)首先提示用户输入矩阵的行数、列数、非零元个数,再采用三元组表示方法输入矩阵,然后进行转置运算,该系统可以采用两种方法,一种为一般算法,另一种为快速转置算法。(4)程序需要给出菜单项,用户按照菜单提示进行相应的操作。 二、概要设计 2.1存储结构设计 采用“带行逻辑链接信息”的三元组顺序表表示矩阵的存储结构。三元组定义为:typedef struct { int i;//非零元的行下标 int j;//非零元的列下标 ElemType e; //非零元素值 }Triple; 矩阵定义为: Typedef struct { Triple data[MAXSIZE+1]; //非零元三元组表 int rpos[MAXRC+1]; //各行第一个非零元的位置表 int mu,nu,tu; //矩阵的行数、列数和非零元个数 }RLSMatrix; 例如有矩阵A,它与其三元组表的对应关系如图

2.2 系统功能设计 本系统通过菜单提示用户首先选择稀疏矩阵转置方法,然后提示用户采用三元组表示法输入数据创建一个稀疏矩阵,再进行矩阵的转置操作,并以通常的阵列形式输出结果。主要实现以下功能。 (1)创建稀疏矩阵。采用带行逻辑连接信息的三元组表表示法,提示用户输入矩阵的行数、列数、非零元个数以及各非零元所在的行、列、值。 (2)矩阵转置。<1>采用一般算法进行矩阵的转置操作,再以阵列形式输出转置矩阵B。 <2>采用快速转置的方法完成此操作,并以阵列形式输出转置矩阵B。 三、模块设计 3.1 模块设计 程序包括两个模块:主程序模块、矩阵运算模块。 3.2 系统子程序及其功能设计 系统共设置了8个子程序,各子程序的函数名及功能说明如下。 (1)CreateSMatrix(RLSMatrix &M) //创建稀疏矩阵 (2)void DestroySMatrix(RLSMatrix &M) //销毁稀疏矩阵 (3)void PrinRLSMatrix(RLSMatrix M) //遍历稀疏矩阵 (4)void print(RLSMatrix A) //打印矩阵函数,输出以阵列形式表示的矩阵 (5)TransposeSMatrix(RLSMatrix M,RLSMatrix &T) //求稀疏矩阵的转置的一般算法(6)FastTransposeSMatrix(RLSMatrix M,RLSMatrix &T) //快速转置算法 (7)void showtip() //工作区函数,显示程序菜单 (8)void main() //主函数

Dijkstra算法

5.3.4 附录E 最短路径算法——Dijkstra 算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford 算法和Dijkstra 算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra 算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 令v 部分: 不直接相连与结点若结点 1 v ? ?∞在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子, 可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

现在我们对以上的最短路径树的找出过程进行一些解释。 因为选择了结点1为源结点,因此一开始在集合N中只有结点1。结点1只和结点2, 3和4直接相连,因此在初始化时,在D(2),D(3)和D(4)下面就填入结点1到这些结点相应的距离,而在D(5)和D(6)下面填入∞。 下面执行步骤1。在结点1以外的结点中,找出一个距结点1最近的结点w,这应当是w = 4,因为在D(2),D(3)和D(4)中,D(4) = 1,它的之值最小。于是将结点4加入到结点集合N中。这时,我们在步骤1这一行和D(4)这一列下面写入①,数字1表示结点4到结点1的距离,数字1的圆圈表示结点4在这个步骤加入到结点集合N中了。 接着就要对所有不在集合N中的结点(即结点2, 3, 5和6)逐个执行(E-1)式。 对于结点2,原来的D(2) = 2。现在D(w) + l(w, v) = D(4) + l(4, 2) = 1 + 2 = 3 > D(2)。因此结点2到结点1距离不变,仍为2。 对于结点3,原来的D(3) = 5。现在D(w) + l(w, v) = D(4) + l(4, 3) = 1 + 3 = 4 < D(3)。因此结点3到结点1的距离要更新,从5减小到4。 对于结点5,原来的D(5) = ∞。现在D(w) + l(w, v) = D(4) + l(4, 5) = 1 + 1 = 2 < D(5)。因此结点5到结点1的距离要更新,从∞减小到2。 对于结点6,现在到结点1的距离仍为∞。 步骤1的计算到此就结束了。 下面执行步骤2。在结点1和4以外的结点中,找出一个距结点1最近的结点w。现在有两个结点(结点2和5)到结点1的距离一样,都是2。我们选择结点5(当然也可以选择结点2,最后得出的结果还是一样的)。以后的详细步骤这里就省略了,读者可以自行完 1的路由表。此路由表指出对于发往某个目的结点的分组,从结点1发出后的下一跳结点(在算法中常称为“后继结点”)和距离。当然,像这样的路由表,在所有其他各结点中都有一个。但这就需要分别以这些结点为源结点,重新执行算法,然后才能找出以这个结点为根的最短路径树和相应的路由表。

字符串及数组应用程序设计习题

字符串及数组应用程序设计习题 1、 【字符替换问题】 题目描述:在使用Word 进行文档编辑的过程中,我们都有过使用替换操作的经历,现在就请你运用字符串操作函数来实现一个简化的替换操作! 题目要求:用户输入三行字符串:第一行为原始文本串(长度为100以内);第二行为被替换子串;第三行为新的替换子串,注意替换操作可能不止进行一次。 输入数据:What ’s the meaning of this? this that 输出数据:What ’s the meaning of that? 2、 【简单字符串解压(压缩)问题】 题目描述:在计算机世界里,数据量总是庞大无比,因此压缩的概念无处不大:比如,音、视频信息压缩就产生了MP3、MP4等;网络数据包压缩更是减少了网络传输量,加快了数据传输出速度等,今天,我们也来试试一点简单的字符串解压(压缩)操作! 题目要求:键盘输入一段被压缩的字符信息,其中仅含大小写字母、数字、‘-’字符,并假定其中连续的字符(超过2个字符)已压缩为“起始字符-终止字符”的形式,请编程实现解压缩操作(解压后长度不超过200字符)! 输入数据:a-eio1-49X-Z 输出数据:abcdeio12349XYZ 思考:试试编写压缩操作(仅供同学们讨论实现,较难)。 3、 【归并操作问题】 题目描述:在计算机内部排序方案中,有一种重要的排序思想叫归并排序。归并排序的主要操作是递归分解、回归合并。回归合并操作就是将两个原本有序的序列,合并为一个有序序列。例如:A 序列为{12、14、32};B 序列为{13、15、40、99};则新序列C 为{12、13、14、15、32、40、99}。 题目要求:编程实现用户输入的两个有序子序列的合并操作,合并长度不长过100个元素。 输入数据:如上A 、B 子序列;输出结果:如上C 序列。 4、 【矩阵初始化问题】 题目描述:在计算机算法习题设计中,我们常常需要运用矩阵来记录当前问题的子问题的最优解,进而导出当前问题的最优解,并最终得到全局最优解,因此矩阵的下标运算是学习这类问题的重要基础之一。如下图所示方阵中的A 矩阵称为螺旋矩阵、B 矩阵称为蛇形矩阵。 题目要求:用户输入方阵的维大小,编程完成该方阵的这类初始化(分别实现)。 A 4×4 = B 4×4 = 输入数据:4 输出结果:螺旋矩阵如上图中的A 矩阵、蛇形矩阵如上图中的B 矩阵。 5、 【高精度运算问题】 题目描述:计算机软件功能其实就是扩展硬件功能。比如:计算机中硬件所能表示的最大整数long int 型数为-231 到231 ,要想表示更大的整型数据或其运算就只能依赖整型数组来完成! 题目要求:用户输入两个充分大的整数(C++基本类型是装不下了哟!),请输出它们的和。 输入数据( 两行):15464315464465465 482321654151 输出数据: 和为 15464797786119616 思考:求积(仅供同学们讨论实现,较难),上述数据积为 7458774215133872939813395215。 1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7 10 11 15 16 4 9 12 14 3 5 8 13 1 2 6 7

稀疏矩阵的建立与转置

实验2 稀疏矩阵的建立与转置 一、实验目的 掌握特殊矩阵的存储和操作算法。 二、实验内容及问题描述 实现用三元组保存稀疏矩阵并实现矩阵转置的算法。 三、实验步骤 1. 定义稀疏矩阵的三元组形式的存储结构。 2. 实现三元组矩阵的传统转置算法。 3. 实现三元组矩阵的快速转置算法。 4. 输入矩阵非零元素,测试自己完成的算法。 四、程序流程图

五、概要设计 矩阵是很多的科学与工程计算中研究的数学对象。在此,我们感兴趣的是,从数学结构这门学科着眼,如何存储矩阵的元从而使矩阵的各种运算有效的进行。本来,用二维数组存储矩阵,在逻辑上意义是很明确的,也很容易理解,操作也很容易和方便。但是在数值分析中经常出现一些阶数很高的矩阵,同时,在矩阵中又有很多值相同或者都为零的元素,可以对这种矩阵进行压缩存储:对多个值相同的元素只分配一个存储空间;对零元素不分配空间。稀疏矩阵的定义是一个模糊的定义:即非零元个数较零元个数较少的矩阵。例如下图所示的矩阵 为一个稀疏矩阵。为了实现稀疏矩阵的这种存储结构,引入三元组这种数据结构。三元组的线性表顺存储形式如下图: 六、详细设计 sanyuanzu.h 头文件 #define max 100 typedef struct { int row,col; int e; }Triple;//定义三元组 typedef struct { Triple data[max]; int mu,nu,tu; }TSMatrix;///*定义三元组的稀疏矩阵*/ void creat( TSMatrix &M) ; void fasttrans(TSMatrix A,TSMatrix &B);

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

dijkstra算法

迪克斯特拉算法: 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。 定义: Dijkstra算法一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN,CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T 中任何顶点的最短路径长度 (2)每个顶点对应一个距离值 S中顶点:从V0到此顶点的长度 T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和。 (反证法可证) 求最短路径步骤 算法步骤如下: G={V,E} 1.初始时令S={V0},T=V-S={其余顶点},T中顶点对应的距离值 若存在,d(V0,Vi)为弧上的权值 若不存在,d(V0,Vi)为∞ 2.从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中 3.对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值 重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

数据结构与算法 特殊矩阵和稀疏矩阵

常熟理工学院 《数据结构与算法》实验指导与报告书 _2017-2018_____学年第__1__ 学期 专业:物联网工程 实验名称:特殊矩阵和稀疏矩阵 实验地点: N6-210 指导教师:聂盼红 计算机科学与工程学院 2017

实验五特殊矩阵和稀疏矩阵 【实验目的】 1、掌握数组的结构类型(静态的内存空间配置);通过数组的引用下标转换成该数据在内存中的地址; 2、掌握对称矩阵的压缩存储表示; 3、掌握稀疏矩阵的压缩存储-三元组表表示,以及稀疏矩阵的转置算法。 【实验学时】 2学时 【实验预习】 回答以下问题: 1、什么是对称矩阵?写出对称矩阵压缩存储sa[k]与aij之间的对应关系。 若n阶矩阵A中的元素满足下述性质:a ij=a ji,则称为n阶对称矩阵。 sa[k]与矩阵元素a ij之间存在着一一对应的关系: 若i>=j,k=i*(i+1)/2+j; 若i

的关系。(注意C程序中,i,j,k均从0开始) (2)调试程序与运行。对称矩阵存储下三角部分即i>=j。 对称矩阵为3,9,1,4,7 9,5,2,5,8 1,2,5,2,4 4,5,2,1,7 7,8,4,7,9 参考程序如下: #include<> #define N 5 int main() { int upper[N][N]= {{3,9,1,4,7}, {9,5,2,5,8}, {1,2,5,2,4}, {4,5,2,1,7}, {7,8,4,7,9} }; /*对称矩阵*/ int rowMajor[15]; /*存储转换数据后以行为主的数组*/ int Index; /*数组的索引值*/ int i,j; printf("Two dimensional upper triangular array:\n"); for (i=0; i

c++课程设计-矩阵的转置与乘法计算

c++课程设计-矩阵的转置与乘法计算

C++课程设计实验报告 姓名学号班级 任课教师时间 9月 教师指定题目4-4 矩阵的转置与乘法计算评定难易级别 A 实验报告成绩 1.实验内容: 1.1 程序功能介绍 该程序定义了一个向量类,里面的元素是模板形式,定义了有关向量了类的各种属性、方法及运算符重载函数。 1.2 程序设计要求 (1)利用已知的向量类对象定义一个矩阵类,矩阵类的数据是向量子对象,同样定义矩阵类的各种属性、方法及运算符重载函数。 (2)完善成员函数,使矩阵可以由文件输入,具体的输入格式自己规定。 (3)完成矩阵的赋值、转置、乘法等运算,要求用整形矩阵和浮点型矩阵分别演算。 (4)更改main函数结构,可由用户选择输入矩阵数据的方法,程序可以连续运行,直到选择退出为止。

2. 源程序结构流程框图与说明(含新增子函数的结构框图)

作者:喻皓学号:0511590125

3. 基本数据结构 定义的类模板,将函数用链表将一些功能函数连接起来。其中定义了构造函数,析构函数,重载赋值、乘法、数乘、输入、输出,矩阵转置等函数,实现矩阵的矩阵的赋值、转置、乘法等运算。 template class CMatrix { struct node { Vector **f;//**************************************组成矩阵的向量指针 int refcnt;//*************************************************被引用次数 int length;//*************************************************矩阵的行数 T **tmppointer;//*******************************************头指针类型} *p; public: // Vector ** begin() const {return p->f;}; CMatrix();//****************************************************默认的构造 CMatrix(int xsize,int ysize,T init=0);//***************************构造函数 CMatrix(int xlength,const Vector *vec);//************************构造函

Dijkstra最短路径算法

5.3.4 附录E 最短路径算法——Dijkstra算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 下面以图E-1的网络为例来讨论这种算法,即寻找从源结点到网络中其他各结点的最短路径。为方便起见,设源结点为结点1。然后一步一步地寻找,每次找一个结点到源结点的最短路径,直到把所有 点1, j)为结点i (1) 初始化 令N表示网络结点的集合。先令N = {1}。对所有不在N中的结点v,写出

不直接相连与结点若结点直接相连 与结点若结点 1 1 ),1()(v v v l v D ? ? ?∞= 在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子,可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

几种矩阵完备算法的研究与实现_矩阵分析仿真大作业

几种矩阵完备算法的研究与实现 ——《矩阵分析》课程仿真作业报告* 刘鹏飞 电?系2016210858 摘要 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵恢复可以通过 求解?个与核范数有关的凸优化问题来实现。由此诞?了许多矩阵恢复的算 法,?如FPC算法等。FPC算法虽然实现简单,但其迭代速度较慢。在此基 础上,APG算法经过改进,能够提升迭代速度。但最?化核范数并不是求解 矩阵完备问题的唯??法,其中OptSpace算法构造了?个在流形上的优化问 题,相?于前两种算法能够以更?的精度恢复出原始矩阵。本?主要总结了 FPC、APG和OptSpace三种算法的步骤。特别地,对于OptSpace算法,本 ?提出了求解其中两个?优化问题的具体算法。最后,本?通过仿真实验和理 论分析?较了三种算法的特点,并给出了OptSpace算法的精度?于APG算 法的解释。 关键词:矩阵完备,核范数,FPC,APG,OptSpace 1介绍 1.1矩阵完备及其算法综述 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵完备可以描述成这样?个问题:对于?个m×n的矩阵M,其秩为r,我们只有对M中的部分采样,记*报告中所涉及到的仿真代码可在https://https://www.wendangku.net/doc/4d9123444.html,/s/1jHRcY8m下载 1

这些采样位置组成的集合为?,那么是否有可能从已知的部分元素中恢复出整个矩阵M。假如M为低秩矩阵,并且已知的元素?够多并且?够均匀地分布在整个矩阵中,那么我们可以通过解如下优化问题来恢复出原始矩阵[1]: min rank(W) s.t.W ij=M ij,(i,j)∈?(1-1)但是,问题(1-1)是?个NP难的?凸问题。在?定条件下,问题(1-1)可以转化成?个最?化核范数的问题。对于矩阵W m×n,W的核范数定义为其奇异值之和,即 ∥W∥?=min(m,n) ∑ k=1 σk(W)(1-2) 其中,σk(W)表?W第k?的奇异值。问题(1-1)可以转化成: min∥W∥? s.t.W ij=M ij,(i,j)∈?(1-3)对于(1-3)中带等式约束的问题,进?步地,可以将它凸松弛成?个?约束的 优化问题[2][3][4]: min 1 2 ∥A(W)?b∥22+μ∥W∥?(1-4) 其中,b是由矩阵中采样位置对应的元素组成的p×1维向量,p=|?|(|·|表?集合的势);A:R m×n?→R p是?个线性映射,A(W)=(W ij)|(i,j)∈?;μ是?个可以调整的参数。 对于(1-4)中的?约束问题,?献[2][3]分别提出了Fixed Point Continuation (FPC)和Singular Value Thresholding(SVT)的算法。本?认为,这两种算法虽然出发点不同,但其实质都是梯度下降法,没有本质的差别,在算法实现上也基本?样。因此,本?只研究其中?种,即FPC算法。FPC算法虽然实现简单,但其迭代速度慢,效率不?。在此基础上,?献[4]做出了改进,提出?种Accelerated Proximal Gradient Singular Value Thresholding(APG)算法(该算法是在SVT算法上改进的,本?认为FPC和SVT实质上是?种算法,故不做区别),能够?幅度地提?收敛速度。 前?提到的?种算法,都是从(1-1)中的最?化秩的问题出发,经过?步步凸松弛得到的。与上述基本思路不同,?献[5]提出了OptSpace算法,它实质上是通过解另?种优化问题来实现矩阵完备: min F(W)= ∑ (i;j)∈? ∥M ij?W ij∥2 s.t.rank(W)=r(1-5)

基于三元组表表示的稀疏矩阵的快速转置算法及其改进

基于三元组表表示的稀疏矩阵的快速转置算法及其改进 摘要:介绍基于三元组表表示的稀疏矩阵的快速转置算法,此算法在转置前需要先确定原矩阵中各列第一个非零元在转置矩阵中的位置,在此使用2个数组作为辅助空间,为了减少算法所需的辅助空间,通过引入2个简单变量提出一种改进算法。该改进算法在时间复杂度保持不变的情况下,空间复杂度比原算法节省一半。 需求分析:矩阵作为许多科学与工程计算的数据对象,必然是计算机处理的数据对象之 一。在实际应用中,常会遇到一些阶数很高,同时又有许多值相同的元素或零元素的矩阵,在这类矩阵中,如果值相同的元素或零元素在矩阵中的分配没有规律,则称之为稀疏矩阵。为了节省存储空间,常对稀疏矩阵进行压缩存储。压缩存储的基本思想就是:对多个值相同的元素只分配1个存储空间,对零元素不分配存储空间。换句话说,就是只存储稀疏矩阵中的非零元素。稀疏矩阵可以采取不同的压缩存储方法,对于不同的压缩存储方法,矩阵运算的实现也就不同。 1.稀疏矩阵的三元组表表示法 根据压缩存储的基本思想,这里只存储稀疏矩阵中的非零元素,因此,除了存储非零元的值以外,还必须同时记下它所在行和列的位置(i,j),即矩阵中的1个非零元aij由1个三元组(i,j,aij)惟一确定。由此可知,稀疏矩阵可由表示非零元的三元组表及其行列数惟一确定。对于稀疏矩阵的三元组表采取不同的组织方法即可得到稀疏矩阵的不同压缩存储方法,用三元组数组(三元组顺序表)来表示稀疏矩阵即为稀疏矩阵的三元组表表示法。三元组数组中的元素按照三元组对应的矩阵元素在原矩阵中的位置,以行优先的顺序依次存放。 三元组表的类型说明如下: # define MAXSIZE 1000 /*非零元素的个数最多为 1000*/ typedef struct { int row,col; /*该非零元素的行下标和列下标*/ ElementType e; /*该非零元素的值*/ }Triple; typedef struct { Triple data[MAXSIZE+1]; /*非零元素的三元组表, data[0]未用*/ int m,n,len; /*矩阵的行数、列数和非零元素的个数*/ }TSMatrix; 2.稀疏矩阵的快速转置算法 待转置矩阵source和转置后矩阵dest分别用三元组表A和B表示,依次按三元组表A中三元组的次序进行转置,转置后直接放到三元组表B的正确位置上。这种转置算法称为快速转置算法。为了能将待转置三元组表A中元素一次定位到三元组表B的正确位置上,需要预先计算以下数据: 1)待转置矩阵source每一列中非零元素的个数(即转置后矩阵dest每一行中非零元素的个 数)。

可达矩阵快速算法

传递闭包Warshall方法计算可达矩阵简要介绍 ①在集合X上的二元关系R的传递闭包是包含R的X上的最小的传递关系。R的传递闭包在数字图像处理的图像和视觉基础、图的连通性描述等方面都是基本概念。一般用B表示定义在具有n个元素的集合X上关系R的n×n二值矩阵,则传递闭包的矩阵B+可如下计算: B+ = B + B2 + B3 + ……+ (B)n ②式中矩阵运算时所有乘法都用逻辑与代替,所有加法都用逻辑或代替。上式中的操作次序为B,B(B),B(BB),B(BBB),……,所以在运算的每一步我们只需简单地把现有结果乘以B,完成矩阵的n次乘法即可。 https://www.wendangku.net/doc/4d9123444.html, /ism/cal_warshall_get_r_mat_detail.php Warshall在1962年提出了一个求关系的传递闭包的有效算法。 其具体过程如下,设在n个元素的有限集上关系R的关系矩阵为M:(1)置新矩阵A=M; (2)置k=1; (3)对所有i如果A[i,k]=1,则对j=1..n执行: A[i,j]←A[i,j]∨A[k,j];

(4)k增1; (5)如果k≤n,则转到步骤(3),否则停止。 所得的矩阵A即为关系R的传递闭包t(R)的关系矩阵。 在《离散数学》中都提及了该算法。 Warshall算法映射到有向图中 设关系R的关系图为G,设图G的所有顶点为u1,u2,…,un,则t(R)的关系图可用该方法得到:若G中任意两顶点ui和uj之间有一条路径且没有ui到uj的弧,则在图G中增加一条从ui到uj的弧,将这样改造后的图记为G’,则G’即为t(R)的关系图。G’的邻接矩阵A应满足:若图G中存在从ui到uj路径,即ui与uj连通,则A[i,j]=1,否则 A[i,j]=0。 这样,求t(R)的问题就变为求图G中每一对顶点间是否连通的问题。 相乘矩阵,就为所有节点的关系图,也就是当前条件下的关系矩阵。 对于相乘矩阵,进行叠代,叠代的过程为,行取值,然后计算值中对应的每一行的值取并集,得到当前行的关系集合。 取完所有行,得到了一个新的转移矩阵再对转移矩阵进行进行求解。

DIJKSTRA算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径,就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3Dijkstra算法具体步骤

c语言课程设计题目

C语言课程设计题目 C语言课程设计 设计要求与设计报告? 设计要求 可自己选定一题目。 模块化程序设计? 缩进书写格式? 必须上机调试通过? 设计报告格式: 1、设计目的 2、总体设计(程序设计组成框图、流程图) 3、详细设计(模块功能说明(如函数功能、入口及出口参数说明,函数调用关系描述等) 4、调试与测试:调试方法,测试结果的分析与讨论,测试过程中遇到的主要问题及采取的解决措施 5、源程序清单和执行结果:清单中应有足够的注释 检查要求: 1、每个人必须有程序运行结果; 2、每个人必须交《C语言课程设计报告》---—书面稿、用A4纸打印上交,统一在左侧装订,封面已有。 打分标准: 1、根据平时上机考勤;注重平时上机成绩,教师要不定期检查学生进度,学生不得以自己有私人电脑为借口而不来上机。 2、根据程序运行结果; 3、根据《C语言课程设计报告》,学生能对自己的程序面对教师提问并能熟练地解释清楚以上三项缺一不可,否则不能到得相应学分。 C题目一:蛇行矩阵(限最多5人完成) 要求:1.基本要求:能够输出蛇行方阵,至少能够满足奇数矩阵(m行m列,m为奇数)或偶数矩阵(m行m列,m为偶数)中的一种情况; 2.中等要求:根据要求,既能够输出蛇行奇数矩阵、又能够输出偶数矩阵; 3.高等要求:根据要求的m和n输出矩阵,矩阵可以不是方阵(m行n列,m,n取值范围是自然数,m和n的取值可以不相等)。 C题目二: 螺旋矩阵(限最多5人完成) 要求:1.基本要求:能够输出螺旋方阵,至少满足按照逆时针旋转或者按照顺时针旋转中的1种; 2.中等要求:根据要求,既能够输出逆时针矩阵,又能够输出顺时针矩阵; 3.高等要求:根据要求,可以输出顺时针或者逆时针矩阵,同时还可以根据要求输出从内到外旋转或者从外到内旋转的矩阵。 C题目三:通信录(限最多5人完成) 设一个通信录由以下几项数据信息构成: 数据项类型 姓名字符串

改进的低秩张量补全算法及应用

目录 1.绪论 (1) 1.1研究背景与现状 (1) 1.2压缩感知 (2) 1.3矩阵重建 (4) 1.3.1低秩矩阵补全 (4) 1.3.2低秩矩阵恢复 (5) 1.3.3低秩表示 (6) 1.4低秩张量补全 (7) 1.5本文的主要内容和组织安排 (8) 2.基础理论知识 (10) 2.1向量与矩阵的基础知识 (10) 2.2张量基础知识 (13) 3.张量补全算法综述 (18) 3.1数学模型 (18) 3.2低秩张量补全算法 (19) 3.2.1简单低秩张量补全算法 (19) 3.2.2快速低秩张量补全算法 (21) 3.2.3高精度低秩张量补全算法 (21) 3.2.4核心张量核范数的张量补全算法 (23) 3.2.5因子矩阵核范数最小化张量补全算法 (26) 3.2.6矩阵分解的张量补全算法 (27) 3.3小结 (29) 4.改进的低秩张量补全算法 (30) 4.1改进的低秩张量补全模型 (31) 4.3实验分析 (33) 4.3.1人工数据集 (34) 4.3.2自然图像 (36) 4.3.3脑MRI图像和超光谱图像 (37) 4.3.4人脸图像 (40) 4.4小结 (43) I 万方数据

5.贝叶斯低秩张量CP分解模型 (44) 5.1基础知识 (44) 5.2低秩张量贝叶斯分解模型 (45) 5.2.1概率模型和先验概率 (45) 5.2.2贝叶斯学习模型理论 (47) 5.3预测分布 (51) 5.4实验分析 (52) 5.5小结 (54) 6.总结与展望 (55) 6.1总结 (55) 6.2展望 (56) 参考文献 附录在校发表的学术论文 致谢 II 万方数据

稀疏矩阵(算法与数据结构课程设计)

稀疏矩阵 一、问题描述 假若在n m ?阶中,有t 个元素不为零,令n m t ?=δ称为矩阵的稀疏因子。通常认为≤δ0.05时称为稀疏矩阵。稀疏矩阵的研究大大的减少了数据在计算机中存储所需的空间,然而,它们的运算却与普通矩阵有所差异。通过本次实验实现稀疏矩阵的转置、加法和乘法等多种运算。 二、基本要求 1、稀疏矩阵采用三元组表示,建立稀疏矩阵,并能按矩阵和三元组方式输出; 2、编写算法,完成稀疏矩阵的转置操作; 3、编写算法,完成对两个具有相同行列数的稀疏矩阵进行求和操作; 4、编写算法,对前一矩阵行数与后一矩阵列数相等的两个矩阵,完成两个稀疏矩阵的相乘操作。 三、测试数据 1、转置操作的测试数据: ??????? ? ?00200013000010020100 2、相加操作的测试数据: ??????? ? ?002000130000100 20100 ??????? ??00200010000210030300 3、相乘操作的测试数据: ?????? ? ??000000030040 0021 ??????? ??001002000021 四、算法思想 1、三元组结构类型为Triple ,用i 表示元素的行,j 表示元素的列,e 表示元素值。稀疏矩阵的结构类型为TSMatrix ,用数组data[]表示三元组,mu 表示行数,nu 表示列数,tu 表示非零元个数。 2、稀疏矩阵转置的算法思想 将需要转置的矩阵a 所有元素存储在三元组表a.data 中,按照矩阵a 的列序来转置。

为了找到a的每一列中所有非零元素,需要对其三元组表a.data扫描一遍,由于a.data 是以a的行需序为主序来存放每个非零元的,由此得到的就是a的转置矩阵的三元组表,将其储存在b.data中。 3、稀疏矩阵相加的算法思想 比较满足条件(行数及列数都相同的两个矩阵)的两个稀疏矩阵中不为0的元素的行数及列数(即i与j),将i与j都相等的前后两个元素值e相加,保持i,j不变储存在新的三元组中,不等的则分别储存在此新三元组中。最后得到的这个新三元组表就是两个矩阵的和矩阵的三元组表。 4、稀疏矩阵相乘的算法思想 两个相乘的矩阵为M与N,对M中每个元素M.data[p](p=1,2,…,M.tu),找到N中所有满足条件M.data[p].j=N.data[q].i的元素N.data[q],求得M.data[p].v和N.data[q].v 的乘积,又T(i,j)=∑M(i,k)×N(k,j),乘积矩阵T中每个元素的值是个累计和,这个乘积M.data[p].v×N.data[q].v只是T[i][j]中的一部分。为便于操作,应对每个元素设一累计和的变量,其初值是零,然后扫描数组M,求得相应元素的乘积并累加到适当的求累计和的变量上。由于T中元素的行号和M中元素的行号一致,又M中元素排列是以M的行序为主序的,由此可对T进行逐行处理,先求得累计求和的中间结果(T的一行),然后再压缩存储到Q.data中去。 五、模块划分 1、Status CreateM(TSMatrix *M, int a[],int row, int col),创立三元组; 2、void PrintM(TSMatrix M),按数组方式输出; 3、void PrintM3(TSMatrix M),按三元组方式输出; 4、Status TransposeSMatrix(TSMatrix M, TSMatrix *T),稀疏矩阵的转置; 5、Status MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix *Q),稀疏矩阵加法; 6、Status MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix *Q),稀疏矩阵相乘; 7、main(),主函数。 六、数据结构//(ADT) 1、三元组结构类型 typedef struct { int i,j; ElemType e; } Triple; 2、稀疏矩阵 typedef struct { Triple data[MAXSIZE+1];

相关文档