文档库 最新最全的文档下载
当前位置:文档库 › 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server

16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server

16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server
16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server

CHAPTER

4 16S rRNA Gene-Based

Identification of Bacteria

and Archaea using the

EzTaxon Server

Mincheol Kim*,Jongsik Chun*,{,1 *School of Biological Sciences,Seoul National University,Seoul,Republic of Korea

{ChunLab Inc.,Seoul National University,Seoul,Republic of Korea

1Corresponding author:e-mail address:jchun@snu.ac.kr

1INTRODUCTION

Ribosomal RNA genes have been used as standard phylogenetic markers in molec-

ular taxonomic studies since the pioneering studies on the tree of life by Woese and

Fox(1977).Their ubiquitous distribution across all archaeal and bacterial lineages, evolutionarily conserved nature,and a wide range of variable regions facilitated the

use of rRNA genes for a variety of taxonomic purposes.The small subunit ribosomal

RNA(?16S rRNA in prokaryotes)was the phylogenetic marker of choice from an

early stage and has been used extensively to date(Woese,1987).Earlier difficulties

in the determination of the whole16S rRNA primary structure were overcome soon

after the invention of PCR and improvements in Sanger DNA sequencing technol-

ogy.At present,sequencing of16S rRNA genes costs as little as$5for partial or$25

for full-length sequences,thereby allowing the routine use of16S rRNA gene sequencing for the classification and identification of prokaryotes in clinical and environmental surveys.

The use of16S rRNA gene sequences for the classification and identification of prokaryotes is mainly dependent on comparisons against a database of known se-quences.Currently,the sequences of type strains of 99%of prokaryotic species

with validly published names are available in public databases(Chun&Rainey, 2014),indicating the extent of information available for the identification of un-

known Bacteria and Archaea.In general,16S rRNA gene sequences are used in

two ways in microbial systematics,namely for calculating pairwise sequence simi-

larities and for phylogenetic analyses following multiple sequence alignments.The

16S rRNA gene sequence similarity between two strains provides a simple yet very

robust criterion for the identification of newly isolated strains,whereas phylogenetic analyses can be used to elucidate overall evolutionary relationships between related

61 Methods in Microbiology,Volume41,ISSN0580-9517,https://www.wendangku.net/doc/419586575.html,/10.1016/bs.mim.2014.08.001

?2014Elsevier Ltd.All rights reserved.

62CHAPTER416S rRNA Gene-Based Identification

taxa.The former is a critical checkpoint for species-level identification,while the

latter is better for genus or suprageneric classification.

DNA–DNA hybridization(DDH)has served as a standard molecular method for species delineation in the classification of prokaryotes.Over the last50years,the

70%DDH value has served as a rigid boundary for circumscribing species despite

some exceptions and drawbacks(Wayne et al.,1987).Taxonomists have searched

for alternative genotypic standards due to the labour-intensive and error-prone nature

of the DDH methodology(Gevers et al.,2005).Stackebrandt and Goebel(1994)sug-

gested that the16S rRNA gene should be used as a potential substitute for DDH by

showing that there is a strong correlation between16S rRNA gene sequence similar-

ities and DDH values.The70%DDH value was considered to be equivalent to a97%

16S rRNA gene sequence similarity;consequently,this threshold has been widely

used in prokaryotic systematics.This threshold was subsequently raised to

98.2–99.0%depending on the taxa under study(Stackebrandt&Ebers,2006);a com-

parable similarity threshold(98.65%)was recently supported by the results of a

large-scale comparative study between16S rRNA gene sequence similarities and

genome-driven average nucleotide identity values(Kim,Oh,Park,&Chun,2014).

Among currently used methods available for the classification and identification of prokaryotes,the analysis of16S rRNA gene sequences offers a reproducible and

technically easy procedure that is also scalable.The procedure is universally appli-

cable,does not require specialist knowledge and is cost-effective;individual isolates

can be identified for around$10.However,easy,simple and scientifically sound bio-

informatics are required for the assembly and comparison of16S rRNA gene se-

quences.The EzTaxon server(Chun et al.,2007;Kim et al.,2012)was

introduced to meet these requirements along with additional functionalities and

tools.In this chapter,we provide the scientific background to EzTaxon,a

taxonomy-oriented16S rRNA gene database,and show how it can be used to identify

members of the domains Bacteria and Archaea.

2USE OF16S rRNA GENE SEQUENCES IN PROKARYOTIC

SYSTEMATICS

2.1SEQUENCING OF16S rRNA GENES

Various primers targeting conserved regions within the16S rRNA gene have been

developed as a result of the widespread use of16S rRNA gene sequences in evolu-

tionary and phylogenetic studies of prokaryotes;the most widely used ones are given

in Table1.Innumerable full-length and partial regions of16S rRNA genes have been

sequenced using the Sanger method and more recently with next-generation se-

quencing platforms.The deposition of ever-increasing numbers of16S rRNA gene

sequences in public databases without quality control filters inevitably leads to the

accumulation of many poor quality sequences(Ashelford,Chuzhanova,Fry,

Jones,&Weightman,2005).Uncertainties during PCR and sequencing processes

always create a certain level of inherent errors which are exacerbated when

64CHAPTER416S rRNA Gene-Based Identification

sequencing is carried out only once in a single direction.Furthermore,low sequenc-

ing depths of coverage can also result in erroneous sequences.When the Sanger

method is used,four to five combinations of sequencing reactions with different

primers are generally necessary to generate high-quality full-length16S rRNA gene

sequences.All bases should be sequenced at least twice in both directions.In addi-

tion,primer regions should not be included in the final sequence as primer binding

regions are not sequenced during the Sanger sequencing process.

2.2CALCULATION OF NUCLEOTIDE SEQUENCE SIMILARITY VALUES

OF16S rRNA GENE SEQUENCES

A pairwise sequence similarity value is calculated as a fraction of a matched region

between two sequences after sequence alignment and can be achieved by adding

alignment gaps to line up all homologous nucleotide positions.Since the true evo-

lutionary history of16S rRNA genes is not known,all pairwise sequence alignment

processes are hypothetical in nature.Many algorithms have been developed and used

in prokaryotic systematics.Each algorithm is based on different assumptions and op-

timizations,so the output,i.e.,alignment,is often different.Thus,sequence similar-

ity values also vary depending on the algorithms and parameters used.It is therefore

important to select theoretically and practically sound algorithms and parameters.

The EzTaxon server implemented the robust algorithm developed by Myers and

Miller(1988),while the initial search for potential phylogenetic neighbours is car-

ried out using the BLASTn program(Altschul,Gish,Miller,Myers,&Lipman,

1990).This algorithm was also used in a study by Kim et al.(2014)in which a

similarity threshold of98.65%was proposed as the species boundary.The BLAST

program alone should not be used as a similarity calculation for taxonomic purposes

as it looks for local optimizations(Tindall,Rossello-Mora,Busse,Ludwig,&

Kampfer,2010).

3IDENTIFICATION OF BACTERIA USING THE EZTAXON

DATABASE

3.1EZTAXON DATABASE

Unlike animals and plants,taxonomic assignment of prokaryotic strains to known

species involves comparisons with related type strains and hence the sequences of

type strains of all known archaeal and bacterial species should be available for com-

parison.At present,over5million16S rRNA sequences are deposited in the Gen-

Bank database though the only ones that matter for identification of prokaryotes are

the type strains of species with validly published names;presently there are about

11,000validly named species of Bacteria and Archaea.

The original EzTaxon database was designed to be a complete compilation of16S rRNA gene sequences of type strains with accessory bioinformatic functions,includ-

ing homology search and calculation of sequence similarity(Chun et al.,2007).

Since its launch,this Web-based service has been widely used for the classification and identification of Bacteria and Archaea(Logan et al.,2009;Tindall et al.,2010), including clinically significant bacteria(Park et al.,2012).

While the original EzTaxon database held information on type strains,the second version of the database,named EzTaxon-e,has an extended repertoire to target microbial diversity beyond the formal nomenclatural system by including sequences representing hitherto unclassified or uncultured phylotypes(Kim et al.,2012). The names of such phylotypes were arbitrarily chosen;in many cases,they are named after GenBank accession numbers of representative sequences.For example, phylotype AB177176_s,where the suffix s(_s)denotes“species”,was named after the GenBank accession number of its representative sequence,AB177176.This se-quence was recovered from methane hydrate-bearing sub-seafloor sediment at the Peru margin(Inagaki et al.,2006)and represents not only a novel species but also a novel phylum in our phylogenetic analysis.Consequently,this phylotype has been designated as AB177176_p(phylum);AB177176_c(class);AB177176_o(order); AB177176_f(family);AB177176_g(genus)and AB177176_s(species)in the hierarchical system of EzTaxon.This informal nomenclatural system allowed the addition of>40,000unclassified/uncultured phylotypes to the database(as of June2014).These tentative names will be replaced by valid names when a strain representing phylotype AB177176_s is isolated and formally named.In such a case, the name AB177176_s will be recorded as the old name for the newly proposed spe-cies,so these tentative names can still be traced retrospectively.All of the sequences from environmental sources were carefully checked for chimera formation(Kim et al.,2012).

Another important attribute of the database is that it is built on a complete hier-archical system where all sequences have six-level taxonomic ranks(from species to phylum).When a novel species is proposed,it is mandatory to give it a genus name and a species epithet.However,the assignment of a species to known families or higher ranking taxa is optional according to the International Code of Nomenclature of Bacteria(Lapage et al.,1992).Since many novel species have been proposed with-out their assignment to suprageneric taxa,we generated numerous phylogenetic trees to assign all species/phylotypes to their correct ranks in EzTaxon’s hierarchical clas-sification.Many misclassified taxa discovered in the course of this process have been correctly classified in the EzTaxon hierarchical system(see http://www.ezbiocloud. net/eztaxon/hierarchy).These misclassified taxa require attention and should be reclassified in future.

3.2ALGORITHM FOR“EZTAXON SEARCH”

Identification of bacterial isolates can be carried out by calculating16S rRNA gene sequence similarities against the type strains of all known prokaryotic species.Cal-culating sequence similarities against all known species takes a lot of computing time;hence,it is more effective to find their closest phylogenetic neighbours first by using a faster search algorithm and then by calculating pairwise similarities.65

3Identification of Bacteria Using the EzTaxon Database

Consequently,the identification process in the EzTaxon server involves the follow-ing two steps,cumulatively named an “EzTaxon search”:

Step 1:Initial search to find closely related sequences (phylogenetic neighbours)using the BLASTn program (Altschul et al.,1990)

Step 2:Pairwise sequence alignment to calculate the sequence similarity values between the query sequence and hit sequences identified in Step 1.

To find the phylogenetic neighbouring species,four BLASTn searches are executed with four different query sequences (Figure 1).First,the most similar sequences in the EzTaxon database are selected using the whole (full-length)query sequence as a query in the BLASTn search.The full-length query sequence is then divided into three equal length fragments,and each fragment is then used as a query sequence in each subsequent BLASTn search.The top hits obtained from all four searches are then combined and subjected to a robust pairwise sequence alignment (Myers &Miller,1988)against the original full-length query https://www.wendangku.net/doc/419586575.html,ing this

EzTaxon-e EzTaxon (e.g. full-length 1500 bp)BLASTn search

BLASTn search BLASTn search BLASTn search BLASTn search (e.g. first 500 bp)

(e.g. second 500 bp)Query sequence

(e.g. third 500 bp)Top hits are combined

Pairwise alignment

Sequence similarity

Final identification

Initial

search

step Pairwise

alignment step Species with valid names Species with valid names + phylotypes

FIGURE 1

Algorithm for the “EzTaxon search”.

66CHAPTER 416S rRNA Gene-Based Identification

algorithm,users can compare the query sequence with closely related,albeit short, target sequences in the database,which is otherwise not possible.We recommend that the top30hits from each of the four BLASTn searches be saved and used for pairwise sequence similarity calculations.Since the top hits are the compilation of four different BLASTn searches,the final results usually contain more than30hits. It should be noted that the final order of hits in the EzTaxon search is based on per-centage pairwise sequence similarity,not BLASTn scores.

Another useful statistical measure provided by EzTaxon is the“completeness”values which indicates how complete the query sequence is with respect to its full-length counterpart in the EzTaxon database(Kim et al.,2012).Given the high accessibility and affordability of the Sanger DNA sequencing method,full-length 16S rRNA gene sequences should be used for scientific purposes.Indeed,the cutoff proposed for species demarcation by Kim et al.(2014)is based on full-length se-quence comparisons.This means that completeness value given as a percent can be used to evaluate the suitability of sequences for taxonomic use.

3.3OVERALL WORKFLOW FROM SANGER DNA SEQUENCE DATA

The overall workflow for the bacterial identification process is summarized in Figure2,together with the required bioinformatics tools.This approach can be used to identify either partial or full-length16S rRNA gene sequences,which can be obtained from single or multiple Sanger DNA sequencing reactions,respectively. This workflow includes a combination of automated and manual operations to ensure maximum accuracy while also providing an efficient connection between the differ-ent software tools.

3.4ASSEMBLY AND TRIMMING OF SEQUENCES

Usually,results of a Sanger DNA sequencing reaction are stored in a file with a spe-cial format,called ab1(raw data file defined by Applied Biosystems,CA).This file contains not only nucleotide sequence information but also quality values of each base calls,dubbed PHRED scores(Ewing&Green,1998).PHRED scores of10, 20,30and40indicate90%,99%,99.9%and99.99%accuracy,respectively.These values are mainly used by computer programs and rarely by humans.In general,both ends of sequences obtained from Sanger sequencers contain low-quality regions. Consequently,the first step in the whole process is to extract sequences from ab1 files and then trim the low-quality terminal regions.This can be easily achieved at the EzTaxon Web site.

For single ab1file:

Step1:Go to the“Identify”page at https://www.wendangku.net/doc/419586575.html,/eztaxon/identify.

Step2:Select an ab1file and upload.Make sure that you enter the right direction of the sequence,i.e.,50!30or30!50.

Step3:Your query sequence,which is trimmed at both ends using a PHRED score of20as cutoff,should appear on the same web page.67

3Identification of Bacteria Using the EzTaxon Database

Step 4:Simply click [Identify]to run the EzTaxon search with the EzTaxon-e option.Please note that the sequence obtained at this stage is likely to contain many errors and should be edited later;hence,identification results at this stage should not be considered final.

Step 5:Go to the “Results”page,move to the detailed identification page of the query sequence and click on [EzEditor file]to obtain the EzEditor data file.This file includes sequences of top hits (EzTaxon’s reference sequences)as well as the query sequence.

The EzTaxon server also provides an assembly function for multiple ab1files that were generated from a single PCR amplicon.

For multiple ab1files :

Step 1:Compress all ab1files into a zip file.The zip format is an archive file format that supports lossless data compression.Software tools for zip-archiving are

Single raw ABI chromatogram file Multiple raw ABI chromatogram files Trim by quality Assemble Trim PCR primers Find phylogenetic neighbours by searching the EzTaxon database

Align and edit query sequence with phylogenetic neighbours using secondary structure of rRNA Calculate the final similarity of the 16S rRNA gene

sequence against phylogenetic neighbours EzEditor & Chromas Lite

https://www.wendangku.net/doc/419586575.html,/eztaxon https://www.wendangku.net/doc/419586575.html,/eztaxon

Generate phylogenetic tree(s)EzEditor & MEGA

Bioinformatics tools

FIGURE 2

Overall workflow from Sanger DNA sequence data to phylogenetic analysis using EzTaxon and other tools.

68CHAPTER 416S rRNA Gene-Based Identification

freely available(e.g.from https://www.wendangku.net/doc/419586575.html,/)or included in native computer operating systems.

Step2:Go to the“Assemble”page of the EzTaxon site(http://www.ezbiocloud.

net/eztaxon/assemble).

Step3:Select a zip file(from Step1)and upload.

Step3:EzTaxon will assemble multiple overlapping ab1files into a single contig.

The final contig is trimmed by PHRED quality scores and both PCR primers are also removed.

Step4:Download the EzEditor data file which includes sequences of top hits as well as the final contig sequence and the original Sanger sequencing reads. 3.5MANUAL EDITING OF SEQUENCES USING THE SECONDARY STRUCTURE INFORMATION

The sequences obtained from ab1files may contain errors and should be carefully edited prior to any subsequent analysis.Checking individual bases manually in each chromatogram is a tedious and laborious task.It makes sense,therefore,to focus on areas of a sequence that may:(i)be inconsistent among different sequencing reac-tions;(ii)show unusual base differences from its phylogenetic neighbours;or (iii)exhibit an inadequate secondary structure,i.e.,mismatches in rRNA hairpin stem positions.

There are several software tools that can be used to view and browse chromato-grams from ab1files.Among the freely available ones,the Chromas Lite(http://tech https://www.wendangku.net/doc/419586575.html,.au/?page_id?13)and Bioedit(https://www.wendangku.net/doc/419586575.html,/bioedit/ bioedit.html)programs provide sufficient functionality for browsing chromatograms near bases of interest.When there is an ambiguity in determining a base in the final sequence,examining each chromatogram provides the critical data for users to make decisions.

EzEditor is a software tool that allows comparison of multiple alignments while visualizing rRNA secondary structures(Jeon et al.,2014).It is an improved version of jPHYDIT software(Jeon et al.,2005)and is available at http://www.ezbiocloud. net/sw/ezeditor.In our laboratory,EzEditor and Chromas Lite are simultaneously used to correct errors in assembled contigs.The current pipeline(Figure3)assumes that the16S rRNA genes were amplified using the27f and1492r primers(Table1), and that five or six sequencing reactions were carried out for each sequence using the primers given in Table1.

3.5.1Manual editing of sequences with EzEditor

Step1:Open the downloaded EzEditor data file using the EzEditor program,and the ab1chromatogram file(s)using the Chormas Lite program.

Step2:Open the“Align Window”of EzEditor.The multiple sequence alignment screen will be displayed where sequences of phylogenetic neighbouring species are listed in ascending order of sequence similarity to the query sequence,and the unaligned query sequence is placed in the last row(Figure3).69

3Identification of Bacteria Using the EzTaxon Database

Zipped into a file

Assemble on the EzTaxon Web site

Edit the assembled contig by comparing phylogenetic neighbours, original sequencing reads and the secondary structure

Final 16S rRNA sequence

16S rRNA sequence similarity search with EzTaxon

Phylogenetic analysis using the EzEditor and MEGA programs

FIGURE3

Editing and correcting contig sequences using EzEditor and Chromas Lite.

Step3:The query sequence is aligned against the top hit sequence(placed at the right top row in the graphics)using the“Pairwise Alignment”function(Ctrl+P key)in EzEditor.For this special function,gaps are inserted into the query sequence in order to add it to the prealigned format of EzTaxon’s16S rRNA database.Also,align the sequences of the original ab1files against the assembled contig using the same function.

Step4:Correct and edit the alignment of the query sequence while checking the integrity of the secondary structure and consider the sequence differences

between the query sequence and those of its phylogenetic neighbours.Consult the original chromatograms(from ab1files),if necessary;manual inspection of chromatograms is often the most reliable way forward.

Step5:The final sequence after editing and correction is obtained from

EzEditor using the“Copy as FASTA”function.This can be fed to the

EzTaxon search.

3.6IDENTIFICATION OF STRAINS USING THE EZTAXON SERVER Sequence similarity is a simple,but powerful,statistic in prokaryotic identification. In theory,even100%similarity against known species does not guarantee correct identification(Fox,Wisotzkey,&Jurtshuk,1992).However,in routine laboratories, high similarities(e.g.>99%)are considered as correct identifications.In a recent large-scale study,98.65%was recommended as the species boundary cutoff for 16S rRNA gene sequence similarities(Kim et al.,2014);this means that if two se-quences show similarity levels lower than this value,they are likely to belong to dif-ferent species.An EzTaxon search is thus a valuable way to determine whether a sequence is likely to have been derived from a putative novel taxon.

Because of the lack of16S rRNA gene sequence variation within species and among closely related species,the top best hits from the EzTaxon search need to be carefully interpreted.For example,let us assume that the EzTaxon search of an isolate results in a99.7%similarity to species A and a99.6%to species B. The top hit(species A)shows the highest similarity,but in this case,identification cannot be confidently made as species B is also very closely related to the query se-quence.In many cases such as this,species A and B share identical or almost iden-tical16S rRNA gene sequences.To resolve this problem,the concept of the “taxonomic group”has been introduced.This term refers to a group of species that show very similar sequence similarities(>99.7%).Currently defined taxonomic groups can be accessed at https://www.wendangku.net/doc/419586575.html,/eztaxon/taxonomic_group.

A typical example is the case of Escherichia coli and Shigella spp.which share al-most identical16S rRNA gene sequences.The“E.coli taxonomic group”contains E.coli,Escherichia albertii,Shigella boydii,Shigella dysenteriae,Shigella flexneri and Shigella sonnei.Query sequences that show high similarity to any of these spe-cies will be identified as belonging to the E.coli taxonomic group,but not as a par-ticular species(e.g.S.sonnei).The way in which taxonomic groups are displayed in an EzTaxon search is shown in Figure4.71

3Identification of Bacteria Using the EzTaxon Database

3.7PHYLOGENETIC ANALYSIS

Phylogenetic analyses can be achieved for multiple sequence alignments stored in the EzEditor file.Within the EzEditor program,users can mask ambiguously aligned regions for subsequent analysis and run the MEGA software (Tamura et al.,2011),which includes the neighbour-joining (Saitou &Nei,1987),maximum-parsimony (Fitch,1972)and maximum-likelihood (Felsenstein,1981)methods for generating phylogenetic trees.

CONCLUDING REMARKS

Thanks to the revolutionary next-generation DNA sequencing technology,genome sequencing has become more affordable and within reach of many microbiologists (Padmanabhan,Mishra,Raoult,&Fournier,2013).However,its use in the identifi-cation of Bacteria and Archaea is greatly hampered by the lack of available reference genome data representing validly named species (Chun &Rainey,2014).It is expected to take several years or more until a comprehensive database of genome sequences of all known species is built for routine use of genome data in microbial systematics.Until then,16S rRNA gene sequencing will play a key role as the first choice method for identification in many microbiological disciplines due to its uni-versality and technical easiness.The workflow proposed in this chapter provides a seamless and semi-automated way of performing similarity-based identification from raw Sanger sequencing data and should be useful in many clinical and general microbiology laboratories where prokaryotes are routinely isolated and identified.ACKNOWLEDGEMENT

We thank Jenny Tan for editing the chapter.

Completeness of query Similarity values

Taxonomic

group FIGURE 4

“Taxonomic group”shown as the identification result of the EzTaxon search.

72CHAPTER 416S rRNA Gene-Based Identification

REFERENCES

Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,&Lipman,D.J.(1990).Basic local align-ment search tool.Journal of Molecular Biology,215,403–410.

Ashelford,K.E.,Chuzhanova,N.A.,Fry,J.C.,Jones,A.J.,&Weightman,A.J.(2005).At least 1in2016S rRNA sequence records currently held in public repositories is estimated to con-tain substantial anomalies.Applied and Environmental Microbiology,71,7724–7736. Baker,G.,Smith,J.,&Cowan,D.A.(2003).Review and re-analysis of domain-specific16S primers.Journal of Microbiological Methods,55(3),541–555.

Chun,J.,Lee,J.H.,Jung,Y.,Kim,M.,Kim,S.,Kim,B.K.,et al.(2007).EzTaxon:A web-based tool for the identification of prokaryotes based on16S ribosomal RNA gene se-quences.International Journal of Systematic and Evolutionary Microbiology,57, 2259–2261.

Chun,J.,&Rainey,F.A.(2014).Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea.International Journal of Systematic and Evolutionary Micro-biology,64,316–324.

Ewing,B.,&Green,P.(1998).Base-calling of automated sequencer traces using phred.II.

Error probabilities.Genome Research,8,186–194.

Felsenstein,J.(1981).Evolutionary trees from DNA sequences:A maximum likelihood ap-proach.Journal of Molecular Evolution,17,368–376.

Fierer,N.,Hamady,M.,Lauber,C.L.,&Knight,R.(2008).The influence of sex,handedness, and washing on the diversity of hand surface bacteria.Proceedings of the National Acad-emy of Sciences of the United States of America,105,17994–17999.

Fitch,W.M.(1972).Towards defining the course of evolution:Minimum change for a specific tree topology.Systematic Zoology,20,406–416.

Fox,G.E.,Wisotzkey,J.D.,&Jurtshuk,P.J.(1992).How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity.International Journal of Sys-tematic Bacteriology,42,166–170.

Gevers,D.,Cohan,F.M.,Lawrence,J.G.,Spratt,B.G.,Coenye,T.,Feil,E.J.,et al.(2005).

Re-evaluating prokaryotic species.Nature Reviews Microbiology,3,733–739. Inagaki,F.,Nunoura,T.,Nakagawa,S.,Teske,A.,Lever,M.,Lauer,A.,et al.(2006).Bio-geographical distribution and diversity of microbes in methane hydrate-bearing deep ma-rine sediments on the Pacific Ocean Margin.Proceedings of the National Academy of Sciences of the United States of America,103,2815–2820.

Jeon,Y.S.,Chung,H.,Park,S.,Hur,I.,Lee,J.H.,&Chun,J.(2005).jPHYDIT:A JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences.

Bioinformatics,21,3171–3173.

Jeon,Y.S.,Lee,K.,Park,S.C.,Kim,B.S.,Cho,Y.J.,Ha,S.M.,et al.(2014).EzEditor:

A versatile sequence alignment editor for both rRNA-and protein-coding genes.Interna-

tional Journal of Systematic and Evolutionary Microbiology,64,689–691.

Kim,O.S.,Cho,Y.J.,Lee,K.,Yoon,S.H.,Kim,M.,Na,H.,et al.(2012).Introducing EzTaxon-e:A prokaryotic16S rRNA gene sequence database with phylotypes that repre-sent uncultured species.International Journal of Systematic and Evolutionary Microbiol-ogy,62,716–721.

Kim,M.,Oh,H.S.,Park,S.C.,&Chun,J.(2014).Towards a taxonomic coherence between average nucleotide identity and16S rRNA gene sequence similarity for species demarca-tion of prokaryotes.International Journal of Systematic and Evolutionary Microbiology, 64,346–351.73

References

74CHAPTER416S rRNA Gene-Based Identification

Lane,D.(1991).16S/23S rRNA sequencing.In E.Stackebrandt&M.Goodfellow(Eds.), Nucleic acid techniques in bacterial systematics(pp.115–175).Chichester:John

Wiley&Sons.

Lapage,S.P.,Sneath,P.H.A.,Lessel,E.F.,Skerman,V.B.D.,Seeliger,H.P.R.,&Clark,A.C.

(1992).International Code of Nomenclature of Bacteria.Washington,DC:ASM Press.

Liu,W.-T.,Marsh,T.L.,Cheng,H.,&Forney,L.J.(1997).Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes

encoding16S rRNA.Applied and Environmental Microbiology,63,4516–4522.

Logan,N.A.,Berge,O.,Bishop,A.H.,Busse,H.J.,De Vos,P.,Fritze,D.,et al.(2009).Pro-posed minimal standards for describing new taxa of aerobic,endospore-forming bacteria.

International Journal of Systematic and Evolutionary Microbiology,59,2114–2121.

Muyzer,G.,De Waal,E.C.,&Uitterlinden,A.G.(1993).Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain

reaction-amplified genes coding for16S rRNA.Applied and Environmental Microbiology,

59,695–700.

Myers,E.W.,&Miller,W.(1988).Optimal alignments in linear https://www.wendangku.net/doc/419586575.html,puter Applica-tions in the Biosciences,4(1),11–17.

Nu¨bel,U.,Engelen,B.,Felske,A.,Snaidr,J.,Wieshuber,A.,Amann,R.I.,et al.(1996).Se-quence heterogeneities of genes encoding16S rRNAs in Paenibacillus polymyxa detected

by temperature gradient gel electrophoresis.Journal of Bacteriology,178(19),5636–5643.

Padmanabhan,R.,Mishra,A.K.,Raoult,D.,&Fournier,P.E.(2013).Genomics and meta-genomics in medical microbiology.Journal of Microbiological Methods,95(3),415–424.

Park,K.S.,Ki,C.S.,Kang,C.I.,Kim,Y.J.,Chung,D.R.,Peck,K.R.,et al.(2012).Eval-uation of the GenBank,EzTaxon,and BIBI services for molecular identification of clinical

blood culture isolates that were unidentifiable or misidentified by conventional methods.

Journal of Clinical Microbiology,50,1792–1795.

Saitou,N.,&Nei,M.(1987).The neighbor-joining method:A new method for reconstructing phylogenetic trees.Molecular Biology and Evolution,4,406–425.

Stackebrandt,E.,&Ebers,J.(2006).Taxonomic parameters revisited:Tarnished gold stan-dards.Microbiology Today,33,152–155.

Stackebrandt,E.,&Goebel,B.M.(1994).Taxonomic note:A place for DNA-DNA reasso-ciation and16S rRNA sequence analysis in the present species definition in bacteriology.

International Journal of Systematic Bacteriology,44,846–849.

Tamura,K.,Peterson,D.,Peterson,N.,Stecher,G.,Nei,M.,&Kumar,S.(2011).MEGA5:Mo-lecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,

and maximum parsimony methods.Molecular Biology and Evolution,28(10),2731–2739.

Tindall,B.J.,Rossello-Mora,R.,Busse,H.J.,Ludwig,W.,&Kampfer,P.(2010).Notes on the characterization of prokaryote strains for taxonomic purposes.International Journal of

Systematic and Evolutionary Microbiology,60,249–266.

Wang,Y.,&Qian,P.-Y.(2009).Conservative fragments in bacterial16S rRNA genes and primer design for16S ribosomal DNA amplicons in metagenomic studies.PLoS One,

4(10),e7401.

Wayne,L.G.,Brenner,D.J.,Colwell,R.R.,Grimont,P.A.D.,Kandler,O.,Krichevsky,M.I., et al.(1987).Report of the ad hoc committee on reconciliation of approaches to bacterial

systematics.International Journal of Systematic Bacteriology,37,463–464.

Woese,C.R.(1987).Bacterial evolution.Microbiological Reviews,51(2),221–271.

Woese,C.R.,&Fox,G.E.(1977).Phylogenetic structure of the prokaryotic domain:The primary kingdoms.Proceedings of the National Academy of Sciences of the United States

of America,74,5088–5090.

2017年二代基因测序市场分析

二代基因测序市场分析 目录 一、二代测序资本市场融资火爆 二、二代测序为何如此受市场追捧? 三、测序市场当前现状及存在的问题 四、未来趋势判断及启示 一、二代测序资本市场融资火爆 在整个体外诊断市场,生化和免疫经过多年的发展,市场格局已基本形成;分子诊断目前市场规模还不大,但增速较快,潜力被广泛看好。在分子诊断的不同技术平台中,又以近两年随着“精准医疗”概念迅速崛起的二代测序(NGS)领域最受关注,国内就存在上百家同类企业,且资本市场融资火爆,估值也是居高不下。简单梳理了几个较有代表性的融资案例如下: 1、华大基因 华大基因是国内基因测序领域的领导者,在NGS产业链上、中、下游均有所布局。2012 年-2015 上半年营收分别为7.95亿、10.47亿、11.32亿、5.65亿,净利润对应 8500万、1.73亿、5900万,8200万。2015 年最近一轮融资引进 PE机构以 191 亿估值作为增资及转让的定价基础,引入和玉高林及中国人寿,融资20 亿元,投后估值 210亿。而华大基因按照其IPO的计划定价得出估值约为156亿元,相当于相较一级市场的估值,华大基因的估值实际已缩水超过50亿元,出现了一二级市场的倒挂。

2、贝瑞和康 贝瑞和康成立于 2010 年,利用二代测序平台,在 NIPT 领域占据了主要的市场,全国 100 家医疗机构获得 NIPT 试点资格,70%使用贝瑞和康的仪器及试剂。2015 年底最近一轮融资估值 100 亿,融资金额 3.3 亿左右,引入了海通兴泰、尚融宁波、中信锦绣等机构;2016 年 12 月,上市公司天兴仪表作价 43 亿元购买贝瑞和康 100%股权,若交易完成,贝瑞和康将成功借壳上市。值得关注的是,贝瑞和康 43 亿的借壳价与此前一级市场百亿估值相比,有着较大的出入,同样出现了一二级市场的倒挂,其原因在于市场对贝瑞和康的预期降低还是之前 PE入股时估值过高,也是值得思考推敲的。 3、碳云智能 2015 年 10 月成立,由原华大基因 CEO 王俊等联合创办,定位在“医疗+人工智能”方向,运用人工智能技术进行数据处理,目标是打造智能健康管理大数据平台。成立半年左右,即 2016 年 3 月完成 A 轮融资,融资金额 10 亿元,估值约 65 亿元,腾讯、中源协和、天府集团等机构领投。碳云智能所锚定的大数据积累及解读这个细分相对而言存在一定的门槛,是未来的一个发展方向,但存在的难度及障碍也很大,还有很漫长的路要走。天使期就以如此高的估值融到资更多的还是王俊的“名人”效应,但即使是 65 亿的高估值,王俊依然表示:这只是碳云智能最便宜的时候。 4、燃石医学 2014 年成立,定位于基于 NGS 平台的肿瘤精准医疗基因诊断领域,产品线包括基于组织层面的靶向药物用药指导、易感基因筛查及液体活检,目前以 LDT的形式进行检测。2015 年下半年曾以 15 亿估值获投资机构 1.5 亿元投资,今年正以 30 亿估值融资 2 亿元,进展未知。

我国基因测序行业研究

我国基因测序行业研究 (一)行业政策 当前,生物技术在引领未来经济社会发展中的战略地位日益凸显,现代生物 技术的一系列重要进展和重大突破正在加速向应用领域渗透。我国政府为加快推进生物技术与生物技术产业发展,打造国家科技核心竞争力和产业优势,对于生物产业,尤其是基因测序领域,加大了产业扶持力度,先后推出了多项相关政策、 规划等产业指导。 (1)中华人民共和国国民经济和社会发展第十三个五年规划纲要 2016 年3 月,全国人民代表大会发布“十三五”规划指出,支持新一代信 息技术、生物技术、精准医疗等新兴前沿领域创新和产业化,形成一批新增长点。 加强前瞻布局,在生命科学等领域,培育一批战略性产业。加快发展合成生物和 再生医学技术,打造未来发展新优势。战略性新兴产业发展行动指出,加速推动 基因组学等生物技术大规模应用,建设网络化应用示范体系,推进个性化医疗, 新型药物,生物育种等新一代生物技术产品和服务的规模化发展,推进基因库细

胞库等基础平台建设。 (2)“十三五”国家科技创新规划 2016 年7 月,国务院印发《关于“十三五”国家科技创新规划的通知》,规划指出:加快推进基因组学新技术、合成生物技术、生物大数据等生命科学前 沿关键技术突破,加强生物产业发展及生命科学研究核心关键装备研发,提升我 国生物技术前沿领域原创水平,抢占国际生物技术竞争制高点;把握生物技术和 信息技术融合发展机遇,建立百万健康人群和重点疾病病人的前瞻队列,建立多 层次精准医疗知识库体系和国家生物医学大数据共享平台,重点攻克新一代基因 测序技术、组学研究和大数据融合分析技术等精准医疗核心关键技术,开发一批 重大疾病早期筛查、分子分型、个体化治疗、疗效预测及监控等精准化应用解决 方案和决策支持系统,推动医学诊疗模式变革。 (3)促进和规范健康医疗大数据应用发展的指导意见 2016 年6 月,国务院办公厅发布《关于促进和规范健康医疗大数据应用发 展的指导意见》,意见指出:依托现有资源建设一批心脑血管、肿瘤、老年病和

我国基因测序行业研究-行业政策、发展状况

我国基因测序行业研究-行业政策、发展状况 (一)行业政策 当前,生物技术在引领未来经济社会发展中的战略地位日益凸显,现代生物技术的一系列重要进展和重大突破正在加速向应用领域渗透。我国政府为加快推进生物技术与生物技术产业发展,打造国家科技核心竞争力和产业优势,对于生物产业,尤其是基因测序领域,加大了产业扶持力度,先后推出了多项相关政策、规划等产业指导。 (1)中华人民共和国国民经济和社会发展第十三个五年规划纲要2016 年3 月,全国人民代表大会发布“十三五”规划指出,支持新一代信 息技术、生物技术、精准医疗等新兴前沿领域创新和产业化,形成一批新增长点。加强前瞻布局,在生命科学等领域,培育一批战略性产业。加快发展合成生物和再生医学技术,打造未来发展新优势。战略性新兴产业发展行动指出,加速推动基因组学等生物技术大规模应用,建设网络化应用示范体系,推进个性化医疗,新型药物,生物育种等新一代生物技术产品和服务的规模化发展,推进基因库细

胞库等基础平台建设。 (2)“十三五”国家科技创新规划 2016 年7 月,国务院印发《关于“十三五”国家科技创新规划的通知》,规划指出:加快推进基因组学新技术、合成生物技术、生物大数据等生命科学前沿关键技术突破,加强生物产业发展及生命科学研究核心关键装备研发,提升我国生物技术前沿领域原创水平,抢占国际生物技术竞争制高点;把握生物技术和信息技术融合发展机遇,建立百万健康人群和重点疾病病人的前瞻队列,建立多层次精准医疗知识库体系和国家生物医学大数据共享平台,重点攻克新一代基因测序技术、组学研究和大数据融合分析技术等精准医疗核心关键技术,开发一批重大疾病早期筛查、分子分型、个体化治疗、疗效预测及监控等精准化应用解决方案和决策支持系统,推动医学诊疗模式变革。 (3)促进和规范健康医疗大数据应用发展的指导意见 2016 年6 月,国务院办公厅发布《关于促进和规范健康医疗大数据应用发 展的指导意见》,意见指出:依托现有资源建设一批心脑血管、肿瘤、老年病和儿科等临床医学数据示范中心,集成基因组学、蛋白质组学等国家医学大数据资

基因检测行业调研

基因检测行业调研 继上次基因检测产业调研之后,这两周我们再次调研了几家基因检测公司,并且拜访了一些行业专家,现将调研的重点内容整理如下,欢迎大家交流探讨。 一、基因检测公司梳理 目前全国涉及基因检测概念的公司有200余家,按照业务范围划分,这些公司可以分为:①最上游的基因检测仪器开发企业(测序仪、芯片扫描仪、PCR设备),②提供样本处理试剂和耗材的中上游企业(建库试剂盒、检测试剂盒、工具酶、基因芯片),③提供第三方基因检测服务的中游企业,④提供测序数据存储、分析和出具报告的下游企业,⑤还有将这三部分整合起来提供CRO服务的商业公司,当然如果公司研发实力和经济实力允许,大部分公司会选择向上下游产业链延伸,进一步提升自己的盈利能力。 按照基因检测公司的服务内容,主要可以分为四类:科研服务、第三方临床基因检测服务、直接面向个人的检测服务、非医疗基因检测服务(例如食品、环境、刑侦等方面的应用)。 1 科研中的基因检测服务又分为两种情况,第一种是纯科研服务,检测目的纯粹是满足科研需要,不作为医学诊断的依据;第二种是以科研的名义为患者提供医学诊断服务,医生在其中起主导作用,推荐有需要的患者去做基因检测,医生在其中所获得的好处是得到用药指导依据、科研数据、获得销售提成,这是当前肿瘤基因测序普遍采用的手段,因为目前国内还没有一种获批临床的肿瘤高通量检测试剂盒,只能以科研的形式变相的进行医学诊断从而获取收益。纯科研基因检测市场在百亿级别。 2 第三方临床检测机构是指批准为医院提供检测外包服务的独立医学检验实验室,大部分第三方临检机构都能开展分子诊断服务(需通过临检中心的PCR实验室认证),例如QPCR、ddPCR、基因芯片等,但是高通量测序在临床检测上的应用当前受到限制,只有在试点名单上的机构才能出具正式的临检报告,目前出台了第一批四个领域的试点名单,分别是遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断、肿瘤基因测序,试点单位名单由卫计委医政医管局和妇幼司共同制定。临床基因检测的市场空间在千亿级别。 3 提供面向个人基因检测服务的商业公司,提供的是非诊断性基因检测,例如23andMe是美国本地唯一一家被FDA批准的能够直接向个人提供基于基因检测分析服务公司,业务范围也仅仅提供祖源分析、遗传病筛查、酒精耐受、基因寻亲这四类遗传分析服务,23andMe此前的疾病风险筛查和药物过敏分析被禁止,而我国有许多直接面向个人的基因检测商业机构,业务范围甚至包括疾病风险、天赋基因、个性特征分析等一系列基因分析服务,未来有加强监管和整合的压力。商业化B2C基因检测的市场空间在十亿级别。

2016-2022年中国基因测序市场竞争调研与发展前景分析报告

2016-2022年中国基因测序市场竞争调研与发展前景分析报告 中国报告网

2016-2022年中国基因测序市场竞争调研与发展前景分析报告 中国报告网发布的《2016-2022年中国基因测序市场竞争调研与发展前景分析报告》首先介绍了基因测序行业市场相关概念、分类、应用、经营模式,行业全球及中国市场现状,产业政策生产工艺技术等,接着统计了行业部分企业盈利、负债、成长能力等详细数据,对行业现有竞争格局与态势做了深度剖析;结合产业上下游市场、营销渠道及中国政策环境,经济环境,对行业未来投资前景作出审慎分析与预测。 第一章基因测序行业发展综述12 第一节基因测序的定义12 一、基因测序的定义12 二、基因检测的定义12 三、基因测序与基因检测的逻辑关系12 第二节国内基因测序相关政策15 第三节基因测序技术分析17 一、第一代基因测序技术17 二、第二代基因测序技术18 三、第三代基因测序技术19 四、三代基因测序技术对比21 ?【报告来源】中国报告网https://www.wendangku.net/doc/419586575.html, ?【交付方式】Email电子版/特快专递 ?【价格】纸介版:7200元电子版:7200元纸介+电子:7500元 第二章基因测序产业链分析27 第一节基因测序产业链简介27 一、基因测序产业链简介27 二、产业链企业竞争力不断提升27 第二节基因测序仪器29 一、基因测序仪发展历程29 二、基因测序仪市场规模36 三、基因测序仪市场格局37 四、基因测序仪并购进程38 五、基因测序仪最新进展43 六、基因测序仪选购因素45 第三节基因测序试剂46 一、国内检测试剂的分类46 二、基因测序试剂市场格局47 三、基因测序试剂最新进展50 第四节基因测序服务51 一、国内基因测序服务处于世界领先水平51

基因检测试剂行业分析资料

基因检测试剂行业分析 一、行业与市场 中投顾问发布的《2017-2021年中国基因检测行业投资分析及前景预测报告》表示,基因检测在我国的发展随着技术手段的进步正在越来越快速,虽然中国的基因公司数量众多,但实力强大的主流公司只有华大基因、贝瑞和康、安诺优达、达安基因、诺禾致源、百迈克、凡迪生物等,数量不超过十家。在1999年,华大基因公司成立,该公司的核心人物全部来自人类基因组的中国部分。目前员工数量超过5000人,最近几年公司的收入规模已经达到10亿元级别。公司业务范围广泛,几乎囊括了其余公司的所有业务种类。而行业中其他各基因公司所涉及的业务范围都没有明显差异,他们主要靠的科技服务和医学服务的收入起家。华大基因公司业务涉及面广,主要包括无创产前基因检测、辅助生殖、单基因病、新生儿筛查、肿瘤个体化治疗、遗传性肿瘤筛查、心血管病筛查、血液病筛查等项目。无论从测序仪器还是人才储备来说,都是中国基因检测行业的老大。而同行中贝瑞和康的业务主要集中在无创产前基因检测技术(NIPT)和科技服务,很少涉及其他领域,在中国无创产前基因检测技术这个行业中只有华大基因的市场占有率高于贝瑞和康。 1、产业综述

(1)近几年来基因测序市场飞速发展,从2007年的7.94亿美元增长到2013年的45亿美元,年复合增长率为33.5%,预计未来几年依旧会保持快速增长,2018年将达到117亿美元,年复合增长率为21.1%。 (2)基因测序技术以二代基因测序技术为主,三、四代测序技术产业化还在探索中,由于第三、四代DNA测序技术目前面临测序成本高和测序结果准确度相对较低的市场化瓶颈,其大规模商业化仍然需要较长的时间,所以二代测序在5-10年内仍然是基因测序的主流技术。 (3)目前国内企业大多集中在测序服务市场,壁垒低,小企业增长迅速,竞争较为激烈。中国测序平台拥有量仅次于美国,全世界规模较大的基因组研究中心有多个在中国,其中华大基因拥有世界上数量最多、种类最齐全的第二代测序仪,产能约占全球的10%-20%。 (4)基因测序行业的下游产业主要包括医院应用、科研应用、商业应用等,目前科研应用占比最大,其次是商业应用,医疗应用占比最小。 (5)行业平均盈利水平比较高,产业链上游企业掌握大部分话语权。

基因测序的产业链及商业模式

基因测序的产业链及商业模式 导读:基因组学是未来最被看好的领域之一,在农业、畜牧业、祖先起源、法医取证、生物能源、药物等领域均有广泛应用。探索基因测序行业的产业链和商业模式是目前测序服务公司目前的主要工作,本文为大家梳理一下基因测序服务行业的产业链和商业模式。

基因组学是未来最被看好的领域之一,比尔·盖茨说,”下一个超越他的富豪将来自基因领域“。2014年7月,麦肯锡发布报告称,除移动互联网、物联网以及云储备外。在生物领域,下一代基因组学上榜是未来10年10大热门发展领域之一,未来的10年,该领域的潜在能量大致为0.7万亿至1.6万亿美元之间。而当前全球基因组学市场为110亿美元左右。基因组学在农业、畜牧业、祖先起源、法医取证、生物能源、药物等领域均有广泛应用。 探索基因测序行业的产业链和商业模式显得非常有必要了。本文为大家梳理一下当前基因测序行业的产业链和商业模式。 基因测序产业链 基因测序产业链,上游为测序仪器和试剂供应商,中间为基因检测服务提供商,下游对象为医院,药企,科研机构和病人本身。目前测序仪和核心试剂相关技术为外企垄断,国内企业多为检测服务提供商。 上下游供应商的关系:国内基因检测服务提供商普遍存在的问题是对上游仪器和试剂供应商依赖严重,绝大部分国内公司不具备自行研发测序仪和核心试剂的能力,因此能否与上游供应商形成长期稳定的共盈关系变得非常重要。境外市场,Illumina 和 Life Tech 两家仪器供应商已开始通过并购等方式向下游延伸,与下游服务型企业形成直接竞争;境内市场目前暂无这类动向,考虑到外资企业在服务领域并不具备优势,短期内国内基因检测公司仍可与外资仪器供应商共赢。值得注意的是,华大基因于 2012 年收购了 Complete Genomics,后者为一家基因测序仪开发公司,望借此逐步摆脱对 Illumina 的依赖。 临床检测资质的获取:CFDA年初叫停基因检测的临床应用随后打开试点申报标志着行业开始进入规范化,在技术平台和需求都已具备在的情况下,能否尽早拿到资质成为能否领跑国内测序服务行业的关键之一。6月30日,CFDA以罕见的速度报批了华大基因的测序仪和试剂盒。 疾病基因组数据库的建立:对于测序服务类企业来说,测序结果的解读是业务流程中最大的壁垒,数据解读的准确度和样本量直接相关,是否拥有企业自身的疾病基因组数据库,能否积累足够的样本量,构建自己的 IT 平台提高解读准确度是拉开测序服务企业差距的关键之一。

2017年基因测序分析报告

2017年基因测序分析报告 WORD可编辑

文本目录 一、基因测序临床项目:重点覆盖生育和肿瘤 (4) 二、无创产前检测:基因测序临床转化最成熟的项目 (4) (一)准确安全周期短,无创产检是方向 (4) (事)叐益事孩红利市场空间大,龙头企业先収优势强 (6) 三、胚胎植入前遗传学检测:继NIPT 之后,基因测序临床应用的下一个爆发点 (12) (一)试管婴儿染色体异常高収,基因测序劣力优质胚胎筛选 (12) (事)胚胎植入前检测借力试管婴儿谋収展 (15) 四、肿瘤基因检测:预防→诊断→治疗→监测,基因测序全方位覆盖 (18) (一)当前以筛查诊断为主,未来有望实现完全闭环 (18) 1、肿瘤易感基因筛查 (19) 2、肿瘤早期诊断 (20) 3、肿瘤伴随诊断和用药指导 (22) 4、肿瘤愈后监控 (24) (事)增长潜力巢大,千亿市场可期 (24) 五、相关标的:贝瑞基因关注现在,华大基因布局未来 (26) (一)贝瑞基因:与注基因测序癿临床转化 (26) (事)华大基因:布局全面,国内测序龙头;厚积薄収,业务转型顺利 (27) (三)其它相关上市公叵 (28) 六、风险提示 (29) 图表目录 图1:基因测序在临床检测中癿应用 (4) 图2:无创产前检测収展历程 (5) 图3:无创产前检测原理 (5) 图4:无创产前检测操作流程 (5) 图5:无创产前检测产品在全球各个国宧癿分布(戔至2014 年底) (6) 图6:国内无创产前检测监管模式 (8) 图7:2010-2020 年我国出生人数预计发化 (9) 图8:唐氏综合征収病率随孕妇年龄增长显著升高 (9) 图9:2011-2015 年我国高龄产妇(≥35岁)产儿比例 (9) 图10:政府定价对无创产前检测市场价格癿影响 (10) 图11:2015-2020 年我国无创产前检测预计市场觃模 (10) 图12:2015 年我国无创产前检测市场格局(按检测例数计算) (11) 图13:2016Q1 我国无创产前检测市场格局(按检测例数计算) (11) 图14:国内主要无创产前检测产品检测样本量(戔至2016.3) (11) 图15:胚胎植入前筛查对人巟叐精生育癿影响 (13) 图16:胚胎植入前遗传学检测収展历程 (13) 图17:胚胎植入前遗传学检测癿操作流程 (14) 图18:胚胎植入前遗传学检测技术特点 (15) 图19:全球试管婴儿累计数量 (16) 图20:丌孕丌育比例随女性年龄增长迅速升高 (16) 图21:2011-2015 年我国30 岁以上产妇产儿比例 (16)

2019年中国基因测序行业市场分析:全年市场规模接近150亿 技术研发是发展关键

2019年中国基因测序行业市场分析:全年市场规模接近150 亿技术研发是发展关键 1、中国基因测序不断发展,2019年市场规模接近150亿 DNA、基因编码概念自50年代才开始出现,首个基因测序技术自70年代开始发展,我国自对遗传病基因诊断开始发展基因测序行业,但尚未进入临床实验室阶段,自90年代才开始正式进入临床实验室阶段。 90年代,靶向药物问世,人类基因组计划开始实行。1999年我国基因测序技术不断发展,基因测序公司、部分医院等已采用基因测序技术,开始进行临床研究和诊断工作。 2011年至今,第二代测序技术,第三代测序技术、第四代测序技术和纳米技术、大数据计算紧密结合。 随着基因测序概念和技术不断迭代发展,我国基因测序行业市场规模呈递增式发展。2010-2019年,我国基因测序行业市场规模以约40%的年均复合增长率增长,2019年我国基因测序行业市场规模约为149.10亿元,我国基因测序市场规模较大。

2、中国基因测序作用大,为病毒检测贡献大 基因测序行业发展具有重大意义,基因测序能够用于疾病的诊断、疾病的预防、指导个体化用药,能够对病毒基因组测序研发病毒诊断试剂,帮助监控病毒疫情等。历史上,基因测序就为病毒检测、防控疫情做出巨大贡献。 2003年华大基因破译SARS病毒,成功研发诊断试剂盒; 2015年6月,我国完成首例MERS病毒全基因组序列测定; 2016年,国际团队利用便携式基因组测定装置帮助监控埃博拉病毒疫情; 2019年5月,中科大揭示人类疱疹病毒基因组包装关键机制; 2020年1月,华大基因子公司研制出新型冠状病毒核酸检测试剂盒等。基因测序技术为病毒检测作出重大贡献,能够及时诊断疾病,预防疾病,有助于新药研发,有利于人类健康事业发展。

2016年基因检测行业分析

2016年基因检测行业分析 一、市场分析 如果是基因测序产业上游的公司,产品销售的目标客户广泛,横跨科研、医疗、商检领域,产品包括测序仪、DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒、上机测序试剂盒,其中测序仪、上机测序试剂盒两者是绑定的,DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒是可以用第三方的产品,国内企业可以从这三个方向切入,但是试剂盒中的最关键的工具酶以及分离材料等都还是以进口产品为主,壁垒较高,如果能实现这两个产品的进口替代,说明企业具有较强的技术实力。 目前全国涉及基因检测概念的公司有200余家,按照业务范围划分,这些公司可以分为: ①最上游的基因检测仪器开发企业(测序仪、芯片扫描仪、PCR设备); ②提供样本处理试剂和耗材的中上游企业(建库试剂盒、检测试剂盒、工具酶、基因芯片); ③提供第三方基因检测服务的中游企业; ④提供测序数据存储、分析和出具报告的下游企业; ⑤还有将这三部分整合起来提供CRO服务的商业公司 当然如果公司研发实力和经济实力允许,大部分公司会选择向上下游产业链延伸,进一步提升自己的盈利能力。 按照基因检测公司的服务内容,主要可以分为四类:科研服务、第三方临床基因检测服务、直接面向个人的检测服务、非医疗基因检测服务(例如食品、环境、刑侦等方面的应用)。我们今天的分享的内容重点关注的还是基因检测在医学诊断上的运用,这个领域受众广,附加值高,市场空间大。包括以下这些方面:

以科研的名义为患者提供医学诊断服务:医生在其中起主导作用,推荐有需要的患者去做基因检测,医生在其中所获得的好处是得到用药指导依据、科研数据、获得销售提成,这是当前肿瘤基因测序普遍采用的手段,因为目前国内只有NIPT获批临床的肿瘤高通量检测试剂盒,其他只能以科研的形式变相的进行医学诊断从而获取收益。纯科研基因检测市场在百亿级别。 批准为医院提供检测外包服务的第三方独立医学检验实验室:这些机构都能开展分子诊断服务(需通过临检中心的PCR实验室认证),例如QPCR、ddPCR、基因芯片等,但是高通量测序在临床检测上的应用当前受到限制,只有在试点名单上的机构才能出具正式的临检报告,目前出台了第一批四个领域的试点名单,分别是遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断、肿瘤基因测序,试点单位名单由卫计委医政医管局和妇幼司共同制定。临床基因检测的市场空间在千亿级别。 商业化B2C基因检测:提供面向个人基因检测服务的商业公司一般提供的是非诊断性基因检测,而我国有许多直接面向个人的基因检测商业机构,业务范围甚至包括疾病风险、天赋基因、个性特征分析等一系列基因分析服务,未来有加强监管和整合的压力。市场空间在十亿级别。(相对而言市场空间较小但是门槛相对较低,但是怎么看也不止十亿级别) 非医疗基因检测服务:包括食品、环境微生物、刑侦检测、检验检疫等方面,属于碎片化市场,涉及领域多,空间在百亿级别。 二、基因检测行业的监管情况和趋势分析 我国基因产业处在市场兴起的初期阶段,监管制度还十分不完善,给人的感觉十分混乱。2014年以前,我国基因测序行业处于无监管状态;2014年2月,CFDA和卫计委叫停所有基因测序业务,对行业进行集中整顿;2014年3月,卫计委发布《关于开展高通量基因

单细胞基因测序市场分析

单细胞基因测序市场分析 什么叫做单细胞基因测序(Single-Cell Sequencing)? 一句话说,就是单个细胞水平上对基因组进行测序。2013年,自然杂志把年度技术授予了单细胞基因测序(Single Cell Sequencing),认为该技术将改变生物界和医学界的许多领域。 我们为什么要进行单细胞基因测序? 传统的测序方法,无论是基因芯片或者二代基因测序技术(Next Generation Sequencing,NGS)都需要从超过10万个细胞中提取一大堆(bulk)DNA或者RNA,而提供的信息是一大堆细胞的平均值。但是传统的方法,对于理解人体细胞的多样性有着明显的局限性。 在人体的每一个组织中,比如说,肾脏组织,拥有着大量不同的细胞类型,每一种细胞类型有着独特的起源和功能。每一个细胞的谱系和发展的状态又决定了每个细胞如何和周围的细胞和环境如何反应,把基因测序应用到单个细胞层面,对于我们理解细胞的起源,功能,变异等有着至关重要的作用。 关于二代基因测序已经详细在我们的前期两篇深度报告中进行了介绍,在本篇报告中,我们将详细解读单细胞基因测序,以及该技术对癌症,辅助生殖以及免疫学等领域带来的新的突破。 一、单细胞基因测序行业:刚启程,面临引爆点 BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。根据GENReports的报告,关于单细胞分析的文章发表在过去的几年也有着爆发性的增长。

单细胞分析的文章发表数量 其中,传统的单细胞基因组学主要是由基因芯片和PCR主导的,随着二代基因测序的成本以超摩尔定律下降,目前单细胞基因组学逐渐由二代基因测序技术接棒。 和qPCR在90年代的发展一样,目前所有的刺激因素(高度的科研兴趣,生物医药巨头公司的关注等)正在解锁这个市场,单细胞基因测序行业正面临引爆点。 二、单细胞基因测序的基本流程:单细胞分离--基因组扩增--测序和分析 单细胞测序,简单地说,主要经过如下的步骤:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。

基因测序行业专利分析报告

基因测序行业专利分析报告 前言 2013年初,好莱坞著名电影明星安吉丽娜·朱莉通过基因测序,发现罹患乳腺癌风险偏高后切除乳腺以预防疾病的发生;而在此之前,苹果教父乔布斯在确诊胰腺癌后也是借助全基因组测序,以期找到肿瘤基因获得更精准的用药计划。名人效应将基因测序和精准医疗带进普罗大众的视野。 ?2015年初奥巴马公开美国的“精准医疗计划(PMI)”,并表示这将带来健康医疗领域的变革。 2016年3月,中国科技部发布《关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》,将“精准医学研究”列为2016年优先启动的重点专项之一,鼓励和支持以基因测序为基础的精准医疗。2016年4月,国家发改委下发了《关于第一批基因检测技术应用示中心建设方案的复函》,正式批复27个省市关于基因检测技术应用示中心的建设方案。

?看到这样一场政策红利下的基因测序的发展,可能很少有人会想到早在2014年2月,国家食药总局联合国家卫生计生委曾一纸通知全面叫停行业监管缺失的基因测序临床应用;而仅仅过了四个月,国家食药总局又首次批准了华大基因公司的第二代基因测序诊断产品。这过山车一样的行业变动,使得基因测序行业终于迎来行业整顿和多部门联合监管,如今在各种政策红利下重新茁壮成长。 基因测序行业介绍 1. 基因测序产业链 首先小编带大家了解一下基因测序的产业链: (1)处于产业链最上游的是基因测序仪器与耗材试剂,国外的主要公司是Illumina、LifeTech以及Roche;国多采取与国外公司合作授权的形式,主要公司有华大基因、贝瑞和康与达安基因;从事自主研发的公司主要有紫鑫药业(与中科院基因组所合作)等。 (2)中游是基因测序服务,而现今国最主要也是最成熟的基因测序服务是无创产前基因测序,美国的主要公司有Sequenom, Verinata Health,Ariosa Diagnostics 和Natera;国市场主要有华大基因、贝瑞和康、达安基因、诺和致源和安诺优达等。 (3)下游消费群体包括:医疗领域的医院病人、药厂及科研机构等,以及非医疗领域,如育种公司、环境污染治理单位等。

2020基因测序行业分析

目录 全球基因测序行业宏观市场长期向好 (1) 基因测序领域资本市场日趋成熟 (7) 顶级 VC 们在基因测序领域的新关注点 (14) NGS 引领基因测序黄金十年 (20) 新的选项——第四代纳米孔测序 (30) 测序行业头部公司介绍 (45)

将未见之物可视化或探测不可探测之物的技术的每一次突破,都能掀起新一波科学新发现的狂潮。而高通量和可负担得起的 DNA 测序技术的迅速出现,无疑是过去十年生命科学发展的关键推动力。在此中,基因测序仪可以被认为是人类族群在向生物世代强力探索与推进进程中的“核能发动机”。 全球基因测序行业宏观市场长期向好 2020 年全球基因测序市场规模预计将达 138 亿美元。根据 BCC Research 的数据,2018 年全球基因测序市场规模为 117 亿美元,预计从 2010 年到 2018 年,全球市场的复合年增长率将保持在 10-30% 之间,预计 2020 年全球市场规模可达 138 亿美元。 测序技术和生物信息学的迅速发展已使人们能够鉴定与疾病风险增加相关的基因变异,随着 NGS、纳米孔测序等测序技术的广泛应用,人类已经可以在单个诊断平台上同时测试多种基因,从而进一步扩大了基因测序在临床诊断应用中的效用。和个人生活最为贴近的例子是,更快、更成熟的突变鉴定已经可以为肿瘤的个性化诊疗提供更高效准确的参考信息,并可进一步鉴定针对其进行药理治疗的癌症靶标或途径。此

全球基因测序市场规模(单位:亿美元)及同比增速走势 外,以 NGS 为共同基础的全球规模的基因测序项目的出现也为肿瘤学精确医学的进一步发展提供了更新、更全面的知识基础。 图 | 每一代测序技术均脱胎于科研需求。到目前为止的4代测序技术均诞生于科学研究的工具及方法论,其后再逐步发展完善演进成为成熟的产品或者研究体系,进而实现商业化并在各种实际应用场景中落地生根、开花结果。 目前科学研究仍是基因测序的主流应用场景,脱胎于科研而反哺科研。由于 Sanger 测序技术和 NGS 在全球科研机构中极高的接受度,2019 年基因测序在科学研究板块 的应用占据了全球基因测序市场超过一半的份额。此外,在测序行业前沿科学领域资

基因测序产业分析(整理自公开网络)

基因测序产业分析(整理自公开网络) 作者:Albans 一、综述 基因测序行业发展迅速,二代测序为主流技术。一代基因测序技术由于通量较低、测序时间较长,已经不能满足研究应用的需要,以高通量低成本为特征的二代测序技术为目前应用最广泛的测序技术,测序时间相较于一代技术大大降低。基因测序作为精准医疗的重要一环,随着技术的进步以及成本的下降,近年来发展迅速,从2007年的7.94亿美元增长到2013年的45亿美元,复合增长率为33.5%,预计未来几年依旧会保持快速增长,2018年将达到117亿美元,复合增长率为21.1%。 产业格局。产业链上游为欧美企业主导,我国企业主要集中在中下游测序服务业,并有往上游延伸的趋势。目前,我国的基因测序企业主要集中在产业链的中下游测序服务业,而上游基因测序设备耗材供应商的技术门槛较高,基本上为外资企业所垄断。由于基因测序的关键技术仍长期掌握在以Illumina为代表的欧美基因测序设备及试剂耗材生产商手上,我国的基因检测行业没有彻底的定价权 我国目前主要分为四个方向。我国国家食药监总局批准的下游基因测序临床应用分为四个类别,分别为遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断以及肿瘤诊断与治疗。无创产前筛查为当下较为成熟和消费者认可程度最高的产品,且随着我国二胎政策的放开,市场将有进一步的成长空间;肿瘤诊断与治疗是最具有开发潜力的应用市场,癌症已经成为全球第二大致死病因,并且随着我国老龄化社会的到来,癌症在我国发病率将进一步提高,二代测序在肿瘤邻域的应用将有巨大的发展潜力。 中国版精准医疗计划。仿效美国的精准医疗计划,国家正在制定“精准医疗”战略规划,将研发一批国产新型防治药物和医疗器械,形成一批我国定制、国际认可的疾病诊疗指南、临床路径和干预措施,针对肿瘤、心脑血管疾病、糖尿病、罕见病分别制定8-10种精准治疗方案,并在全国推广。国家已经取消第三类医疗技术临床应用准入审批,取消的审批项目包括原来由国家卫计委负责的造血干细胞移植、基因芯片诊断、免疫细胞治疗等第三类医疗技术临床应用。 精准医疗要做到个性、高效及预防,前提是疾病的筛查和诊断。因此,开展精准医疗,首先是要发展基因测序和大数据应用。从精准医疗的过程来看,产业链可以简单分为诊断和治疗两个部分。诊断过程主要涉及分子诊断技术、大数据及云计算的应用,通过对单个患者相关样本的采集检测,并与数据库中相关疾病的资料进行比对,得出相关诊断结果。在治疗阶段则可以根据诊断的结果实行“量体裁药”。大数据分析将在精准医疗中发挥巨大作用。精准治疗实施的前提是基因测序技术,而基因测序后产生的数据则有赖于大数据的比对分析。一个完全测序的人类基因组包含100GB-1000GB的数据量,这在解读上有很大困难,需要专门的数据库进行数据信息的横向与纵向比对分析。国外很多公司都建立了自己的大型数据库并开发相关的软件进行快速数据分析。例如Myriad GEnetiCs公司拥有专有数据库来进行大数据的一体化分析,可用来解释不确定的遗传检测结果。Illumina公司开发出BAseSpace的云计算与存储平台。SeVenBridges Genomics在人类基因组排序和分析中综合应用了云计算和NoSQL数据技术,推出EC2、S3和MongoDB等。 大数据比对分析后所得到的信息,可为个体化药物设计提供指导,实现“量体裁药”。目前众多预测性基因检测项目中最具有实际应用意义的是“药物基因型检测”,即针对人体发病基因片段设计靶向药物,并用大数据分析药物将要产生的反应、药效、敏感性以及副作用的情况,从而筛选出最佳治疗方法和个体化的给药方案。“量体裁药”将在很大程度上减少临床

相关文档
相关文档 最新文档