文档库 最新最全的文档下载
当前位置:文档库 › IIR低通数字滤波器设计

IIR低通数字滤波器设计

IIR低通数字滤波器设计
IIR低通数字滤波器设计

西南科技大学

课程设计报告

课程名称:数字信号处理与通信原理课程设计

设计名称: IIR低通数字滤波器设计

姓名:杨广广

学号: 20064690

班级:通信0603

指导教师:詹曦

起止日期:2009.6.20-2009.7.7

西南科技大学信息工程学院制

课程设计任务书

学生班级:通信0603 学生姓名:杨广广学号:20064690 设计名称:IIR低通数字滤波器设计

起止日期:2009.6.20-2009.7.3指导教师:詹曦

课程设计学生日志

课程设计考勤表

课程设计评语表

IIR低通数字滤波器设计

一、设计的目的和意义

IIR低通数字滤波器设计是一个很基础也很重要的内容,因为滤波器设计是《数字

信号处理技术》这门课的核心内容。也可以说,数字信号处理的所有知识都是围绕滤波

器的设计。本设计旨在加深大家对数字信号处理基础知识的理解;加深对MATLAB基础

知识的理解;掌握低通数字滤波器的设计方法;了解冲激响应不变法的特点。

通过设计还应该加深对冲击响应不变法基本原理的理解和了解冲激响应不变法的

特点;加深对双线性变换法基本原理的理解和了解双线性变换法的特点。

本课程设计是对课堂知识的补充,通过设计可以提高我们对课堂基础知识的理解,

同时能够将多门课程的知识内容整合在一起。在设计过程中,不仅锻炼了我的思维能力,

而且也培养了我设计的综合能力。通过实用设计工具结合各方面的基础知识完成一个完

整的设计对我来说是非常有意义的。

二、设计原理

1、数字滤波器原理

与模拟滤波器类似,数字滤波器按频率特性划分为低通、高通、带通、带阻、全通等类型。由于频率响应的周期性,频率变量以数字频率w来表示(w=ΩT=Ω/fs, Ω为模拟角频率,T

为抽样时间间隔,fs为抽样频率),所以数字滤波器设计中必须给出抽样频率。一般情况下,数字滤波器是一个线性移不变离散时间系统,利用有限精度算法来实现。

2、双线性变换法工作原理

使数字滤波器的频率响应与模拟滤波器的频率响应相似。冲激响应不变法、阶跃响应不变法是使数字滤波器在时域上模仿模拟滤波器,但是它们的缺点是产生频率响应的混叠失真。双线性变换法也是一种由S平面到z平面的映射过程,双线性变换法与脉冲响应不变法不同,它是一种从S平面到z平面简单映射。双线性变换中数字域与频率和模拟频率之间的非线性关系限制了它的应用范围,只有当非线性失真是允许的或能被裣时,才能采用双线性变换法,通常低通、高通、带通和带阻等滤波器等具有分段恒定的频率特性,可以采用预畸变的方法来补偿频率畸变,因此可以采用双线性变换设计方法。

3、脉冲响应不变法工作原理

冲激响应不变法遵循的准则是使数字滤波器的单位取样响应与参照的模拟滤波器的脉冲

响应的取样值完全一样,即h(n)=ha(nT),其中T为取样周期。实际是由模拟滤波器转换成为数字滤波器,就是要建立模拟系统函数Ha(S)与数字系统函数H(z)之间的关系。脉冲响应

不变法是从S平面映射到z平面,这种映射不是简单的代数映射,而是S平面的每一条宽为的横带重复地映射到整个z平面。

三、详细设计步骤

(一)冲激响应不变法II R滤波器设计

1、编写并调试MATLAB程序。实验需调用的MATLAB函数说明

(1)通过buttord进行巴特沃思滤波器阶数的选择

buttord函数可在给定滤波器性能的情况下,选择Butterworth滤波器最小的阶。其格式

为:

[n,Wn]=buttord(Wp,Ws,Rp,Rs,’s’)

其中,Wp,Ws分别是通带和阻带的截止频率,其值为0≤Wp(或Ws)≤1,当其值为1

时表示0.5fs;Rp,Rs分别是通带和阻带区的波纹系数;′s′为生成模拟滤波器;n为满足

指定性能的Butterworth滤波器的阶数;Wn为滤波器的截止频率。

(2)构造出模拟滤波器的传输函数

采用自编函数u_buttap。其格式为:

[b,a]=u_buttap(N,Omegac)

其中,b为模拟滤波器传输函数的分子多项式系数;a为模拟滤波器传输函数的分母多

项式系数;N为Butterworth滤波器的阶数;Omegac为截止频率。

(3)冲击响应不变法实现模拟到数字的滤波器转换

impinvar函数可将模拟滤波器(b,a)转换成数字滤波器(bz,az),两者的冲激响应

不变,即模拟滤波器的冲击响应按Fs取样后等同于数字滤波器的冲激响应。其格式为:

[bz,az]=impinbar(b,a,Fs)

其中,b为模拟滤波器传输函数的分子多项式系数;a为模拟滤波器传输函数的坟墓多

项式系数;Fs为采用率;bz为数字滤波器的系统函数H(z)的分子多项式系数;az为

数字滤波器的系数函数H(z)的分母多项式系数.

2、修改MATLAB程序参数,体会用冲激响应不变法设计IIR滤波器的方法及所设计滤波

器的特性。

(二)双线性变化法IIR滤波器设计

1、编写并调试MATLAB程序。实验需调用的MATLAB函数说明

(1)通过buttord进行巴特沃斯滤波器阶数的选择,buttord函数说明见上一实验。

(2)构造出模拟滤波器的传输函数。

(3)双线性变换法实现模拟到数字的滤波器转换。

双线性变换为变量间的映射关系,在数字滤波器中,它是将S域或模拟域映射成Z 域或数字域的标准方法,它可将以经典滤波器设计技术设计的模拟滤波器转换成等效的数字滤波器。在MATLAB中其函数名称是bilinear。其格式为:

[mumd,dend]=bilinear(num,den,Fs)

其中,mum为S域传递函数的分子;den为S域传递函数的分母;Fs为取样频率;numd 为双线性变换后Z域传递函数的分母。

2、修改MATLAB程序参数,体会用双线性变换法设计ⅡR滤波器的方法及所设计滤波器的特性。

四、设计结果及分析

(一)设计结果

本次设计需要用冲激响应不变法和双线性变换法分别以Butterwordth滤波器、切比雪夫I型滤波器、切比雪夫II型滤波器为原型设计低通数字滤波器。因此总共需要设计6个低通数字滤波器。

由题意IIR低通数字滤波器指标为:

Wp=0.2*pi 数字通带截止频率(弧度)

Ws=0.3*pi 数字阻带截止频率(弧度)

Rp=1dB 通代衰减(dB)

As=15dB 阻带衰减(dB)

具体的设计方法如下:

1、用冲激响应变换法实现Butterword低通数字滤波器

MATLAB程序:

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,OmgC]=buttord(OmgP,OmgS,Rp,As,'s'); %选取模拟滤波器的阶数[cs,ds]=butter(N,OmgC,'s'); %设计出所需的模拟低通滤波器%[b,a]=impinvar(cs,ds,T); %应用脉冲响应不变法进行转换[b,a]=bilinear(cs,ds,T);

%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]);

grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

grid

波形如下图所示:

2、用双线性不变法设计Butterword低通数字滤波器

MATLAB程序:

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,OmgC]=buttord(OmgP,OmgS,Rp,As,'s'); %选取模拟滤波器的阶数[cs,ds]=butter(N,OmgC,'s'); %设计出所需的模拟低通滤波器[b,a]=bilinear(cs,ds,T); %应用双线性变换法进行转换%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]); grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); grid

实验波形如下图:

3、用冲激响应不变法实现切比雪夫I型低通数字滤波器

MATLAB程序:

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,wn] =cheb1ord(OmgP, OmgS, Rp,As); %选取模拟滤波器的阶数

[cs,ds]=cheby1(N,Rp,wn,'s'); %设计出所需的模拟低通滤波器[b,a]=impinvar(cs,ds,T); %应用脉冲响应不变法进行转换%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]); grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]); grid

波形如下图所示:

4、用双线性变换法实现切比雪夫I型低通数字滤波器

MATLAB程序:

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,wn] =cheb1ord(wp, ws, Rp,As); %选取模拟滤波器的阶数

[cs,ds]=cheby1(N,Rp,wn,'s'); %设计出所需的模拟低通滤波器[b,a]=bilinear(cs,ds,T); %应用双线性变换法进行转换%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]);

grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

grid

波形如下图所示:

5、用冲激响应不变法实现切比雪夫II型低通数字滤波器

MATLAB程序:

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,wn] =cheb2ord(wp, ws, Rp,As); %选取模拟滤波器的阶数

[cs,ds]=cheby2(N,As,wn,'s'); %设计出所需的模拟低通滤波器[b,a]=impinvar(cs,ds,T); %应用脉冲响应不变法进行转换%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,2,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]);

grid

subplot(2,2,3);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

grid

波形如下图所示:

6、用双线性变换法实现切比雪夫II型低通数字滤波器

MATLAB程序:

%双线性不变法

wp=0.2*pi;

ws=0.3*pi;

Rp=1;

As=15;

T=1;

%性能指标

Rip=10^(-Rp/20);

Atn=10^(-As/20);

OmgP=wp*T;

OmgS=ws*T;

[N,wn] =cheb2ord(wp, ws, Rp,As); %选取模拟滤波器的阶数

[cs,ds]=cheby2(N,As,wn,'s'); %设计出所需的模拟低通滤波器[b,a]=bilinear(cs,ds,T); %应用双线性变换法进行转换%求得相对、绝对频响及相位、群迟延响应

[db,mag,pha,grd,w]=freqz_m(b,a);

%下面绘出各条曲线

subplot(2,1,1);

plot(w/pi,mag);

title('幅频特性');

xlabel('w(/pi)');

ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

set(gca,'YTickMode','manual','YTick',[0 Atn Rip 1]);

grid

subplot(2,1,2);

plot(w/pi,pha/pi);

title('相频特性');

xlabel('w(/pi)');

ylabel('pha(/pi)');

axis([0,1,-1,1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 0.5 1]);

grid

波形如下图所示:

(二)实验结果比对

1、双线性变换法的优缺点:

双线性变换法的主要优点是消除了冲激响应不变法所固有的混叠误差,这是由于S 平面的整个jΩ轴单值地对应于Z平面上的单位圆一周的缘故。数字频率ω与模拟频率Ω的关系为:ω=。有图可见,在零频附近,模拟频率Ω与数字频率ω的关系接近于线性,T值越小,采样频率越高,则线性关系的频率范围越大。当Ω进一步增大时,ω增长变慢,二者不再是线性关系了,最后当Ω→∞,ω终止在折叠频率ω=π处,从而双线性变换法不会出现由于高频部分超过折叠频率而混叠到低频部分失去的现象。这就意味着,模拟滤波器全部频率响应特性被压缩于等效的数字频率范围0<Ω<π。可

见,双线性变换消除混叠的这个特点是靠频率的严重飞线性而得到的。

双线性变换法的确定是频率Ω与ω间的非线性,这种非线性要求被变化的连续时间系统的幅度响应必须是分段常熟型的(某一段频率范围幅度响应应接近于某一常数),不然所映射出的数字频率响应相对于原来的模拟频率响应会产生变形。例如,双线性变换法不能将模拟微分器变化成数字微分器,但对于低通模拟滤波器、高通模拟滤波器、带同模拟滤波器和带阻滤波器,频率响应都是分段常数型的,可采用双线性变换法,仍得到频率响应分为分段常数的滤波器,但各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以纠正。

2、冲激响应不变法的优点:

具有线性相位特性的模拟器,经冲激响应不变法变换为数字滤波器后,该数字滤波器一定具有线性相位特性,频率的线性关系是冲击响应不变法的一个优点。另一个优点是时域逼近良好,模拟频率和数字频率之间呈线性关系。

缺点:其最大的缺点是存在频率响应的混叠失真,所以冲击响应不变法只适用于限带的模拟滤波器,所以高通和带阻滤波器不宜采用冲激响应不变法,否则要加保护滤波器,滤掉高于折叠频率以上的频率。

三种滤波器说明

巴特沃思滤波器的频率特性无论在通带或阻带内都随频率变化而单调变化,因而如果在通带边缘满足指标,则在阻带内一定会有量,也就会超过指标的要求,因而并不经济,所以最有效的办法是将指标的精度均匀地分布在通带内,或均匀的分布在阻带内,或同时均匀地分布在通带和阻带内,这时就可设计出阶数较低的滤波器,这种精度均匀分布的办法可通过选择均有等波纹特性的逼近函数来完成。

切比雪夫滤波器的幅度特性就在以个频带内(通带或阻带)具有这种等级纹波特性:一种是在通带中是等纹波的,在阻带内是单调的,称为切比雪夫Ⅰ型。

一种是在通带内是单调的,在阻带内是等纹波的,称为切比雪夫Ⅱ型。

五、体会

本次设计使用了滤波器设计中的两种最基本的方法:冲激响应不变法和双线性变换法。滤波器设计原理来比较简单,在MATLAB中有专门的函数可用来调用,实现滤波器的。由于对MATLAB遗忘了很多,甚至连基本的函数语句都得查书才能知道,这就

大大增加了我们设计的时间。有时在调用函数时出现各种错误,得不到正确结果,程序运行时也会有很多的错误。这让我深深体会到,要想正确得出一个波形,需要花很多的时间和很大精力。

个人感觉滤波器的设计比较难,而且设计内容庞大,使得时间非常紧张。不过收获特别大,在不断错误的过程中,我学到了新的知识,同时也磨练了自己的意志。做完本设计,我对低通数字滤波器的原理和设计方法有了更深层次的理解和掌握,对数字滤波器这方面有了系统的理解,收获颇多。

六、参考文献

[1] 程佩青. 数字信号处理教程. 清华大学出版社(第三版),2007.2

[2] 张志涌. 精通matlab6.5版. 北京航天航空大学出版社,2003

[3] 刘卫国. MATLAB程序设计教程. 中国水利水电出版书,2005

[4] 余成波. 数字信号处理及其MATLAB实现. 清华大学出版社,1995

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

IIR数字滤波器的设计流程图讲课讲稿

目录 目录 0 前言 (1) 1.1数字滤波器简介 (1) 1.2使用数字滤波器的原因 (1) 1.3设计的原理和内容 (1) 工程概况 (2) 正文 (2) 3.1 设计的目的和意义 (2) 3.2 目标和总体方案 (2) 3.3 设计方法和内容 (3) 3.4 硬件环境 (3) 3.5软件环境 (3) 3.6IIR数字滤波器设计思路 (3) 3.7 IIR数字滤波器的设计流程图 (3) 3.8 IIR数字滤波器设计思路 (4) 3.9设计IIR数字滤波器的两种方法 (4) 3.10双线性变换法的基本原理 (5) 3.11用双线性变换法设计IIR数字滤波器的步骤 (6) 3.12程序源代码和运行结果 (6) 3.12.1低通滤波器 (6) 3.12.3带通滤波器 (10) 3.12.4带阻滤波器 (13) 3.13结论 (15) 3.13.1存在的问题 (15) 3.13.2解决方案 (16) 致谢 (16)

参考文献 (16) 前言 1.1数字滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。 信号通过线性系统后,其输出信号就是输入信号和系统冲激响应的卷积。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分较大的模,因此,中这些频率成分将得到加强,而另外一些频率成分的模很小甚至为零,中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。 1.2使用数字滤波器的原因 数字滤波器具有比模拟滤波器更高的精度,甚至能够实现后者在理论上也无法达到的性能。数字滤波器相比模拟滤波器有更高的信噪比。数字滤波器还具有模拟滤波器不能比拟的可靠性。根据其冲击响应函数的时域特性可将数字滤波器分为IIR(有限长冲击响应)和FIR(无限长冲击响应)。 1.3设计的原理和内容 在windows环境下进行语言信号采集,通过IIR数字滤泼器的设计,数字带滤波器就是用软件来实现上面的滤波过程,可以很好的克服模拟滤波器的缺点,数字带滤波器的参数一旦确定,就不会发生变化。IIR型有较好的通带与阻带特性,所以,在一般的设计中选用IIR 型。IIR型又可以分成Butterworth型滤波器,ChebyshevII型滤波器和椭圆型滤波器等。 IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;

数字滤波器设计与分析

吉林大学仪器科学与电气工程学院本科生实习报告 实习题目:信号分析和处理 实习时间:2012.09 专业:电气工程及其自动化 所在班级:65100615 学生姓名:王双伟 指导教师:朱凯光田宝凤林婷婷

信号实习报告 一.实验目的 加深对信号系统与信号处理理论的理解,学会信号处理的基本知识和方法,并在基本技能方面得到系统训练;熟悉MA TLAB编程环境,掌握MA TLAB编程基本技能,以及程序调试仿真方法,能够采用MATLAB语言和工具进行信号处理;掌握现代信号分析与处理技术,包括信号频谱分析和数字滤波器(FIR、IIR)设计,学会信号处理系统设计与系统功能检测的基本方法;将理论知识与实际应用结合,提高学生解决实际问题的动手能力,为信号系统与信号处理知识的应用、后续专业学习以及今后从事相关科学研究和实际工作打下坚实基础。二.实验工具 计算机,matlab软件 三.实验内容 设计FIR数字带通滤波器,对于给定函数s=sin(2πx100t)+sin(2πx200t)+sin(2πx400t),设计带通滤波器滤除100和400赫兹的频率,并画出滤波前后的时频图及滤波器的增益图。 f1=100;f2=200;f3=400; fs=2000; m=(0.3*f1)/(fs/2); M=round(8/m); N=M-1; fc=[0.15,0.3]; b=fir1(N,fc); figure(1) [h,f]=freqz(b,1,1000); plot(f*fs/(2*pi),20*log10(abs(h))) xlabel('频率/赫兹'); ylabel('增益/分贝'); title('滤波器的增益响应'); figure(2) subplot(211) t=0:1/fs:0.5; s=sin(2*pi*f1*t)+sin(2*pi*f2*t)+sin(2*pi*f3*t); plot(t,s); xlabel('时间/秒'); ylabel('幅度'); title('信号滤波前时域图');

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率 p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

脉冲响应不变法设计数字低通滤波器

燕山大学 课程设计说明书 题目:脉冲响应不变法设计数字低通滤波器 学院(系):电气工程学院 年级专业:09级精密仪器及机械2班 学号: 0901******** 学生姓名:范程灏 指导教师:刘永红 教师职称:讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师: 学号学生姓名(专业)班级设计题目7、脉冲响应不变法设计数字低通滤波器 设 计技术参数给定技术指标为:Hz f p 100 =,Hz f s 300 =,dB p 3 = α,dB s 20 = α,采样频率Hz F s 1000 =。 设 计 要 求 设计Butterworth低通滤波器,用脉冲响应不变法转换成数字滤波器。 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字

目录 第1章前言 (3) 第2章数字信号处理部分基础知识 (3) 第3章 MATLAB部分基础知识 (8) 3.1 MATLAB介绍 (8) 3.2 MATLAB命令介绍 (8) 第4章仿真过程及仿真图 (9) 4.1 仿真程序 (9) 4.2 仿真波形 (10) 第5章设计结论 (10) 第6章参考文献 (11)

第一章 前言 《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB 的结合后的基本实验以后开设的。本课程设计的目的是为了让学生综合数字信号处理和MATLAB 并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有经典设计法、直接设计法和最大平滑滤波器设计法。FIR 数字滤波器的单位脉冲响应是有限长序列。它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。 第2章 数字信号处理基础知识部分 2.1巴特沃斯滤波器的幅度平方函数及其特点 巴特沃斯模拟滤波器幅度平方函数的形式是 )N c N c a j j j H 222 )/(11 )/(11ΩΩ+= ΩΩ+= Ω (5-6)

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

相关文档
相关文档 最新文档