文档库 最新最全的文档下载
当前位置:文档库 › 鲁棒图是什么

鲁棒图是什么

鲁棒图是什么

鲁棒图是什么?

鲁棒图(Robustness Diagram)是由Ivar Jacobson于1991年发明的,用以回答“每个用例需要哪些对象”的问题。后来的UML并没有将鲁棒图列入UML标准,而是作为UML版型(Stereotype)进行支持。对于RUP、ICONIX等过程,鲁棒图都是重要的支撑技术。当然,这些过程反过来也促进了鲁棒图技术的传播。

为什么叫“鲁棒”图?它和“鲁棒性”有什么关系?

答案是:词汇相同,含义不同。

软件系统的“鲁棒性(Robustness)”也经常被翻译成“健壮性”,同时它和“容错性(Fault Tolerance)”含义相同。具体而言,鲁棒性指当如下情况发生依然正确运行功能的能力:非法输入数据、软硬件单元出现故障、未预料到的操作情况。例如,若机器死机,“本字处理软件”下次启动应能恢复死机前5分钟的编辑内容。再例如,“本3D渲染引擎”遇到图形参数丢失的情况,应能够以默认值方式呈现,从而将程序崩溃的危险减为渲染不正常的危险。

而“鲁棒图(Robustness Diagram)”的作用,除了初步设计之外,就是检查用例规约是否正确和完善了。“鲁棒图”正是因为后者检查的作用,而得其名的——所以“鲁棒图(Robustness Diagram)”严格来讲所指不是“鲁棒性(Robustness)”。

地质图绘图一般规定

地质图绘图一般规定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

主题内容与适用范围 1 主题内容 本规程规定了区域地质及矿区地质图件制作的要求、一般规定以及作业程序。 2 适用范围 本规程适用于区域地质调查、矿产详查及勘探矿区各类地质图件制作的技术依据之一。其他地质图件可参照执行。 3 引用标准和规范 DZ/T 0156-95 区域地质及矿区地质图清绘规程 DZ/T 0157-95 1:50 000地质图地理底图编绘规范 DZ/T 0159-95 1:500 000 1:1 000 000省(市、区)地质图地理底图编绘规范 DZ/T 0156-95 1:250 000地质图地理底图编绘规范 1:50 000区域地质矿产调查工作图式图例(1983年) 中华人民共和国地质矿产部 地质勘查技术管理规范补充规定(测绘、地质绘图)(1991) 中国人民武装警察部队黄金指挥部 金矿勘查综合图件编绘指南中国人民武装警察部队黄金第三总队

第一章矢量化的一般规程 对底图的质量要求 一般地质图件原稿图应符合下列要求: 1. 数学基础(直角坐标网、经纬网、内廓及各类控制点)精度必须符合规定要求; 2. 图面平整、内容清晰、所附资料齐全; 3. 国界、省(市、自治区)界等按国家有关规定进行了审查并有文字依据; 4. 相邻图幅各要素接边误差符合要求。 矢量化前准备工作 1. 矢量化前必须详细阅读底图(原图)和有关规范图式图例,了解各要素的清绘(矢量化)方法,做到心中有数。 2. 定作业计划。作业计划可按要素拟定,也可按每日工作量具体划分,以便有条不紊的工作。 3. 底图是否清绘准确,发现疑难问题,必须在清绘前向有关人员问清弄懂,自己不能擅自改动。 矢量化的质量要求 1. 原图各要素清绘符合规定要求,依比例尺的符号不得变形,不依比例尺的中心点位不得超差。 2. 上各项内容不得漏掉或有差错。 3. 国界及行政区划界线,严格按照可靠资料绘制。如有国界线的图,必须上级批准,并附有正式审批文件,方可绘制印刷。 4. 必须尊重原图,不得随意改动原划线位置,必须保持各要素的几何精度。正确处理各要素之间的相互关系。 5. 清绘工作中应采用各种有效的方法和技术,努力提高工作质量和效率。 6. 误差及基本参数符合要求

预测控制的现状

预测控制的现状和发展前景 预测控制一经问世,即在复杂工业过程中得到成功应用,显示出强大的生命力,它的应用领域也已扩展到诸如化工、石油、电力、冶金、机械、国防、轻工等各工业部门。它的成功主要是由于它突破了传统控制思想的约束.采用了预测模型、滚动优化、反馈校正和多步预测等新的控制策赂,获取了更多的系统运行信息,因而使控制效果和鲁棒性得以提高。 预测控制的理论研究工作也取得了进展。比如采用内模结构的分析方法,为研究预测控制的运行机理、动静态待性、稳定性和鲁棒性提供了方便。运用内模结构的分析方法还可找出各类预测控制算法的共性,建立起它们的统一格式,便于对预测控制的进一步理解和研究。此外,将预测控制与自校正技术结合起来,可以提高预测模型的精度;减少预测模型输出误差,提高控制效果。但现有的理论研究仍远远落后于工业应用实践。从目前发表的文献来看,理论分析研究大多集中在单变量、线性化模型等基本算法上:而成功的工业应用实践又大多是复杂的多变量亲统;这表明预测控制的理论研究落后于工业生产实际;因此,如何突破现状,解决预测控制中存在的问题,对促进这类富有生命力的新型计算机控制算法的进一步发展有重要意义。下面就目前预测控制中存在的主要问题和发展前景作些探讨。 (1) 进一步开展对预测控制的理论研究,探讨算法中主要设计参数对稳定性、鲁棒性及其他控制性能的影响,给出参数选择的定量结果。 上述问题的主要困难是,由于采用以大范围输出预测为基础的在线滚动优化控制策略,使得预测控制闭环输入、输出方程非常复杂,其主要设计参数都足以蕴含的方式出现在闭环传递函数中,因而难以用解析表示式表示出各参数变化对闭环系统动、静态特性、稳定性和鲁棒性的影响,给出设计参数变化的选择准则。要突破这一点,还要做大量工作,需要探讨新的分析方法。 (2)研究当存在建模误差及干扰时,顶测控制的鲁棒性,并给出定量分析结果。 在设计控制系统时,对于建模误差及干扰等的影响,并未考虑在内。实际上,为了简化问题,常对模型作降阶处理及其他简化,对一些次要的动特性和外部扰动也予以忽略。在这种情况下,系统在运行过程中能否保证稳定,具有所期望的控制性能,并能保证到什么程度,这就是的“近年来所谓的“控制系统的鲁棒性”问题。所谓鲁棒性是指系统的稳定性及其性能指标对结构和参数变化的不敏感性,也就是当内部和外部条件变化时,系统本身仍然能保持性能良好的运行的鲁棒程度。鲁棒性分为稳定鲁棒性和性能鲁棒性两种,稳定鲁棒件说明实际系统偏离设计所用数学模型,出现模型误差时,系统保持闭环稳定性的能力。性能鲁棒性是表示实际系统偏离设计所用数学模型时,系统保持满意性能的能力。虽然性能鲁棒性隐含着稳定的要求,但其着眼点不是集中在稳定性上,至今控制系统统的鲁棒性主要是研究稳定鲁棒性,因为稳定性是—个控制系统首先要保证的条件。 分析预测控制系统的稳定鲁棒性有一定难度。当过程模型采用非最小化的非非参数模型时,如MAC、DMC等,研究闭环系统的稳定鲁棒性涉及到高阶多项式稳定性的判别问题.且可调设计参数又隐含在闭环传递函数中,难于找出它们与稳定鲁棒性的定量关系,增加了分析的难度,当过程模型采用最小化的参数模型时,如GPR,GPP等,虽模型的参数个数少了,可大大降低闭环特征多项式的阶次,有可能定量地分所闭环系统的稳定鲁棒性。但因为采用了最小化的经简化后的低阶模型,没有包含在模型内的未建模动态和于扰等,在某些特定条件下有可能被激发,导致系统无法稳定运行,这其中所遇到的问题与研究自适应控制系统鲁棒性的问题相类似,解决这一问题,尚需进—步做工作。 当前,研究预测控制系统的稳定鲁棒性,除了继续从理论上进行探讨、研究新的分析方

地质图绘图一般规定汇总

主题内容与适用范围 1 主题内容 本规程规定了区域地质及矿区地质图件制作的要求、一般规定以及作业程序。 2 适用范围 本规程适用于区域地质调查、矿产详查及勘探矿区各类地质图件制作的技术依据之一。其他地质图件可参照执行。 3 引用标准和规范 DZ/T 0156-95 区域地质及矿区地质图清绘规程 DZ/T 0157-95 1:50 000地质图地理底图编绘规范 DZ/T 0159-95 1:500 000 1:1 000 000省(市、区)地质图地理底图编绘规范 DZ/T 0156-95 1:250 000地质图地理底图编绘规范 1:50 000区域地质矿产调查工作图式图例(1983年) 中华人民共和国地质矿产部 地质勘查技术管理规范补充规定(测绘、地质绘图)(1991) 中国人民武装警察部队黄金指挥部 金矿勘查综合图件编绘指南中国人民武装警察部队黄金第三总队

第一章矢量化的一般规程 1.1 对底图的质量要求 一般地质图件原稿图应符合下列要求: 1. 数学基础(直角坐标网、经纬网、内廓及各类控制点)精度必须符合规定要求; 2. 图面平整、内容清晰、所附资料齐全; 3. 国界、省(市、自治区)界等按国家有关规定进行了审查并有文字依据; 4. 相邻图幅各要素接边误差符合要求。 1.2 矢量化前准备工作 1. 矢量化前必须详细阅读底图(原图)和有关规范图式图例,了解各要素的清绘(矢量化)方法,做到心中有数。 2. 定作业计划。作业计划可按要素拟定,也可按每日工作量具体划分,以便有条不紊的工作。 3. 底图是否清绘准确,发现疑难问题,必须在清绘前向有关人员问清弄懂,自己不能擅自改动。 1.3 矢量化的质量要求 1. 原图各要素清绘符合规定要求,依比例尺的符号不得变形,不依比例尺的中心点位不得超差。 2. 上各项内容不得漏掉或有差错。 3. 国界及行政区划界线,严格按照可靠资料绘制。如有国界线的图,必须上级批准,并附有正式审批文件,方可绘制印刷。 4. 必须尊重原图,不得随意改动原划线位置,必须保持各要素的几何精度。正确处理各要素之间的相互关系。 5. 清绘工作中应采用各种有效的方法和技术,努力提高工作质量和效率。 6. 误差及基本参数符合要求

稳定预测控制方法--实验室讲义

稳定预测控制方法 1、 线性二次型调节问题(LQR-Linear Quadratic Regulator):不考虑约束、稳定、最优 (1)()()k k k +=+x Ax Bu k 0 [()()()()]T T J k k k k ∞ ==+∑x Qx u Ru ()()k Kx k =-u ;T 1T ()K R B PB B PA -=+ 代数Riccati 方程:1-()T T T T P A PA Q A PB R B PB B PA -=++ 2、 有限时域最优控制问题:不考虑约束、最优、不保证稳定 N-1 N k 0 ()()[()()()()]T T T J x N Sx N k k k k ==++∑x Qx u Ru 1()()()[(1)](1)()T T u k K k x k R B P k B B P k Ax k -=-=-+++ 差分Riccati 方程:11()(1)[(1)]T T P k A P k I BR B P k A Q --=++++ 反向递推求解,()P N S = 3、 最小方差调节问题:不考虑约束、一步预测、仅适用于最小相位系统 4、 经典预测控制算法(DMC 、GPC 、MAC 等) a 、 不考虑约束时,在一定条件下等价于有限时域最优控制问题,使系统稳定需满足一定条 件; ● 经典预测控制在一定条件下(开环稳定对象(因为DMC 和MAC 只能用于开环稳定对 象)、采用相同的性能指标函数、无需反馈校正)等价;GPC 的优势是采用的是参数模型,便于采用自适应控制。 ● 经典预测控制在一定条件下(采用相同的性能指标函数P=M=N)都等价于有限时域 最优控制问题(严格说是有限时域最优输出控制问题,应在上述描述中增加输出描述,即与C 有关)。只不过求解方法不同,有限时域最优控制问题采用最小值原理,需递推求解Riccati 方程,计算复杂;经典预测控制直接求解优化问题。 ● 有限时域最优控制问题求得的未来N 个最优解的反馈增益是时变的(即使对LTI 系 统),当预测时域N 趋于无穷时,反馈增益趋于一个常数。经典预测控制仅当采用滚动时域策略时,才成为一个线性时不变控制器。从而才可以用经典稳定性方法判断稳定性(考察其闭环极点位置)。 b 、 考虑约束时,最终归结为求解二次规划问题,通常只能求数值解,无稳定性保证。 5、 稳定预测控制方法 (1) 为什么要研究稳定预测控制方法: a 、controller online redesign ,如adaptive control,经典预测控制稳定性依赖于控制器参数设置,调整缺乏有效方法; b 、经典预测控制在约束情况下往往只能求得数值解,难于分析稳定性,需要一种能显式保

一种基于H∞理论的鲁棒预测控制方法

第!"卷第!期 !##!年$月自动化学报%&’%%(’)*%’+&%,+-+&%./01!"2-/1!333333333333444 4*5672!##!短文一种基于89理论的鲁棒预测控制方法:;陈虹:刘志远!:<吉林大学控制科学与工程系长春:$##!=;!<哈尔滨工业大学控制科学与工程系哈尔滨:=###:;<>?@5A 0B C D E F D G H 0I 7E J I 7C F K D A L I 5F G M I N 0A C 7D 67D 07C F ;摘 要融合O 9控制的鲁棒概念和预测控制的滚动优化原理2提出了一种全新的约束动态对策预测控制方法7对有状态和控制约束的不确定线性系统2证明了闭环系统的鲁棒稳定性并给出了鲁棒性条件7该方法同时具有O 9控制和预测控制的优点B 鲁棒性和显式处理约束的能力7关键词预测控制2O 9控制2约束系统2鲁棒稳定性中图分类号’P !Q :7Q R :;国家自然科学基金< S T "#R ##R ;U 黑龙江省自然科学基金资助收稿日期:T T T ?:!?#$收修改稿日期!###?#T ?!#V W 89V X X Y Z V [\]Z Y Z ^_‘]aZ b c dX Y c b e []e f c[Z W ]Y Z d &g >-g /F h :i +(j D A ?k I 5F !:?@5A 0B C D E F D G H 0I 7E J I 7C F K D A L I 5F G M I N 0A C 7D 67D 07C F ;V *+,-./,0LC /@N A F A F h 1D E6/N I 21F E 22C /F 2A J E 651A /F/3O 9C /F 16/04A 1D 1D E@/5A F h D /6A K /FM 6A F C A M 0E/3*P &21D A 2M 5M E 6M 6E 2E F 125F /5E 0h 5@E5M M 6/5C D 1/C /F 2165A F E J @/J E 0M 6E J A C 1A 5EC /F 16/076/N I 21C 0/2E J ?0//M 215N A 0A 1LA 2M 6/5E F 3/6I F C E 615A F0A F E 56 2L 21E @4A 1DA F M I 15F J 2151E C /F 2165A F 1225F J 6/N I 21F E 22C /F J A 1A /F 256E 502/h A 5E F 7’D E 5M M 6/5C DD 525J 55F 15h E 2/3N /1DO 9C /F 16/05F J *P &B 6/N I 21F E 225F J 5N A 0A 1L 1/D 5F J 0E C /F 2165A F 12E 7M 0A C A 10L 789:;<-=+ */J E 0M 6E J A C 1A 5EC /F 16/02O 9C /F 16/02C /F 2165A F E J 2L 21E @226/N I 21 215N A 0A 1L :引言 预测控制<缩写*P & ;的主要优点是在线处理控制量和状态量的约束并通过滚动优化使其动态满足7近年来2*P &的理论研究尤其在名义稳定性方面取得了重大进展 >:2!?7@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@工业万方数据

(完整版)地质图制图手册

数字化制图要求 引用标准: 《1:5000,1:10000地形图图式》GB/T 5791-93 《1:500,1:1000,1:2000地形图图式》GB/T 7929-95 《1:50000区域地质图图例》GB 958-89 《铀矿地质勘查测量图件编绘规范》EJ/T 1120-2000 《地质图用色标准及用色原则》 总则 1、编绘图件时,必须熟悉本要求、有关规范及地质勘查技术要求。 2、图件要以准确的原始资料为基础,及时对原始资料进行综合整理工作,以保证资料的准确性。各种图件应突出主题,层次分明。 3、各种图件,必须做到及时、准确、齐全、清晰、统一。 4、图幅要求整洁,字体大小适当,颜色统一。 5、图件数字比例尺:选用宋体,高12mm,宽10mm (比例符号必须用半角)。 6、图件线条比例尺:选用宋体,高8mm,宽7mm;线段:X=20,Y=15,线型为90-0,线宽0.1mm,长度40mm。 7、图件坐标注记采用公里为单位,选用宋体,高5mm,宽4.5mm。 8、坐标线及高程线:黑色,线宽0.15mm,线型为1-0,X=Y=10,且必须用“键盘输入线”功能画线,尽量不用投影变换生成坐标。 9、图名要确切、简短,置于图框外顶部。用黑色,图名距图幅

两边大于50mm,字大小根据实际而定。 10、图外框线与内框线间距为12mm,外框线宽为1.5mm,内框线宽为0.15mm。A3或更小的图件,可适当酌减少。坐标线及图框线应采用“数字输入”,不能使用鼠标画制。 11、地层等符号用黑体,高4.5mm,宽4.0mm,尽量直接输入,不用子图库中符号,花岗岩可用子图表示,且应垂直向上,不旋转。 12、主要构造应有编号,构造编号字体用黑体,高4.5mm,宽4.0mm,数字编号须用下标表示(如F800 )。 13、图例中应包括图内所给的各种符号及色调,地形图上的惯用符号可不列出,图例与图幅内容一致,尽可能使用最简明的技术语言。图例排列顺序一般先地层—地层界线—产状—构造—矿物、蚀变—工程—其它,最后为工作范围。同一类型图例应按时代顺序由新到老排列。 14、图例框长为12mm,高8mm,线宽为0.15mm。图例上下间距一般为12-16mm,等间距分布。 15、图例中“图例”黑体,高8mm,宽7mm。 16、图例描述的字体用宋体,高5mm,宽4.5mm(若写成两行文字,则高4mm,宽3.5mm)。当图例框中的文字和符合大于图例框时,可适当缩小。 17、责任表采用统一的格式,可直接调用,修改文字内容。图名与图头一致,图号用“该报告图件总数-该图件顺序号”(如8-5表示),责任表一般应放在图的右下角。

预测控制MATLAB仿真与设计

动态矩阵控制算法实验报告 院系:电子信学院 姓名:郝光杰 学号:172030039 专业:控制理论与控制工程 导师:俞孟蕻

MATLAB环境下动态矩阵控制实验 一、实验目的: 对于带有纯滞后、大惯性的研究对象,通过动态控制矩阵的MATLAB的直接处理与仿真实验,具有较强的鲁棒性和良好的跟踪性。输入已知的控制模型,通过对参数的选择,来取的良好的控制效果。 二、实验原理: 动态矩阵控制算法是一种基于被控对象非参数数学模型的控制算法,它是一种基于被控对象阶跃响应的预测控制算法,以对象的阶跃响应离散系统为模型,避免了系统的辨识,采用多步预估技术,解决时延问题,并按照预估输出与给定值偏差最小的二次性能指标实施控制,它适用于渐进稳定的线性对象,系统动态特性中存在非最小相位特性或纯滞后都不影响算法的直接使用。 三、实验环境: 计算机 MATLAB2016b 四、实验步骤: 影响控制效果的主要参数有: 1)采样周期T与模型长度N 在DMC中采样周期T与模型长度N的选择需要满足香农定理和被控对象的类型及其动态特性的要求,通常需要NT后的阶跃响应输出值接近稳定值。 2)预测时域长度P P对系统的快速性和稳定性具有重要影响。为使滚动优化有意义,应使P 包含对象的主要动态部分,P越小,快速性提高,稳定性变差;反之,P越大,系统实时性降低,系统响应过于缓慢。 3)控制时域长度M

M控制未来控制量的改变数目,及优化变量的个数,在P确定的情况下,M越小,越难保证输出在各采样点紧密跟踪期望输出值,系统响应速度缓慢, 可获得较好的鲁棒性,M越大,控制机动性越强,改善系统的动态性能,但是稳定性会变差。 五、实例仿真 (一)算法实现 设GP(s)=e-80s/(60s+1),采用DMC后的动态特性如图1所示,采样周期 T=20s,优化时域P=10,M=2,建模时域N=20。 MATLAB程序1: g=poly2tfd(1,[60 1],0,80);%通用传函转换为MPC模型 delt=20; %采样周期 nt=1; %输出稳定性向量 tfinal=1000; %截断时间 model=tfd2step(tfinal,delt,nt,g);%传函转换为阶跃响应模型 plant=model;%进行模型预测控制器设计 p=10; m=2; ywt=[];uwt=1;%设置输入约束和参考轨迹等控制器参数 kmpc=mpccon(plant,ywt,uwt,m,p);%模型预测控制器增益矩阵计算 tend=1000;r=1;%仿真时间 [y,u,yrn]=mpcsim(plant,model,kmpc,tend,r);%模型预测控制仿真 t=0:20:1000;%定义自变量t的取值数组 plot(t,y) xlabel(‘图一DMC控制动态响应曲线(time/s)’); ylabel(‘响应曲线’); 结果如下: Percent error in the last step response coefficient

怎样看地质图

把各种岩层和地质构造按照一定的比例投影在平面上,并用规定的颜色和符号来表示的图件,就是地质图。 从地质图上可以全面了解一个地区的地层顺序及时代、岩性特征、地质构造(褶皱、断层等)、矿产分布、区域地质特征等内容。因此地质图是指导生产实践,进行区域地质、地理、自然环境研究的重要资料。 一般所说的地质图是指平面图,但也往往制成地质剖面图(实测或从平面图上按指定方向绘制),以便更清楚地反映地下地质情况。 根据生产或研究的需要,还可以制成专题的地质图,如水文地质图、工程地质图、第四纪地质图、岩相-古地理图、矿产分布图、构造纲要图、大地构造图等。 一、不同岩层产状在地质图上的表现 岩层的产状包括三种情况,水平的、倾斜的、直立的;地形也有不同情况,平坦的、起伏的、沟谷纵横的。由于岩层产状不同、地形起伏不同,岩层在地面或反映在地质图上的形状也不一样。 (一)水平岩层 1.如果地形平坦,又未经河流切割,在地面上只能看见最新的岩层的顶面,表现在地质图上只有一种岩层。如华北平原,在地面上只能看见松散沉积物的最上面的一层。 105 2.如果平坦地面经过河流下切,或者地面起伏很大,可以看到下面较老的岩层,其在地质图上的特点是: (1)岩层界线与等高线平行或重合; (2)同一岩层在不同地点的出露标高相同; (3)岩层的厚度等于顶面和底面的高度差。 (二)直立岩层 除岩层走向有变化外,岩层界线在地质图上按岩层走向呈直线延伸,不受地形任何影响。

(三)倾斜岩层 1.如果地形平坦,在地质图上岩层界线按其走向呈直线延伸。 2.如果地形有较大起伏(比方有山有谷),在地质图上岩层界线与等高线斜交,在沟谷和山脊处常常形成“V”字形弯曲,称“V”字形法则。其弯曲程度与岩层倾角的大小和地形坡度的大小有关,即岩层倾角越小,V字形越紧闭;倾角越大,V字形越开阔。地形起伏越大,弯曲形状越复杂;地形越平坦,弯曲度越小,甚至近于直线。倾斜岩层的露头形状与地形起伏的关系如下: (1)岩层倾向与沟谷坡向相反,V字形尖端指向上游,但V字形弯曲度大于等高线的弯曲度; (2)岩层倾向与沟谷坡向相同,而岩层倾角大于沟谷坡度,V字形尖端指向下游; (3)岩层倾向与沟谷坡向相同,而岩层倾角与沟谷坡度一致,在沟谷两侧岩层露头互相平行; (4)岩层倾向与沟谷坡向相同,而岩层倾角小于沟谷坡度,V字形尖端指向上游,但V字形弯曲度小于等高线的弯曲度。 上述V字形规律都是指在沟谷中岩层的露头形状;若在倾斜的山脊山梁或山坡等处,岩层的V字形尖端指向与在沟谷中的正好相反。 对于初学者来说,V字形法则比较难于理解和掌握,在野外穿过沟谷时,常常看到岩层向沟头方向或沟口方向呈V字形弯曲,总以为是岩层产状有了变化,或者发生了褶曲,实际上岩层的产状并没有变化,而是由于地面坡度、岩层倾向和倾角这三者之间的复杂关系对露头形状所产生的错觉。换句话说,倾斜岩层的露头形状并不等于岩层的产状(垂直岩层除外)。这种法则在地质图上特别是大比例尺的地质图上有明显的反映。 其它构造线如断层线,其露头形状也适用于V字法则。 二、褶曲和断层等在地质图上的表现 (一)褶曲

地质图图例花纹

花纹图案 ①沉积岩花纹 砂岩HW001 石英砂岩HW002 硬砂岩HW003 铁质砂岩HW004 长石砂岩HW005 粉砂质泥岩HW006 泥质粉砂岩HW007 凝灰质粉砂岩HW008钙质砂岩HW009 砾岩HW010 角砾岩HW011 砂砾岩HW012 砂质砾岩HW013 钙质砾岩HW014 硅质砾岩HW015 页岩HW016 炭质页岩HW017 铝土页岩HW018 油页岩HW019 硅质页岩HW020 凝灰质页岩HW021 砂质页岩HW022 粘土岩HW023 泥页岩HW024 砂质粘土岩HW025 硅质粘土岩HW026 灰岩HW027 泥灰岩HW028 石灰岩HW029 含泥质灰岩HW030 砂质灰岩HW031 硅质灰岩HW032 结晶灰岩HW033 沥青质灰岩HW034 生物灰岩HW035 炭质灰岩HW036 含圆藻硅质灰岩HW037 硅质结核灰岩HW038 含燧石结核灰岩HW039 硅质条带灰岩HW040竹叶状灰岩HW041 瘤状灰岩HW042 鲕状灰岩HW043 碎屑状灰岩HW044角砾状灰岩HW045 砾状灰岩HW046 页状灰岩HW047 豹皮状灰岩HW048薄层灰岩HW049 白云质灰岩HW050 砂质泥灰岩HW051 硅质泥灰岩HW052白云岩HW053 泥质白云岩HW054 石灰华HW055 磷块岩HW056 铝土层HW057 锰矿层HW058 黄铁矿HW059 铁矿层HW060 煤层HW061 石膏层HW062 岩盐HW063 泥岩HW064 硅质条带泥灰岩HW065 中厚层灰岩HW066 含砾砂岩HW067 含砾石英砂岩HW068含角砾砂岩HW069 石英岩状砂岩HW070 泥质条带灰岩HW071 含砾泥质板岩HW072硅质泥质板岩HW073 含砾凝灰岩HW074 安山凝灰岩HW075 砂砾层HW076

预测控制

预测控制之探究 摘要 预测控制是近年来发展起来的一类新型的计算机控制算法。由于它采用多步测试、滚动优化和反馈校正等控制策略,因而控制效果好,适用于控制不易建立精确数字模型且比较复杂的工业生产过程,所以它一出现就受到国内外工程界的重视,并已在石油、化工、电力、冶金、机械等工业部门的控制系统得到了成功的应用。 关键词:预测控制滚动优化反馈校正 Abstract Predictive control is developed in recent years to a new type of computer control algorithm.Because it USES multi-step testing, roll optimization and feedback correction, the control strategies and control effect is good, suitable for control is not easy to build accurate digital model and more complex industrial production process, so it appeared at home and abroad by the attention of engineering, and has set up a file in the petroleum, chemical, electric power, metallurgy, machinery, and other departments of industry control systems have been successful application. Keywords: Predictive control rolling optimization feedback correction 预测控制的起源 预测控制是自动控制理论的一个分支。预测控制是一种计算机优化控制方法。预测控制的主要应用领域:工业过程。预测控制适于解决多变量、有约束的工业过程控制问题。预测控制广泛应用于工业控制领域。 1978年,J. Richalet等提出了模型预测启发控制算法(MPHC,Model Predictive Heuristic Control)。 1980年,Cutler等提出动态矩阵控制(DMC,Dynamic Matrix Control)。 1982年, Meral等在MPHC基础上进一步提出模型算法控制(MAC ,Model Algorithm Control)。 1987年,Clarke等提出广义预测控制(GPC,Generalized Predictive Control)预测控制理论初步形成。 90年代以来,其它新型预测控制算法、系统设计与分析方法不断提出。 预测控制首先在工程实践获得成功应用,是实践超前于理论的一类控制器设

地质图编制

地质图阅读与编制 一、地质图的种类和基本内容 用规定的符号、线条、色彩来反映一个地区地质条件和地质历史发展的图件,叫地质图。它是依据野外探明和收集的各种地质勘测资料,按一定比例投影在地形底图上编制而成的,是地质勘察工作的主要成果之一。 (一)地质图的种类 1、普通地质图 以一定比例尺的地形图为底图,反映一个地区的地形、地层岩性、地质构造、地壳运动及地质发展历史的基本图件,称为普通地质图,简称地质图。在一张普通地质图上,除了地质平面图(主图)外,一般还有一个或两个地质剖面图和综合地层柱状图,普通地质图是编制其它专门性地质图的基本图件。 按工作的详细程度和工作阶段不同,地质图可分为大比例尺的(>1:25000)、中比例尺的〔1:5000~1:10万〕、小比例尺的(1:20万~1:100万)。在工程建设中,一般是大比例尺的地质图。 2、地貌及第四纪地质图 以一定比例尺地地形图为底图,主要反映一个地区的第四纪沉积层的成因类型、岩性及其形成时代、地貌单元的类型和形态特征的一种专门性地质图,称为地貌及第四纪地质图。 3、水文地质图 以一定比例尺地地形图为底图,反映一个地区总的水文地质条件或某一个水文地质条件及地下水的形成、分布规律的地质图件,称为水文地质图。 4、工程地质图 工程地质图是各种工程建筑物专用的地质图,如房屋建筑工程地质图、水库坝址工程

地质图、铁路工程地质图等。工程地质图一般是以普通地质图为基础,只是增添了各种与工程有关的工程地质内容。如在地下洞室纵断面工程地质图上,要表示出围岩的类别、地下水量、影响地下洞室稳定性的各种地质因素等。 (二)地质图的基本内容 1、平面地质图 平面地质图又称为主图,是地质图的主体部分,主要包括: 地理概况:图区所在的地理位置(经纬度、坐标线)、主要居民点(城镇、乡村所在地)、地形、地貌特征等。

常用地质图例及符号

地質圖元符號常有助於鑽探資料的記錄與解讀,本規範「工程地質圖元符號」主要是用在鑽孔柱狀圖上,以「目視判別」的結果為主。目前國內各相關單位現 行所使用之「工程地質圖元符號」並不一致,為建立一致之共識,並爭取廣泛的 支持,本規範「工程地質圖元符號」乃依據我國中央標準局所制訂之國家標準 「CNS6589」、「CNS6590」、「CNS 6591」等編訂之。本次工程地質圖元符號之修 訂工作,期配合行政院公共工程委員會之製圖手冊加以整合(如對照表備註所列),而使「國土資訊系統自然環境基本資料庫分組—工程地質探勘資料庫」更能得到 政府機關及工程實務界之支持與使用。 本規範將地質圖元分為「土壤或沉積物」、「沉積岩」、「變質岩」及「火成岩」 等四大類,再將每一類圖元區分為「基本型」及「混合衍生與變異型」兩個類別, 並將其分別表列。對於某些業務,如果「基本型」之地質圖元符號即已夠用,那 麼「混合衍生與變異型」之圖元符號,即可將其視為「備而不用」,如此將可有 助於相關作業的簡化。 為了方便使用者選用圖元符號,我們也配合設計了分類代碼表。「0」代表粗分類,如果相關資料只需記錄其為岩石或土壤,則可採用此粗分類記錄方式。「奇數字首」的代碼,代表「基本型圖元」,「偶數字首」的代碼為「混合衍生及變異 型圖元」。因此,本規範「工程地質圖元符號」共可分為以下九大類: 0、粗分類(基本型)

1、土壤或沉積物類(基本型) 2、土壤或沉積物類(混合衍生與變異型) 3、沉積岩類(基本型) 4、沉積岩類(混合衍生與變異型) 5、變質岩類(基本型) 6、變質岩類(混合衍生與變異型) 7、火成岩類(基本型) 8、火成岩類(混合衍生與變異型)

预测控制

1.1 引言 预测控制是一种基于模型的先进控制技术,它不是某一种统一理论的产物,而是源于工业实践,最大限度地结合了工业实际地要求,并且在实际中取得了许多成功应用的一类新型的计算机控制算法。由于它采用的是多步测试、滚动优化和反馈校正等控制策略,因而控制效果好,适用于控制不易建立精确数字模型且比较复杂的工业生产过程,所以它一出现就受到国内外工程界的重视,并已在石油、化工、电力、冶金、机械等工业部门的控制系统得到了成功的应用。工业生产的过程是复杂的,我们建立起来的模型也是不完善的。就是理论非常复杂的现代控制理论,其控制的效果也往往不尽人意,甚至在某些方面还不及传统的PID控制。70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想的观念,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。这样的背景下,预测控制的一种,也就是模型算法控制(MAC -Model Algorithmic Control)首先在法国的工业控制中得到应用。同时,计算机技术的发展也为算法的实现提供了物质基础。现在比较流行的算法包括有:模型算法控制(MAC)、动态矩阵控制(DMC )、广义预测控制(GPC)、广义预测极点(GPP)控制、内模控制(IMC)、推理控制(IC)等等。随着现代计算机技术的不断发展,人们希望有一个方便使用的软件包来代替复杂的理论分析和数学运算,而Matlab、C、C++等语言很好的满足了我们的要求。 1.2 预测控制的存在问题及发展前景 70年代以来,人们从工业过程的特点出发,寻找对模型精度要求不高,而同样能实现高质量控制性能的方法,以克服理论与应用之间的不协调。预测控制就是在这种背景下发展起来的一种新型控制算法。它最初由Richalet和Cutler等人提出了建立在脉冲响应基础上的模型预测启发控制(Model Predictive Heuristic Control,简称“MPHC”),或称模型算法控制(Model Algorithmic Control,简称“MAC”);Cutler等人提出了建立在阶跃响应基础上的动态矩阵控制(Dynamic Matrix Control,简称“DMC”),是以被控系统的输出时域响应(单位阶跃响应或单位冲激响应)为模型,控制律基于系统输出预测,控制系统性能有较强的鲁棒性,并且方法原理直观简单、易于计算机实现。它的产生并不是理论发展的需要,而是在工业实践过程中独立发展起来,即实践超前于理论它一经问世就在石油、电力和航空等领域中得到十分成功的应用。之后,又延伸到网络、冶金、轻工、机械等部门或系统。80年代初期,人们为了增强自适应控制系统的鲁棒性,在广义最小方差控制的基础上,吸取预测控制中的多步预测、滚动优化思想,以扩大反映过程未来变化趋势的动态信息量,提高自适应控制系统的实用性。这样就出现了便于辨识过程参数模型、带自校正机制、在线修改模型参数的预测控制算法,主要有Clarke等提出的广义预测控制(GPC) Do Keyser的扩展时域预测自适应控制(EPSAC),广义预测极点配置控制(GPP)。Brosilow于1978年提出推理机制(1C), Garcia. Norari 于1982年提出内部模型控制(简称内模控制,IMC ),从模型结构的角度对预测控制作了更深入的研究,分析出预测控制具有内模控制的结构。应用内模控制结构来分析预测控制系统,有利于理解预测控制的运行机理,分析预测控制系统的闭环动静态特性、稳定性和鲁棒性,找出各类预测控制算法的内在联系,导出它们的统一格式,有力推动了预测控制在算法研究、稳定性鲁棒性的理论分析和应用研究上的发展。但实际上,预测控制的理论还是落后于其实

阅读地质图的一般步骤和方法

阅读地质图的一般步骤和方法 读地质图首先要看图式和洛种规格,即先看图名、比例尺和图例。还应具备地形图和地图有关知识。 从图名和图幅代号、经纬度,了解图幅的地理位置和图的类型;从比例尺可以了解图上线段长度、面积大小和地质体大小及反映详略程度;图幅编绘出版年月和资料来源,便于查明工作区研究史。 熟悉图例是读图的基础。首先要熟悉图幅所使用的各种地质符号,从图例可以了解图区出露的地层及其时代、顺序,地层间有无间断,以及岩石类型、时代等。读图例时,最好与图幅地区的综合地层柱状图结合起来读,了解地层时代顺序和它们之间接的触关系(整合或不整合)。 在阅读地质内容之前应先分析一下图区的地形特征。在比例尺较大(如大于1:50000)的地形地质图上,从等高线形态和水系可了解地形特点。在中小比例尺(1:10万-1:50万)地质图上,一般无等高线,可根据水系分布、山峰标高的分布变化,认识地形的特点。 一幅地质图反映了该地区各方面地质情况。读图时一般要分析地层时代、层序和岩石类型、性质和岩层、岩体的产状、分布及共相互关系。对于分析地质构造方面主要是褶皱的形态特征、空间分布,组合和形成时代;断裂构造的类型、规模、空间组合、分布和形成时代或先后顺序;岩浆岩体产状和原生及次生构造以及变质岩区所表现的构造特征等等。读图分析时,可以边阅读,边记录,边绘示意剖面图或构造纲要图。 读水平岩层地质图 水平岩层在地面和地形地质图上的特征:地质界线与地形等高线平行或重合;在沟谷处界线呈“尖牙”状,其尖端指向上游,在孤立的山丘上,界线呈封闭的曲线;在岩层未发生倒转饰情况下,老岩层出露在地形的低处,新岩层分布在高处;岩层露头宽度取决于岩层厚度和地面坡度,当地面坡度一致时,岩层厚度大的,露头宽度也宽;当厚度相同时,坡度陡处,露头宽度窄,在陡崖处,水平岩层顶、底界线投影重合成一线,造成地质图上岩层发生“尖灭”的假象。 三、在地形地质图上求岩层产状要素的方法 1、基本原理: (1)、同一岩层面上不同高程的走向线相互平行; (2)、在两走向线的垂线上,低等高线的方向为倾向; (3)、倾角是岩层面和水平面的夹角。 2、求解步骤: (1)、在同一岩层面上找到两个同一高程的点,并将其连接起来,即为这一高程的走向线。(2)、在该层面上再找到相邻高程的一个点,通过该点平行上述走向线作一条直线,即为这一高程的走向线。 (3)、在两条走向线之间做一垂线,低等高线的方向为倾向。 (4)、在高等高线上截取一线段等于两条走向线的高差,将两线段作为两条边做一三角形。(5)、用量角器量出低等高线出的锐角,即得出岩层倾角。 四、分析倾斜岩层在地质图上的表现特征 倾斜岩层在大比例尺地形地质图上,表现出岩层界线与地形等高线成不同交截关系,在山脊和沟谷处弯曲成“V”字形,而有一定规律,即所谓“V”字形法则。通过读图应用这一规律,掌握岩层产状与地形及其相互关系对岩层界线形态影响的分析方法。同时也注意岩层露头宽度的变化与岩层厚度、产状和地形的关系。

详细判读地质图(重点已标注)

阅读地质图 阅读地质图的一般步骤和方法 (1)读地质图首先要看图式和各种规格,即先看图名、比例尺和图例。还应具备地形图和地图有关知识。 从图名和图幅代号、经纬度,了解图幅的地理位置和图的类型;从比例尺可以了解图上线段长度、面积大小和地质体大小及反映详略程度;图幅编绘出版年月和资料来源,便于查明工作区研究史。 (2)熟悉图例是读图的基础。首先要熟悉图幅所使用的各种地质符号,从图例可以了解图区出露的地层及其时代、顺序,地层间有无间断,以及岩石类型、时代等。读图例时,最好与图幅地区的综合地层柱状图结合起来读,了解地层时代顺序和它们之间接的触关系(整合或不整合)。有时通过地质图相对图框上的两点画出黑色直线,两端注有AA′或II′…等字样,这样的直线称剖面线,表示沿此方向已经作了剖面图。 (3)在阅读地质内容之前应先分析一下图区的地形特征。在比例尺较大 (如大于1:50000) 的地形地质图上,从等高线形态和水系可了解地形特点。在中小比例尺(1:10万-1:50万)地质图上,一般无等高线,可根据水系分布、山峰标高的分布变化,认识地形的特点。如巨大河流的主流总是流经地势较低的地方,支流则分布在地势较高的地方;顺流而下地势越来越低,逆流而上越来越高;位于两条河流中间的分水岭地区总是比河谷地区要高,等等。了解地形特征,可以帮助了解地层分布规律、地貌发育与地质构造的关系. (4)一幅地质图反映了该地区各方面地质情况。读图时一般要分析地层时代、层序和岩石类型、性质和岩层、岩体的产状、分布及共相互关系。对于分析地质构造方面主要是褶皱的形态特征、空间分布,组合和形成时代;断裂构造的类型、规模、空间组合、分布和形成时代或先后顺序;岩浆岩体产状和原生及次生构造以及变质岩区所表现的构造特征等等。读图分析时,可以边阅读,边记录,边绘示意剖面图或构造纲要图。 (5).在掌握全区地质轮廓的基础上,再对每一个局部构造进行分析:(1)开始时最好从图中老岩层着手,逐步向外扩展,以免茫无头绪;(2)对每一种构造形态,包括褶曲、断层、不整合、火成岩体等逐一详加分析。例如褶曲类型,断层类型,各构造组合关系等。 (6)把各个局部联系起来,进一步了解整个构造的内部联系及其发展规律,主要包括:(1)根据地层和构造分析,恢复全区的地质发展历史;(2)地质构造与矿产分布的关系;(3)地质构造与地貌发育的关系,等等。

各种地质图件绘制

各种地质图件绘制

一、地质图的种类和基本内容 用规定的符号、线条、色彩来反映一个地区地质条件和地质历史发展的图件,叫地质图。它是依据野外探明和收集的各种地质勘测资料,按一定比例投影在地形底图上编制而成的,是地质勘察工作的主要成果之一。 (一)地质图的种类 1、普通地质图 以一定比例尺的地形图为底图,反映一个地区的地形、地层岩性、地质构造、地壳运动及地质发展历史的基本图件,称为普通地质图,简称地质图。在一张普通地质图上,除了地质平面图(主图)外,一般还有一个或两个地质剖面图和综合地层柱状图,普通地质图是编制其它专门性地质图的基本图件。 按工作的详细程度和工作阶段不同,地质图可分为大比例尺的(>1:25000)、中比例尺的〔1:5000~1:10万〕、小比例尺的(1:20万~1:100万)。在工程建设中,一般是大比例尺的地质图。 2、地貌及第四纪地质图 以一定比例尺地地形图为底图,主要反映一个地区的第四纪沉积层的成因类型、岩性及其形成时代、地貌单元的类型和形态特征的一种专门性地质图,称为地貌及第四纪地质图。 3、水文地质图 以一定比例尺地地形图为底图,反映一个地区总的水文地质条件或某一个水文地质条件及地下水的形成、分布规律的地质图件,称为水文地质图。 4、工程地质图 工程地质图是各种工程建筑物专用的地质图,如房屋建筑工程地质图、水库坝

址工程地质图、铁路工程地质图等。工程地质图一般是以普通地质图为基础,只是增添了各种与工程有关的工程地质内容。如在地下洞室纵断面工程地质图上,要表示出围岩的类别、地下水量、影响地下洞室稳定性的各种地质因素等。

(二)地质图的基本内容 1、平面地质图 平面地质图又称为主图,是地质图的主体部分,主要包括: 地理概况:图区所在的地理位置(经纬度、坐标线)、主要居民点(城镇、乡村所在地)、地形、地貌特征等。 一般地质现象:地层、岩性、产状、断层等。 特殊地质现象:崩塌、滑坡,泥石流、喀斯特、泉及主要蚀变现象。 2、地质剖面图 在平面图上,选择一条至数条有代表性的图切剖面,以表示岩性、褶皱、断层的空间展布形态及产状、地貌特征等。

相关文档