文档库 最新最全的文档下载
当前位置:文档库 › proe内如何控制扭簧的角度

proe内如何控制扭簧的角度

proe内如何控制扭簧的角度
proe内如何控制扭簧的角度

proe内如何控制弹簧的角度

在设计弹簧的时候,往往要求长出的两脚有角度的要求(如图),下面给大家介绍下画法:在设计弹簧的时候,往往要求长出的两脚有角度的要求(如图),下面给大家介绍下画法:

一、等距角度的控制

设为:pitch——螺距

L——扫描长度

n——整数、螺纹圈数

Angle——多出的不整圈所包含的圆周角(0~360)

即画弹簧时螺距为:pitch=L/(n+angle/360) 二、不等距的角度控制

设为:p ——各段平均螺距(将相邻的螺距相加除以2)

L ——各段扫描长度

Σ——求和

mod——取余数

即角度值为:Angle=360*mod(Σ(L/p)),注:angle 最终多出的不整圈所包含的圆周角

根据上图1,图2 举个例子说明下:

L1=10 p1=6

L2=40 p2=12

L3=30 p3=12

L4=20 p4=6

Angle=360*mod(10/6+40/12+30/12+20/6)=360*mod(4/6+4/12+6/12+2/6)=360*5/6=300

PROE三维绘图实例

2011-2012年第一学期 《Pro/E三维造型》课程期末综合作业 题目:电脑摄像头的制作 班级:XXXXX 姓名:XXXXX 学号:XXXXX 电话:XXXXXXXX Email: 日期:

设计构思:本次设计实体为立式电脑摄像头,实体绘制过程中主要运用了拉伸、旋转特征,辅助以扫描、螺旋扫描、阵列、圆角、基准点、面等。特征设计中忽略了实体内部的镶嵌结构,以及弹簧、光学透镜镜片、电线、螺钉等结构。从工程实践来讲,该实体并不能用单个的零件来阐述,完成的prt文件只能代表摄像头外形特征,并不具有实际意义。 实物图片

模型截图 制作步骤与说明: 一、绘制头部: 【1】打开程序,先新建一个模型文件:点击系统工具栏里的“新建”图标,在弹出的“新建”对话框中保持默认值,单击“确定”按钮,进入零件设计界面。 【2】单击下拉菜单【插入】、【旋转】命令,或者直接单击特征工具栏中的“旋转工具” 的“定义”按钮,以绘制旋转截面。 【3】系统弹出“草绘”对话框,选择FRONT面为草绘平面,接收系统默认草绘方向, 单击“草绘”按钮,进入草绘工作状态。

【4】如图1所示:先绘制一条旋转轴线(图中竖直虚线),再绘制一个直径100的圆(圆心过旋转轴线),在剪切至图1所示。 图1 【5】单击草绘工具栏下面的按钮,系统回到零件设计模式。此时单击“预览”按钮,模型如图2所示: 图2

【6】接受默认值,单击按钮,完成曲面旋转特征。单击下拉菜单中的【文件】,【保存 副本】菜单命令,在新建名称中输入“qiuke”,保存。 【7】在模型树中选中“旋转1”,单击【编辑】、【实体化】,然后点击按钮,将上一步 得到的球壳实体化得到球。 二、绘制双耳: 【8】单击特征工具栏里的“基准平面工具”,选择RIGHT平面,偏移距离设置为45,新建一个基准平面;再在RIGHT平面另一边新建一个对称基准平面,名称分别为DTM1和DTM2。 【9】单击特征工具栏中的“拉伸”,选择“拉伸为实体”,以DTM1基准平面为草绘平面,绘制一个直径60的圆,单击完成草绘,拉伸实体参数分别为,单击得到实体局部切槽如图3所示。对切口进行倒圆角处理,圆角半径设为0.5。 图3 【10】重复上一步,以DTM2为基准,得到与步骤9对称的切口。如图4所示:

弹簧计算公式#(优选.)

记号的含义 螺旋弹簧的设计时候使用的记号如下表1所示。横弹性系数G的值如表2所示。表1.计算时使用的记号及单位 记号记号的含义单位 d 材料的直径mm D1 弹簧内径mm D2 弹簧外径mm D 弹簧平均径mm Nt 总圈数— Na 有效圈数— Hs 试验载荷下的高度mm Hf 自由高度mm c=D/d 弹簧指数— G 横弹性指数N/mm2 P 弹簧所受负荷N δ弹簧的弯曲mm k 弹簧定数N/mm τ0扭转应力N/mm2 τ扭转修正应力N/mm2

记号 记号的含义单位 κ应力修正系数—表2.横弹性系数:G(N/m㎡) 材料G的值 弹簧钢钢材 高碳素钢丝 高强钢丝 油回火钢丝 7.85×104 不锈钢 SUS304 SUS316 SUS631J1 6.85×104 6.85×104 7.35×104黄铜丝 3.9×104锌白铜丝 3.9×104磷青铜丝 4.2×104铍铜丝 4.4×104 螺旋弹簧的设计用基本计算公式 螺旋弹簧的负荷和弹簧定数?弯曲的关系具有线性特征弹簧的负荷和弯曲是成比例的。 从螺旋弹簧的尺寸求弹簧的定数 压缩螺旋弹簧的素線径因扭转而产生弯曲的弹簧定数K 螺旋弹簧的扭转应力

螺旋弹簧的扭转修正应力 螺旋弹簧试验载荷下高度(端面磨削的情况下) 螺旋弹簧两端的各厚度之和 不同材质螺旋弹簧在高温时的机械特性 表3. 不同温度下弹簧的横弹性定数(N/mm2) 材質環境100℃200℃300℃400℃500℃600℃SUP10 通常76500 74300 ————SUS304 耐蚀?高温68100 66200 ————SUS316 耐蚀?高温68100 66200 ————SKD4 高温77000 74700 71600 69000 ——INCONEL X750 耐蚀?高温77700 76600 74700 72800 70900 —INCONEL 718 耐蚀?高温74700 72400 70100 67800 65900 63600 C5191 耐蚀—————— 表4. 不同温度下弹簧的容许应力(N/mm2) 材質応力位置100℃200℃300℃400℃500℃600℃SUP10 τ 0490 410 ———— SUS304 τ 00.7a 0.5a ————

弹簧弹力计算公式详解

弹簧弹力计算公式详解 压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。 一、压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; ·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例: 线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 二、拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹

簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 ·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 三、扭力弹簧 ·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

proe拉伸球体的实例记录

东方之子 22:04:20 你学这个有意思吗 东方之子 22:04:51 给你个prt。。。要不要んし 22:04:53 哥哥,给我传下 んし 22:04:56 要 东方之子 22:05:46 东方之子 22:05:47 我是5.0M060的 东方之子 22:06:01 你是那个版本?

んし 22:06:02 我creo没问题 东方之子 22:06:08 恩 东方之子 22:06:29 这些都没有实际意义。。。你也用不上 んし 22:06:47 恩,好奇害死猫啊 东方之子 22:07:09 呵呵。看不透我再教你 んし 22:07:24 谢谢 んし 22:10:09 这个草绘有什么技巧? 东方之子 22:10:27 没有技巧的 东方之子 22:10:55 想学吗 んし 22:10:57 直接草绘个圆?还有什么呢?麻烦再赐教下 んし 22:11:02 恩。 东方之子 22:11:13 你会骨架模型吗 んし 22:11:24 不会。。 んし 22:11:32 初学者 东方之子 22:11:36 装配会吗 んし 22:11:44 会 んし 22:13:03 师傅 んし 22:13:14 东方之子 22:13:25 装配-新建骨架模型-(旋转)。新建零件-拉伸-草绘(复制圆)-Ok 东方之子 22:13:33 保存 んし 22:13:43 好,我试试。

东方之子 22:13:58 再打开新建的零件就是是了 んし 22:14:36 没有骨架模型。。 东方之子 22:15:50 确定 东方之子 22:15:55 截图 んし 22:16:23

刚截了你看看选的装配。右边 没有骨架模型的选择 东方之子 22:17:44 确定 东方之子 22:17:52 截图 んし 22:18:11 我截了。你那边看不到吗?

proe实例-拖鞋的建模方法

拖鞋的建模方法 拖鞋的建模大体可以分为底面的脚板形状和上面的两条带子组成。首先我们可以“拉伸”出底面。做两条中心线,宽度标注为140,长度标注为300,在矩形所在区域内,用“样条曲线”绘制如图形状的封闭曲线。拉伸高度8.

在拉伸的脚型面的上面作点point0,拖动点控制块分别到right面和front面,让这两个面做参考。调整point0的位置,使该店位置处于左上角。该店将作为后面鞋带曲线的起始参考点。 同理做出下端的两个点。

做平面DTM1,参考right平面,参考点point0. 在弹出的“基准平面”“显示”中勾选“调整轮廓”,将DTM1调整到合适大小(这样有利于平面之间区分,特别是平行平面之间的区分,在一些复杂零件中可以方便辨别面)

参考top面建立一个平面dtm2,偏移量为24.接下来我们将早该平面上绘制一条鞋带曲面的构造边界线。 建立一个草绘,草绘平面为dtm2,选择dtm1为参考,在point0下方绘制一条直线,标注长度20.做该线段的中点为参考点point5.

同样以point1,point2为中点绘制如下直线。这样我们得3三条鞋带曲面边界线。 然后我们进入“造型”,选择“曲线”创建一条起始为point5,末端为上面图中直线的中点,点击工具栏中“显示所有视图”图标,在三个视图中调节控制软点(也可点击曲线,然后右键“添加点”,来添加控制软点,但一般控制软点不易过多,否则难调整) 同理创建右边的另一条鞋带线

然后在“造型”截面中选择右边工具栏中的“曲面”,添加所做的两条直线为边界线,选择造型所做的曲线为内部曲线,得到下图的曲面。 同理做出右边的曲面。

弹簧计算公式

胡克弹性定律指出,在弹性极限范围内,弹簧的弹性力f 与弹簧的长度x 成正比,即f =-kx,k 是一个物体的质量弹性系数,该系数由材料的性质决定,负号表示弹簧产生的弹性力与其延伸(或压缩)方向相反弹簧常数: 以k 表示,当弹簧被压缩时,载荷(kgf/mm)增加1mm 的距离,弹簧常数公式(单位: kgf/mm) : k = (g d4)/(8dm3 nc) g = 钢丝的刚度模量: 钢琴丝g = 8000; 不锈钢丝g = 7300; 磷青铜丝g = 4500;黄铜丝g = 3500d = 线径= 0d = 外径= id = 内径= md = 中径= do-dn = 转速总数弹簧常数的计算例子: 线径= 2.0 mm,外径= 22 mm,总匝数= 5。5圈,钢丝材料= 钢琴钢丝k = (gxd4)/(8xdm3xnc) = (8000x24)/(8x203x3.5) = 0.571 kg f/mmpull,张力弹簧的k 值与压力弹簧的k 值相同。 张力弹簧的初始张力: 初始张力等于拉开彼此接近的弹簧所需的力,并发生在弹簧轧制成型之后。在制作张力弹簧时,由于钢丝材质、线径、弹簧指数、静电现象、油脂、热处理、电镀等的不同,使得各张力弹簧的初始张力不均匀。因此,在安装各种规格的张力弹簧时,应该预张力到平行弯道之间一定距离的力称为初张力。 初始张力= p-(kxf1) = 最大载荷-(弹簧常数x 拉伸长度)扭转弹簧常数: 以k 表示,当弹簧扭转时,载荷(kgf/m)增加1个扭转角。弹簧常数(单位: kgf/mm) : k = (exd #)/(1167 xdmxpnxr) e = 钢丝的刚度模量: 钢琴线e = 21000,不锈钢线e = 19400,磷青铜线e =

proe5.0 09 创建拉伸、旋转和筋

创建拉伸、旋转和筋 模块概述 创建2D 草绘之后,您可以使用那些草绘创建3D 几何。 在本模块中,您可以使用2D 草绘创建3D 实体几何特征,包括拉伸、旋转和轮廓筋特征。您还会了解到与这些类型的基于草绘的特征相关的常用操控板选项。 目标 成功完成此模块后,您即可知道如何: ?创建实体拉伸和旋转特征。 ?创建轮廓筋特征。 ?了解常用的操控板选项,包括拉伸深度、特征方向、加厚草绘和旋转角度。

创建实体拉伸特征 从2D 草绘创建拉伸特征。 ?垂直于草绘平面拉伸截面。 ?添加或去除模型中的材料。 查看2D 草绘 添加材料的拉伸特征移除材料的拉伸特征

过程: 创建实体拉伸特征 假定背景 创建实体拉伸特征。 Extrude_Features extrude.prt 1.任务1.创建实体拉伸特征。 1. 从特征工具栏中启动“拉伸工具”(Extrude Tool) 。 2. 选取“草绘1”(Sketch 1)。 3. 将拖动控制滑块拖动到基准平面TOP 下方,使深度为16。 4. 在操控板中单击“完成特征”(Complete Feature) 。 5. 启动“拉伸工具”(Extrude Tool) 。 6. 选取“草绘2”(Sketch 2)。 7. 将高度改为24。 8. 单击“完成特征”(Complete Feature) 。

9. 启动“拉伸工具”(Extrude Tool) 。 10. 选取“草绘3”(Sketch 3)。 11. 在操控板中单击“去除材料”(Remove Material) 。 12. 将深度改为“穿透”(Through All) 。 13. 单击“完成特征”(Complete Feature) 。 过程就此结束。

拉压扭簧计算公式弹簧刚度计算

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

Proe旋转特征

旋转特征 旋转特征就是将某个平面图形围绕某一特定的轴进行一定角度的旋转,最终形成某一实体的过程。在旋转实体中, 穿过旋转轴的任意平面所截得的截面都完全相同。如图5-22所示,为一个六边形,对它沿旋转轴旋转240度后,形成了如图5-23所示的实体。 旋转特征一般用于创建关于某个轴对称的实体。 图5-22 旋转截面 图5-23 旋转实体 5.3.1 旋转特征工具操控板 单击“基础特征”工具栏中的按钮,或者单击【插入】→【拉伸】后,系统自动进入如图5-24所示的旋转特征工具操控板。 和拉伸特征工具操控板相似,旋转特征工具操控板也可以分为3部分,最上面的一部分为“上滑面板”按钮,单击其中的任意一个按钮后将弹出其相应的上滑面板;下部左侧的为“旋转”对话栏,其中可以定义旋转性质、旋转角度、旋转方向等;下部右侧为“特征操作”按钮。 图5-24 旋转特征工具操控板 1.“旋转”对话栏 如图5-24所示,“旋转”对话栏共包括了5种旋转性质的定义,下面分别介绍各个按钮的作用。

:当此按钮按下时,所创建的旋转特征为实体; :当此按钮按下时,所创建的拉伸特征为曲面; :轴收集器,用于定义旋转轴; :定义旋转角度,其中左侧的按钮定义旋转角度的创建方式,右侧的文本框中输入旋转角度值; :从草绘平面以指定的角度值旋转; :以草绘平面两侧分别旋转角度值的一半,即旋转特征关于草绘平面对称; :旋转至指定的点、平面或曲面。 :将旋转的角度方向更改为草绘平面的另一侧; :在已创建的实体中,去除旋转特征部分的材料; :加厚草绘。 说明 按钮和按钮只能按下一个。 使用方式创建旋转特征时,终止平面或曲面必须包含旋转轴。 “角度”文本框中输入的角度数值范围为0.01~360,当输入角度值的绝对值不在此范围内时,系统会弹出如图5-25所示的“警告”对话框。 由于按钮用于去除已经存在实体材料,因此如果模型的第一个实体特征为旋转,则该按钮不可用。 2.上滑面板 “位置”上滑面板 在“旋转”工具操控板中,单击【位置】按钮,系统弹出“位置”上滑面板,如图5-26所示。创建旋转特征需要定义要旋转的截面和旋转轴,“位置”上滑面板正是为此而设计的。 要定义旋转截面,单击“草绘”区域中的【定义】后,系统弹出“草绘”对 话框,选取需要草绘的平面后,进入草绘环境。完成草绘图后,单击按钮,返回“拉伸”工具操控板。

弹簧弹力计算公式

弹力计算公式压力弹簧 初拉力计算 F0=〖{π3.14×d 3 }÷(8×D)〗×79mpa F0={3.14×(5×5×5)÷(8×33)}×79=117 kgf 1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 3.弹簧常数公式(单位:kgf/mm); K=(G×d4)/(8×D3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500 d=线径(钢丝直径) D=中径 N=总圈数 Nc=有效圈数 F=运动行程(550mm) 弹簧常数计算范例: 线径=5.0mm , 中径=20mm , 有效圈数=9.5圈,钢丝材质=不锈钢丝 K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/m m×(F=100)=812 kgf 拉力弹簧

拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧 弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm) 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×D×p×N×R) E=线材之钢性模数:琴钢丝E=21000,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径(钢丝直径) D=中径 N=总圈数 R=负荷作用的力臂 p=3.1416

弹簧弹力计算公式

弹簧弹力计算公式 Revised by Liu Jing on January 12, 2021

弹力计算公式 压力弹簧 初拉力计算 F0=〖{π3.14×d3}÷(8×D)〗×79mpa F0={3.14×(5×5×5)÷(8×33)}×79=117 kgf 1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的 负荷; 2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 3.弹簧常数公式(单位:kgf/mm); K=(G×d4)/(8×D3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝 G=7900,磷青铜线G=4500 ,黄铜线G=3500 d=线径(钢丝直径) D=中径 N=总圈数 Nc=有效圈数 F=运动行程(550mm) 弹簧常数计算范例: 线径=5.0mm , 中径=20mm , 有效圈数=9.5圈 ,钢丝材质=不锈钢丝 K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/mm×(F=100)=812 kgf 拉力弹簧

拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm) 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×D×p×N×R) E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线 E=11200 , 黄铜线E=11200 d=线径(钢丝直径) D=中径 N=总圈数 R=负荷作用的力臂 p=3.1416

弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法 摘要:本文用六种不同的方法,从六种不同的角度推导出弹簧弹性势能的表达式。 关键词:弹性势能,微元,积分,振动方程 我们知道,弹簧的弹性势能的表达式为2 2 1kx E p = ,k 为弹簧的劲度系数,x 为弹簧的形变量。但很多教材及教辅中都是直接给出公式,少有推导过程。笔者现用如下六种方法来推导弹簧弹性势能的表达式,加深读者理解和记忆,方便学习。 下文中,为方便讨论,忽略弹簧的质量及一切摩擦,且研究的都是水平弹簧振子,但推导出的结果适用于任何情况下的弹簧。 1 微元法 弹簧的弹性势能等于自势能零点开始保守力做功的负值。外力拉弹簧时,外力的功与弹簧反抗形变而施于外界之力做的功大小相等而符号相反,因此,弹性势能等于自势能零点开始外力做功的正值[1]。 取弹簧自由端为势能零点。设弹簧在外力F 的作用下发生形变量x ,将这个形变过程等分成很多小段,如n 段,那么每一小段中可近似认为拉力是不变的。 第1小段形变量22 11111...n x k x F W n x k F n x x =?===?,拉力的功,拉力 第2小段形变量22 222222..2.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第3小段形变量22 333333..3.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第n 小段形变量22 ...n nx k x F W n nx k F n x x n n n n n =?===?,拉力的功,拉力 所以,拉力的总功为

()()2 1. 321.3.2..2222 2 2222222321+=++++=++++=++++=n n n kx n n kx n nx k n x k n x k n x k W W W W W n 当2 2222 12.kx n n kx W n ==∞→时,。因为弹性势能等于自势能零点开始外力做功的 正值,所以弹簧的弹性势能2 2 1kx W E P ==。 2 动能定理法 取弹簧自由端为势能零点。设F 缓慢拉弹簧使其发生形变量x 。缓慢拉动意味着每一个位置都可看作是平衡状态,动能的变化0=?k E 。弹簧的弹力kx F =,因为F 与x 是线性关系,所以弹力的平均值为kx F 2 1 = ,外力F 的平均值也为kx 2 1 ,方向与弹簧弹力方向相反。设弹簧反抗外力做功为W ,由动能定理得 2 2 1 kx x F W W x F -=-=∴=+ 因弹簧弹性势能等于自势能零点开始保守力做功的负值,所以2 2 1kx W E P =-=。 3 积分法 取弹簧自由端为势能零点。设弹簧形变一微小量dx ,弹力做功为dW 。 k x d x F d x dW -=-= 两边积分: ??-=x k x d x dW 0 221kx W -=∴ 所以弹簧的弹性势能22 1 kx W E P =-=。 4 机械能守恒法

弹簧弹力计算A

弹簧弹力计算 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 弹簧常数:以k表示,当弹簧被压缩时,每增加 1mm距离的负荷(kgf/mm); 弹簧常数公式(劲度系数)(单位:kgf/mm):K=(G×d4)/(8×Dm3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300;磷青铜线G=4500 ;黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝 K=(G×d4)/(8×Dm3×Nc)=(8000×24)/(8×203×3.5)=0.571kgf/mm 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同。 拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×Dm×p×N×R) E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

使用ProE扭曲命令制作风车实例

使用Pro/E扭曲命令制作风车实例 在Pro/E中使用“扭曲”特征,可改变实体、面组、小平面和曲线的形式和形状。此特征为参数化特征,并会记录应用于模型的扭曲操作的历史。“扭曲”特征灵活多变,往往可以创建出我们意想不到的造型效果。 使用“扭曲”特征,可以: ?在概念性设计阶段研究模型的设计变化。 ?是从其它造型应用程序导入的数据适合特定工程需要。 ?创建用于捕获设计意图的“模型模板”。在设计过程中更改时,此模板提供更大的灵活性。曲面修整和细节处理均可基于此模型进行。 ?使用扭曲操作可对Pro/E中的几何进行变换、缩放、旋转、拉伸、扭曲、折弯、扭转、骨架变形或造型等操作,不需与其他应用程序进行数据交换就能使用其扭曲工具。 注意:“扭曲”特征仅在“零件”模式下可用,如图1所示为“扭曲”操作面板。 图1“扭曲”操作面板 “变换”:平移、旋转和缩放几何。 “扭曲”:使用选取框的边和拐角来改变几何的形状。多种约束和控制可用来在大范围内改变形状。 “拉伸”:沿着某个轴折弯几何。可控制扭转角度和扭转影响的范围。 “折弯”:沿着某个轴折弯几何。可控制折弯角度、折弯范围、轴心点和折弯半径。 “扭转”:绕某个轴扭转几何。可控制扭转角度和扭转影响的范围。 “骨架”:通过处理定义的曲线点改造几何。变形可为线性或径向。 “雕刻”:穿过网格雕刻几何。 下面将使用“扭曲”命令创建一个风车,如图2所示。

图2风车 1、单击“新建”按钮,创建一个新的零件环境。 2、用“拉伸”命令,创建一个拉伸特征,拉伸高度为0.5,如图3所示。

图3拉伸 3、单击“平面”按钮,创建一个基准平面,如图4所示。 图4创建基准平面 4、选择菜单“插入”|“扭曲”,选择拉伸出的实体,在控制面板中单击“折弯”按钮,单击“参照”选项卡,在“方向”中选择新创建的基准平面为参照。单击“选取框”选项卡,在“活动轴”区域中的“开始”文本框中输入50,在长度文本框中输入100,在角度文本框中输入180,如图5所示。

行李箱扭簧设计计算方法

众泰控股集团有限公司企业标准 Q/CS 发布Q/CS 05.010-2013 行李箱扭簧设计计算方法 2013-02-28实施 2013-02-25发布

Q/CS 05.010-2013 前言 本标准由众泰汽车工程研究院车身部提出。 本标准由众泰汽车工程研究院车身部归口管理。 本标准由众泰汽车工程研究院车身部负责起草。 本标准主要起草人:綦法富。

行李箱扭簧设计计算方法 1 范围 本标准规定了行李箱扭簧的技术要求、试验方法和计算方法。 本标准适用于三厢车鹅颈式(弓形)铰链所配用的行李箱扭簧产品。 2 引用标准 下列文件中对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 230.1-2009金属材料洛氏硬度试验第1部分:试验方法 GB/T 1222-2007 弹簧钢 GB/T 1805-2001 弹簧术语 GB/T 18983-2003 油淬火回火弹簧钢丝 Q/ZTB 06.002-2012 乘用车零部件防腐技术要求 Q/ZTB 07.025-2012 禁用和限用物质规范 3术语和定义 3.1 行李箱扭簧 作为平衡铰链的弹性元件之一,占有有效空间小,易于安装,是一种较好的结构型式。其工作原理是通过扭转产生弹性变形输出力矩。 3.2 鹅颈式(弓形)铰链 鹅颈式(弓形)铰链是使用弹性元件,可以在行李箱盖开启或关闭过程中平衡行李箱盖重力矩的铰链结构,因其形状类似于鹅颈而得名。该铰链形式结构简单、制造工艺容易、有足够强度、可靠耐久及成本较低等优点,目前在中低档三厢车型中广泛应用。 3.3 剪切弹性模量(G) 材料的力学性能指标之一,是材料在纯剪切应力状态下,应力低于比例极限时切应力与切应变的比值。它代表着材料抵抗切应变的能力,模量大,则表示材料的刚性强。目前几种常用的扭簧材料剪切弹性模量见表1所示。

拉压扭簧计算公式弹簧刚度计算

. 弹簧刚度计算压力弹簧 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·;距离的负荷(kgf/mm) ·弹簧常数:以k表示,当弹簧被压缩时,每增加 1mm ):·弹簧常数公式(单位:kgf/mm G=350 黄铜线,,磷青铜线G=4500 G=697300 碳钢丝G=线材的钢性模数:G=79300 ;不锈钢丝线径d= Do=OD=外径Di=ID=内径=Do-d 中径 Dm=MD= 总圈数N==N-2 Nc=有效圈数拉力弹簧 值与压力弹簧的计算公式相同拉力弹簧的k拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成· 形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。1 / 3 . ×拉伸长度)-(k×F1)=最大负荷(弹簧常数初张力·=P-拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·;(kgf/mm) 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷·:·弹簧常数公式 (单位:kgf/mm) G=350 黄铜线磷青铜线G=4500 ,不锈钢丝G=线材的钢性模数:碳钢丝G=79300 ;G=697300 ,线径d= 外径Do=OD= 内径Di=ID==Do-d Dm=MD=中径N=总圈数扭力弹簧

(kgf/mm). 扭转角的负荷,当弹簧被扭转时,每增加1°表示·弹簧常数:以k : 弹簧常数公式(单位:kgf/mm)· E=11200 琴钢丝E=21000 ,不锈钢丝,黄铜线E=19400 ,磷青铜线E=11200线材之钢性模数:E= d=线径Do=OD=外径Di=ID=内径=Do-d Dm=MD=中径N=总圈数2 / 3 . 负荷作用的力臂R= p=3.1416 3 / 3

proe拉伸与旋转建模练习题

2、某叉类零件如图2所示,试采用拉伸方式创建该零件,尺寸自定。 图 2 叉类零件 3、图3所示是全国第一届数控铣竞赛的学生组试题(这里去掉了公差配合要求),试采用拉伸方式生成其三维实体造型。 图3 零件图 4、某轴类零件如图4所示,试采用旋转造型方式生成该零件的三维实体,其中 5为直通孔,绘图面不限。 图 4 轴类零件 5、利用旋转方式创建一个薄壁实体酒杯如图103(a)所示;在圆柱体内切割出一个酒杯造型,如图103(b)所示,尺寸自定。 提示: (1)生成薄壁实体酒杯时,截面线可以不封闭,如图5(a)所示,但应在进入截面绘制

前,按下薄壁按钮。 (2)切割酒杯时,同样截面线可以不封闭,但应注意截面线的端点必须与旋转中心线对齐,或与被切割实体的边线对齐,如图6(b)所示。同学们可以试一试:若截面线的端点不对齐时会出现什么样的情况。 (a)薄壁实体(b)切割实体 图 5 酒杯造型 图 6 酒杯造型 6、某交叉管如图7所示,试采用旋转和拉伸(包括切割拉伸)方式生成该零件的三维实体。 图7 交叉管 7、某三角带轮结构如图8所示,请采用旋转方式(或拉伸方式)生成该零件的三维实

体造型。 图8 三角带轮结构图 8、某高级加工中心操作工实操考题如图9所示,请采用拉伸方式生成该零件的三维实体造型。 图9 凸模零件图 9、绘制如图10所示的机械零件

图10 某机械零件图10、绘制如图11所示的机械零件

11、实际物品练习-TP-LINK集线器

图12 12.绘制如图13所示的弹性钢片零件。 图13 弹性钢片 13.绘制如图14所示的零件。

拉压扭簧计算公式弹簧刚度计算

拉压扭簧计算公式弹簧 刚度计算 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

弹簧弹力计算公式()

弹力计算公式 压力弹簧 初拉力计算 F0=〖{π3.14×d3}÷(8×D)〗×79mpa F0={3.14×(5×5×5)÷(8×33)}×79=117 kgf 1.压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 2.弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 3.弹簧常数公式(单位:kgf/mm); K=(G×d4)/(8×D3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,60Si2MnA钢丝G=7900,磷青铜线G=4500 ,黄铜线G=3500 d=线径(钢丝直径) D=中径 N=总圈数 Nc=有效圈数 F=运动行程(550mm) 弹簧常数计算范例: 线径=5.0mm , 中径=20mm , 有效圈数=9.5圈,钢丝材质=不锈钢丝 K=(G×d4)/(8×D3×Nc)=(7900×54)/(8×203×9.5)=8.12kgf/m m×(F=100)=812 kgf 拉力弹簧 拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧 弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm) 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×D×p×N×R) E=线材之钢性模数:琴钢丝E=21000,不锈钢丝E=19400 ,磷青铜线E=11200 , 黄铜线E=11200 d=线径(钢丝直径) D=中径 N=总圈数 R=负荷作用的力臂 p=3.1416

proe拉伸球体的实例记录解析

东方之子22:04:20 你学这个有意思吗 东方之子22:04:51 给你个prt。。。要不要 んし22:04:53 哥哥,给我传下 んし22:04:56 要 东方之子22:05:46 东方之子22:05:47 我是5.0M060的 东方之子22:06:01 你是那个版本?

んし22:06:02 我creo没问题 东方之子22:06:08 恩 东方之子22:06:29 这些都没有实际意义。。。你也用不上 んし22:06:47 恩,好奇害死猫啊 东方之子22:07:09 呵呵。看不透我再教你 んし22:07:24 谢谢 んし22:10:09 这个草绘有什么技巧? 东方之子22:10:27 没有技巧的 东方之子22:10:55 想学吗 んし22:10:57 直接草绘个圆?还有什么呢?麻烦再赐教下 んし22:11:02 恩。 东方之子22:11:13 你会骨架模型吗 んし22:11:24 不会。。 んし22:11:32 初学者 东方之子22:11:36 装配会吗 んし22:11:44 会 んし22:13:03 师傅 んし22:13:14 东方之子22:13:25 装配-新建骨架模型-(旋转)。新建零件-拉伸-草绘(复制圆)-Ok 东方之子22:13:33 保存 んし22:13:43 好,我试试。

东方之子22:13:58 再打开新建的零件就是是了 んし22:14:36 没有骨架模型。。 东方之子22:15:50 确定 东方之子22:15:55 截图 んし22:16:23

刚截了你看看选的装配。右边 没有骨架模型的选择 东方之子22:17:44 确定 东方之子22:17:52 截图 んし22:18:11 我截了。你那边看不到吗?

Proe 零件造型实例 斜齿圆柱齿轮

Proe零件造型实例 ————斜齿圆柱齿轮 (1)

齿根圆柱渐开线齿廓 复制齿廓曲线 扫描混合特征阵列齿廓 分度圆柱面上的投影曲线

1、添加轮齿参数(“工具”→“参数”) 齿数z=32;法向模数m=2;法向压力角af=20;螺旋角beta=16;齿宽b=20。 2、草绘四个圆 (1)、点“草绘”工具,选TOP面为草绘平面; (2)、从大到小分别画四个同心圆,并建立如下关系式: d=m*z/cos(beta) da=d+2*m df=d-2.5*m aft=atan(tan(af)/cos(beta)) db=d*cos(aft) dk=m*(z/2-9) sd0=da sd1=d sd2=db sd3=df (3)、确认并退出草绘。

3、通过“拉伸”创建齿根圆柱实体 (1)、选TOP面为草绘平面; (2)、进入草绘后,采用“通过边创建图元”方式,选图中的齿根圆,作为草绘图形; (3)、反向拉伸,深度值为:b。 4、创建基准坐标系“CSO” 执行“基准坐标系”命令,在模型树中选取基准坐标系“PRT_CSYS_DE F”,以此为基础坐标系,然后在“坐标系”对话框中,选“定向”,在其下面的“关于X”栏中输入角度:“-90”或“270”。 5、创建基准曲线——渐开线 (1)、操作流程:“插入基准曲线”→“从方程”→“完成”→选取坐标系→选“笛卡尔”→输入渐开线方程→保存并退出。 (2)、要求选取坐标系时,可在模型树或图中选取上一步创建的基准坐标系“CSO”。 (3)、要求输入的渐开线方程如下: r=db/2 theta=t*45 x=r*cos(theta)+r*sin(theta)*theta*pi/180 y=r*sin(theta)-r*cos(theta)*theta*pi/180 z=0

第八讲--弹簧弹力与伸长量的关系

弹簧的弹力与伸长量的关系一对一个性化讲义 第一讲 教师冯___茂___珊

基本实验要求 1.实验原理 弹簧受到拉力作用会伸长,平衡时弹簧产生的弹力和外力大小相等;弹簧的伸长量越大,弹力也就越大. 2.实验器材 铁架台、弹簧、钩码、刻度尺、坐标纸. 3.实验步骤 (1)安装实验仪器(如实验原理图所示). (2)测量弹簧的伸长量(或总长)及所受的拉力(或所挂钩码的质量),列表作出记录,要尽可能多测几组数据. (3)根据所测数据在坐标纸上描点,以力为纵坐标,以弹簧的伸长量为横坐标. (4)按照在图中所绘点的分布与走向,尝试作出一条平滑的曲线(包括直线),所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同. (5)以弹簧的伸长量为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行再考虑二次函数. 规律方法总结 1.实验数据处理方法

(1)列表法 将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的. (2)图象法 以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线是一条过坐标原点的直线. (3)函数法 弹力F与弹簧伸长量x满足F=kx的关系. 2.注意事项 (1)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度. (2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据. (3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点.(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位. 3.误差分析 (1)钩码标值不准确、弹簧长度测量不准确带来误差. (2)画图时描点及连线不准确也会带来误差. 考点一实验原理与实验操作 1.[对实验原理的考查]一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力F与弹簧长度l的图象如图1所示.下列表述正确的是() 图1 A.a的原长比b的长 B.a的劲度系数比b的大 C.a的劲度系数比b的小 D.测得的弹力与弹簧的长度成正比 2.[对实验操作的考查]如图2甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系.

相关文档