文档库 最新最全的文档下载
当前位置:文档库 › 专题讲座:高中数学“概率”教学研究

专题讲座:高中数学“概率”教学研究

专题讲座:高中数学“概率”教学研究
专题讲座:高中数学“概率”教学研究

专题讲座

高中数学“概率”教学研究

梁丽平人民大学附属中学

一、整体把握高中“概率”教学内容

随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础.因此,统计与概率的基础知识已经成为一个未来公民的必备常识.

高中数学“概率”位于必修三和选修2-3(理科限选).主要知识如下:

(一)概率知识结构图

课标要求:

必修三:

(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解

概率的意义以及频率与概率的区别.

(2)通过实例,了解两个互斥事件的概率加法公式.

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义.

(5)通过阅读材料,了解人类认识随机现象的过程.

选修2-3

(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.

(2)通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用.

(3)在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.

(4)通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.

(5)通过实际问题,借助直观(如实际问题的直方图),认识正态分布曲线的特点及曲线所表示的意义.

(二)重点难点分析

必修三概率部分:概率教学的核心问题是让学生了解随机现象与概率的意义.高中“概率”,是在义务教育阶段的基础上,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,并学习用随机模拟的方法估计简单随机事件发生的概率.

选修2-3(理科限选)部分:主要内容是离散型随机变量的分布列.研究一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率,分布列正是描述了离散型随机变量取值的概率规律,二项分布和超几何分布是两个应用广泛的概率模型.

结合课标要求,可得如下教学的重点和难点:

重点:

从思想方法的角度:重点是对随机现象的理解,了解随机事件发生的不确定性和频率的稳定性,从而正确理解概率的意义;

从知识技能的角度:

一是概率的统计定义;

二是古典概型以及概率的加法公式;

三是离散型随机变量的分布列,以及随机变量的数字特征——期望、方差.具体地说:二项分布(期望、方差)和超几何分布(期望)

难点:正确理解概率的意义;几何概型;条件概率;

二、高中“概率”教与学的策略

(一)“概率的定义”的教学策略

学生在义务教育阶段已经学习过概率,

(1)知道随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述.

(2)能列出随机现象所有可能的结果,以及指定事件发生的所有可能结果,了解事件发生的概率.

(3)知道通过大量地重复试验,可以用频率来估计概率.

那么,学生在高中学习概率定义,与义务教育阶段的学习有何区别?重点应该强调的是什么?主要有两点:

(1)加强对随机现象的认识,

(2)将“通过大量地重复试验,用频率来估计概率”这种直观地感性认识逐步提升到理论的层面,学习“概率的统计定义”.

如何做到这些呢?老师首先需要提升认识:

历史上,概率源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比.

古典定义适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提.

这就使得古典定义的方法能应用的范围很窄,同时还有一些数学上的问题(贝特朗悖论).

1919年,德国数学家冯.米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数n的增加,某个事件出现的频率m/n

总是在一个固定数值p的附近摆动,显示出一定的稳定性,把这个固定的数值p定义为这一事件的概率.

虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义仍然是有问题的.有循环定义之嫌.

因为定义中出现了‘可能性’.这指的就是概率.(类似地在古典概率定义中通常出现‘等可能性’).你可以设法避免这类词出现,但其本质的意义无法避免.事实上,概率的统计定义的数学描述是(弱)贝努里大数律(老师们在大学都学过):

它说的是:当试验次数时,一个事件发生的频率与某个常数p的偏差

大于任一个正常数的可能性趋于零.之所以不能用这个式子中的常数p作为‘概率’的定义,是因为在这个式子中已经有了‘概率’.

也就是说:概率的概念笼统说并不难,但若深入到理论或哲学中去讨论,问题就有一

大堆.在数学上,概率的概念是用公理化的形式定义的.

即使是大学数学系的学生,由于他们大都不学‘测度论’,也无法完整地理解这种公理体系的意义.概率的古典定义、统计定义有其时代背景和现实意义,不能因噎废食.这里希望教师了解的是,在各种教科书中出现的‘概率统计定义’,‘古典概率定义’,‘几何概率定义’都是一些描述性的说法,教师不应该过分地去揣摩,探究那里的用语,而应理解其实质.

那么,我们在中学的教学中,应该如何把握概率的概念呢?“理解其实质”是指什么呢?

我想主要应该理解以下几点:

1.“重复试验”.“重复试验”是指条件相同下的试验,严格说在现实中两次试验条件完全相同是不可能的,这里给出的是数学模型.至于现实中哪些问题能用这个数学模型来近似描述,这是另一个问题.

2.频率和概率的关系.频率反映了事件发生频繁的程度,从而可以用来度量事件发生的可能性大小.但频率是随机的,是这n次试验中的频率.换另外n次试验,一般说,频率将不同,而概率是一个客观存在的常数.因此,人们用概率来度量事件发生的可能性.不过,在现实中,概率往往是不知道的,通常用频率来估计概率.恰如在现实中,一根木棒的长度是一个客观的常数,但其值是未知的,我们是用测量值来估计其长度,不论仪器多么精确,测得的数值都会有误差(即测量值是随机的),但总是稳定在木棒的真实长度值的附近.

3.概率反映的是多次试验中频率的稳定性.有人往往错误地以为,掷一个均匀硬币,正面出现的概率等于二分之一,就应该两次试验中出现一次正面.掷一个均匀骰子,每掷六次,各点都应该出现一次.否则就是不均匀.事实上,频率的稳定性反映的是大量试验中出现的性质,其稳定性要在试验次数很多时才体现出来.对个别的几次试验,由于其随机性,是无法预料的.

4.随着试验次数的增加,频率趋于概率?请正确理解

与的区别.正确的应该是:即使n非常大,出现频率偏离概率较大的情形也是可能的,这是随机现象的特性.在概率的教学中,对一些学生容易产生误解的地方,有人建议用试验的办法帮助学生理解,这当然是很好的.例如,在讨论抽签与抽取顺序无关时,就可以用试验来模拟.但必须注意到频率偏离概率大的情形.例如,扔一百个均匀硬币,一面出现30个,另一面出现70个,是不奇怪的.对此教师应有充分的认识.

5.结果的随机性不同于结果未知.比如,至今人们还不知道哥德巴赫猜想是否成立,但这个命题没有任何随机性.

6.用频率估计概率,一定要大量试验?实验次数多少合适?狄莫弗-拉普拉斯极限定理给出了解答:

.(*)

其中,为标准正态分布的分布函数.

例如掷硬币的问题,若要保证有95%的把握使正面向上的频率与其概率0.5之差落在0.1的范围内,那要抛掷多少次?根据(*)式,可以估计出.

有人认为概率的统计定义没什么可讲的,学生有生活经验,很容易理解.从某一方面看,确实如此.学生不难理解掷均匀硬币时,出现正面的可能性是二分之一;掷均匀骰子时,出现各个点数的可能性都是六分之一,等等.(不过,从历史上看,人们认识到这一点是经过了很长的一个时期的.教科书上记载的那些历史上掷硬币的试验说明了这一点.之所以会做这么多的试验,就是因为人们在过去认识不到这种频率的稳定性.)

根据以上分析,我们可以确定这一节课的教学策略:

1)首先通过大量实例,体会随机事件发生的不确定性,归纳出随机事件的概念.2)然后再深入情境,体会随机事件的规律性.

通过发现随机事件的发生既有随机性,又存在着统计规律性,认识概率的意义.很自然地提出问题:如何把握规律?

3)从已有的生活经验中提取信息,体会可以用(大量重复)试验的方法来估计概率.紧紧抓住大量、重复这两个关键词,认识用大量重复试验的频率来估计事件的概率这种方法.

4)通过数学实验,观察频率,再次体会随机性与规律性,形成概率的统计定义.

其中还可以结合历史上科学家们做抛掷硬币实验的例子,让学生在了解史实的同时,进一步体会大量重复试验的必要性.

(二)古典概型的教学

需要明确的是古典概率是一类数学模型,并非是现实生活的确切描述.扔一个硬币,可以看成只有两个结果:“正面向上”和“正面向下”.每个结果出现的可能性相同,从而符合古典概率的模型.但现实情况是,硬币可能卡在一个缝中,每一面既不向上也不向下.另外, 硬币是否均匀,也只能是近似的.

同一个现实对象可以用不同的模型来描述.例如物理上,地球有时被看成是一个质点(在研究天体运动时),有时被看成椭球(飞机的航程),有时被看成平面(人在地面行走时).在这里同样如此.同一个问题可以用不同的古典概率模型来解决.在古典概率的问题中,关键是要给出正确的模型.一题多解所体现的恰是多个模型.下面举一个例子.

例1.某人有6把钥匙,但忘记了打开房门的钥匙是哪一把.于是,他逐把不重复地试开.若6把中只有1把能打开房门,则

(1)恰好第三次打开房门的概率是多少?

(2)最多3次试开一定能打开房门的概率是多少?

解法1:把6把钥匙分别编号,能打开房门的钥匙记为“k”.把用6把钥匙逐把试开房门当作一次试验(即把6把钥匙全部试完,不论能否打开房门),于是每个基本事件就相当于6把钥匙的一个全排列,所有基本事件的个数为.这些结果是等可能的.

恰好第三次打开房门,即“k”排在第3位上,共有种结果,故“恰好第三次打开房门(设为事件A)”的概率为.

最多3次试开一定能打开房门,即“k”排在前3位上,共有种结果,故“最多3次试开一定能打开房门(设为事件B)”的概率为.

解法2:由于本题中讨论的是恰好第三次打开房门的概率,所以,我们可以着眼于前三次,把“从6把钥匙中选出3把,逐把试开房门”当作一次试验.于是,所有基本事件的个数为.这些结果是等可能的.

(1);(2).

解法3:还可以着眼于k的位置.把“用6把钥匙逐把试开房门”当作一次试验(即把6把钥匙全部试完,不论能否打开房门),但只考虑第几次能打开房门,也就是考虑k排在第几位,这样,就只有6个基本事件.

(1);(2).

解法4:仍把钥匙如前编号.我们只关注第三次(前三次)取到的钥匙.第三次取到的钥匙显然是这6把钥匙之一,即,有6种结果.且每个结果出现的可能性都是相同的.当

第三次取到“k”时,第三次恰好打开房门.因此,“恰好第三次打开房门”的概率为;最多3次试开一定能打开房门的概率为.

我们希望通过这样的例子让学生很好地体会概率的古典模型、体会概率模型的意义.但其中排列组合并非必要的知识.

若将问题改为:

有1个黑球和5个白球(除颜色外它们都相同)放在一个袋中,现从中取球,取出记录颜色后再放回.求“第3次取到黑球”的概率.

解:由于是有放回地抽取,所以,每次抽取都可以看做是相互独立的,故第3次取到黑球的概率为.

对古典概率模型的认识在具体题目中要注意以下问题:

(ⅰ)等可能性与非等可能性;

(ⅱ)有序取与无序取;

(ⅲ)有放回取与不放回取;

(ⅳ)通过全排列的方法,更容易构造等可能事件.

(三)紧扣“等可能”,突破几何概型教学的难点

前一阵在《中学数学教学参考》上看到这样一个例子:

1.等腰RtΔABC中,在斜边AB上任取一点M,求AM小于AC的概率

2.等腰RtΔABC中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC的概率

前者的概率是,后者的概率是

这两个看上去很相近的问题,答案为什么会不同呢?这个问题引起学生的很多的困惑.其实,要解决它,还得回到几何概型的定义.

几何概型的定义是:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域Ω内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件A的发生则理解为恰好取到上述区域内的某个指定区域D中的点,这里的区域可以是线段,平面图形,立体图形等.用这样的方法处理随机试验,称为几何概型.

从几何概型的定义我们可以看出:解决几何概型问题的基本步骤是:(1)找出等可能基本事件;(2)对应几何图形(所有等可能基本事件所在的区域Ω和随机事件中等可能基本事件所在的区域A);(3)由区域确定测度.

第一个事件所对应的等可能基本事件应该是在线段AB上随机取一点,这一点落在这个线段上是等可能的.

第二个事件所对应的等可能基本事件应该是在直角区域内任取一条射线,显然若射线等可能出现在直角区域内,则点M就不可能等可能出现在线段AB上.

如何确定等可能基本事件?

抓住“任意”、“随机”等词,确定等可能的基本事件空间.

贝特朗悖论:

几何概率是十九世纪末新发展起来的一门学科,使很多概率问题的解决变得简单而不用运用微积分的知识.然而,1899年,法国学者贝特朗提出了所谓“贝特朗悖论”,矛头直指几何概率概念本身:

在一个圆内随机地画一条弦,它的长度大于该圆内接等边三角形边长的概率是多少?

从不同方面考虑,可得不同结果:

(1)由于对称性,可预先指定弦的方向.作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长.所有交点是等可能的,则所求概率为

1/2 .

(2)由于对称性,可预先固定弦的一端.仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求.所有方向是等可能的,则所求概率为1/3 .

(3)弦被其中点位置唯一确定.只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求.中点位置都是等可能的,则所求概率为1/4.

这导致同一事件有不同概率,因此为悖论.

得到三种不同的结果,是因为在取弦时采用了不同的等可能性假设:在第一种解法中则假定弦的中点在直径上均匀分布;在第二种解法中假定端点在圆周上均匀分布,而第三种解法中又假定弦的中点在圆内均匀分布.这三种答案是针对三种不同的随机试验,对于各自的随机试验而言,它们都是正确的.

三个结果都正确!——这就是让老师和学生感到迷惑不解的原因.

这一悖论揭示了几何概率在19世纪刚兴盛时期存在着其逻辑基础的脆弱性,也反映出古典概率有着相当的局限.这也推动了20世纪概率论公理化工作的早日到来.

关于这个悖论有很多种讨论,在此不一一赘述.老师们只需明白的是确定“等可能基本事件”的重要性,在解决几何概型问题时,必须找准观察角度、明确随机选择的意义、判断好基本事件的等可能性.

如何对应几何图形?

有的问题,几何特征较为明显,能迅速找到相应的几何图形,计算其测度.但有的问题中,找到相应的几何图形较为困难.如:

例.一家快递公司的投递员承诺在上午9:00—10:00之间将一份文件送到某单位.

(Ⅰ)如果这家单位的接收人员在上午9:45离开单位,写出他在离开单位前能拿到文件的概率;

(Ⅱ)如果这家单位的接收人员将在上午9:30—11:00之间离开单位,那么他在离开单位前能拿到文件的概率是多少?

解:(Ⅰ)所求事件的概率为.

(Ⅱ)设为投递员到达该单位的时间,为接受人员离开单位的时间.可以看成平面中的点,试验的全部结果所构成的区域为

这是一个长方形区域,面积为.

设事件表示“接受人员在离开单位之前能拿到文件”,则事件所构成的区域为

面积为.

这是一个几何概型,所以.

即接受人员在离开单位之前能拿到文件的概率为.

利用几何概型可以很好地给出随机模拟的思想.随机模拟的思想十分重要,老师应给予充分的重视.这里就不多说了.

(四)条件概率与事件独立性的教学

课标要求:了解.

条件概率:

对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,记作:P(B|A)

计算公式:.

例1.某科动物出生后活到20岁以上的概率为0.7,活到25岁以上的概率为0.56,求现年为20岁的该科动物活到25岁的概率.

设A表示“活到20岁以上”,B表示“活到25岁以上”,则有P(A)= 0.7,

,所求的实际上是 = 0.8.

例2.某电子元件厂有职工180人,男职工100人,女职工80人,男、女职工中非熟练工人分别有20人和5人,现从该厂中任选一名职工,若已知被选出的是女职工,求她是非熟练工人的概率.

设A表示“任选一名职工为女职工”,B表示“任选一名工人为非熟练工人”,则所求就是“在A事件发生的条件下B事件发生的概率P(B|A)”.

方法一:公式法,,(,显然)

.

方法二:缩小样本空间 P(B|A)= 5/80 = 1/16.

需要注意的是:

1. 条件概率中的事件A、B,指的是任何两个事件A和B(事件A、B不一定有包含关系).

2. 分清“AB同时发生”P(AB),还是“在A发生的条件下B发生” P(B|A)

事件的独立性

若事件A是否发生对事件B发生的概率没有影响,即,

(),则称事件A、B相互独立.

此时,

事实上,,,相互等价.

独立的直观概念并不难理解.现实中许多问题可以近似看成是相互独立的.例如,对一组对象有放回地抽取;重复地投掷硬币或骰子;不同射手的射击等等.因此,在概率论的研究中,我们给出的数学模型通常会根据其背景假设它满足独立的条件或不满足独立的条

件.而不是通过验证是否成立来判断A、B是否独立.

(五)正确区分概率模型,准确解决概率问题

概率可以进行运算,互斥事件和相互独立事件是概率加、乘两种运算在两个特殊概率模型中的体现.

互斥事件:是指在同一个试验下,不可能同时发生的两个事件.

特例:对立事件——在同一试验下必有一个发生的互斥事件.

相互独立事件:在两个或多个独立实验下,一个事件是否发生对另一个事件发生的概率没有影响.

特例:独立重复实验,将同一实验独立重复n次,研究同一事件发生k次的概率.

正确区分概率模型,有助于准确解决概率问题.

例1.一个口袋中装有大小相同的1个红球,2个黑球和3个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过2次的概率.

解:(Ⅰ)古典概型

从袋中依次摸出2个球共有6×5=30种结果,第一次摸出黑球、第二次摸出白球有2×3=6种结果,

则所求概率.

(Ⅱ)互斥事件有一个发生的概率.

第一次摸出红球的概率为,第二次摸出红球的概率为,则摸球次数不超过2次的概率为.

例2.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.

方法一:在10箱中各任意抽查一枚;

方法二:在5箱中各任意抽查两枚.

国王用方法一、二能发现至少一枚劣币的概率分别记为和.则(A)(B)(C)(D)以上三种情况都有可能

答:B

解:每箱抽查可看做相互独立.考查不放回的抽样、重点考查二项分布的概率.

方法一:每箱不能选中劣币的概率均为,故至少发现一枚劣币的概率为

方法二:每箱不能选中劣币的概率均为,故至少发现一枚劣币的概率为,因为,显然<.

例3.如图,由M到N的电路中有4个元件,分别标为T,T,T,T,电源能通过T,T,T的概率都是,电源能通过T的概率是0.9,电源能否通过各元件相互独立.已知T,T,T中至少有一个能通过电流的概率为0.999.

(Ⅰ)求;

(Ⅱ)求电流能在M与N之间通过的概率.

分析:本题考查了概率中的互斥事件、对立事件及独立事件的概率.

解:记依次表示事件:电流能通过

A表示事件:中至少有一个能通过电流,

B表示事件:电流能在M与N之间通过,

(Ⅰ)相互独立,

又,

故,

(Ⅱ),

=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891

1、概率计算中首先要明确随机事件是什么,正确识别概率类型.

2、会将复合事件的概率分解为若干个已知概率或易求概率的事件的“和”或“积”.

(六)随机变量的分布列的教学

在必修课程概率的学习中,学生已经对随机事件发生的不确定性和频率的稳定性有了一定的了解,结果的随机性和频率的稳定性是随机现象的两个最基本的特点,那么,怎样才算把一个随机现象的规律研究清楚了?

了解一个随机现象的规律,就是指了解这个随机现象中所有可能出现的结果及每个结果的概率.为了在数学上处理,一个常用的做法就是:把每一个可能出现的结果都对应一个数,实际上是建立一个从实验结果的集合到实数集合的映射,这就引出了离散型随机变量及其分布列的概念.

超几何分布、二项分布、正态分布是几类特殊的分布,尽管这些分布无法覆盖各种各样的随机现象,但他们描述了随机现象中最有用,最常见的情形,他们有助于我们对一般随机现象的理解和讨论.

1.注重对具体分布模型的认识和应用

注意超几何分布的使用条件为不放回地抽取,二项分布的使用条件为n次独立重复实验相当于有放回抽取.

二项分布:n次独立重复试验中,事件A发生的次数ξ服从二项分布:

超几何分布:设有N个产品,其中有M个次品(M≤N),从中任取n个,令ξ表示取到

的次品数,则. k=0,1,2,…,min(M,n)

称随机变量ξ服从超几何分布,其中N,M,n是分布的参数.

例如从全班任取n个人,取到女生的人数;从扑克牌中取n张,取到黑桃的张数;买n 张彩票,中奖的张数,等等都可以用超几何分布描述.

正态分布,要从频率分布直方图到总体分布的过程,让学生明确总体分布的来源,从而了解正态分布密度函数的意义.在此基础上,直观认识正态分布曲线的特点及曲线所表示的意义.了解正态曲线随着μ和σ变化而变化的特点.并结合正态分布密度函数的解析式及概率的性质,了解3σ原则.

应要求学生掌握这三种分布列的结构特点,为后继学习打好基础.不过从写分布列的角度看,学生对各种分布列的特性知道与否,似乎都不太重要,因此我们在教学中遇到其它分布列(单点分布、两点分布、超几何分布、泊松分布、帕斯卡分布等)时,用而不谈名称就是了.下用具体问题进一步说明上述情况.

例1.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5, 整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)平均有多少家煤矿必须整改;

(Ⅲ)至少关闭一家煤矿的概率.

解:(I)每家煤矿必须整改的概率是1—0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是.(II)由题设,必须整改的煤矿数服从二项公布,从而的数学期望是

,即平均有2.50家煤矿必须整改.

(III)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该

煤矿被关闭的概率是,从而该煤矿不被关闭的概率是,由题意,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是

例2.A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止. 设表示游戏终止时掷硬币的次数.

(1)求的取值范围;(2)求的数学期望E.

分析:理解的含义是解决本题的关键.

解:(1)设正面出现的次数为m,反面出现的次数为n,则,可得:

(2)

例3.已知随机变量,若,则=

(A)0.477 (B)0.628 (C)0.954 (D)0.977

答案:C

解:因为随机变量服从正态分布,所以正态曲线关于直线对称,

,所以,所以

0.954,故选C.

【选题目的】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.

2.注重对期望、方差的现实意义的解读

在实际中,有许多决策问题,是用随机变量均值的大小来决策的.(从下面的例子可以看到,均值常常是人们期望得到的值.均值被称为‘数学期望’.)

例4.有两个公司欢迎你去面试求职,设想它们各方面条件相同而且你去面试求职的可能结果也一样:你得到年薪4万的可能性是20%,得到年薪3万的可能性是30%,得到年薪2万5千元的可能性是40%,公司不雇用你的可能性是10%.你先去一个公司面试,条件是,一旦你决定在第一个公司工作,就不能再去第二个公司;如果你放弃了第一个公司的工作,也不允许再返回.试问你该如何决策.

解:当公司1给你年薪4万时,你应该接受.因为公司2无论如何也不会提供比这更多的年薪.当公司1不雇用你时,你别无选择,只能去公司2面试.问题是当公司1给你3万和2万5千年薪时,你应该如何决策.

显然,当公司1给你的年薪比公司2给你的年薪低时,你应该去公司2;当公司1给你的年薪比公司2高时,你接受公司1的工作,不再去公司2求职.问题是公司2给你的年薪是随机的,事前无法确定.如前所述,我们只能和公司2的平均年薪比较.

现在去公司2 能得到的平均年薪是.因此,当公司1给你3万的年薪,接受它;若公司1给你2.5万元的年薪,拒绝它,去公司2面试.这个决策使你有0.2的概率得到4万,0.3的概率得到3万,有0.5的概率去公司2面试得到2.7万的平均年薪.从而,这个决策的平均年薪为万元.

(七)随机模拟试验

由于计算机具有高速度和大容量的特点,我们可以用计算机来模拟那些庞大而复杂的试验,这种模拟称为随机模拟或数字模拟,是一种非常重要的方法.

先来看一个例子.

例1(掷硬币问题)掷有一个均匀的硬币,正面向上的概率为0.5,那么,把一个均匀硬币掷100次,出现50次正面向上的概率是否接近0.5?

解出现50次正面的概率为.

我们知道,掷一个均匀硬币,‘出现正面’的概率是0.5.有人以为,掷100次应该出现50次正面.为什么这件事发生的概率只有0.08,和想象相差甚远.好像均匀硬币不应该有这样的结果.你学过了概率的统计定义,该如何解释这一结果呢?

事实上,一个事件的概率0.5是指,在大量重复试验中,该事件出现的频率‘稳定’在0.5(即在0.5附近,偏离0.5很大的可能性极小),并非每两次试验中出现一次.那么,掷100次均匀硬币出现50次正面的概率,也应该理解为,做大量重复试验,即多次地掷100次硬币,‘出现50次正面’的频率应‘稳定’在0.08.

下面是一个模拟试验结果.

1.在excel表格中输入“=rand()”;(产生不小于0,小于1的随机数)

2.用下拉列表得到100个随机数(相当于做100次试验);

3.用countif函数统计其中小于0.5的随机数(我们规定小于0.5的随机数代表正面朝上);(100次试验中正面朝上的次数)

4.用下拉列表得到n组试验数据;

5.将n组数据中正面朝上的次数复制到另一个表格中;

6.仍用countif函数统计各个次数的组数;

我们看到,掷100个均匀硬币不一定出现50个正面.可以出现54个正面,也可以出现46个正面,等等.计算在上述n组试验中,出现50个正面向上的次数的的频率.和理论上的值0.08比较大小.

应该看到,对一个均匀硬币来说,掷100次‘出现50次正面’的概率虽然不大,但比正面出现其它次数,例如出现49次、53次等的概率还是大的.

在上述的模拟试验中,一共掷了100n次硬币,只需把上表中的n个数据求和,即可计算正面出现的频率,与0.5作比较.说明我们的硬币是均匀的.

鼓励学生尽可能运用计算器、计算机来处理数据,进行模拟活动,更好地体会统计思

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

高中数学课题研究报告

高中数学课题研究报告 高中数学有效课堂教学策略研究 结题报告 刘根祥 摘要:本课题从高中数学有效课堂研究的背景、界定、理论意义、原则等入手。以提高数学教学有效性的途径为主线,结合课题组成员多年的实践。探索出六个提高课堂教学有效性的学策略即:有效的行为常规养成、强化非智力因素的积极作用、实施差异教学、重视数学再创造过程、注重数学思想方法和观念的渗透、精心设计和谐的师生对话,期间也简单谈谈采取这些策略取得的成效。 关键词:高中数学;有效教学;策略 1、研究背景 新课程改革以来,我校教师的教育观念、教育行为发生了显著变化,课堂教学面貌明显改观,但课堂教学的总体水平,与“优质轻负、充满活力”的新课程改革要求尚有差距。目前我国的课程改革在深入发展,数学课堂教学形式也逐步发生着一些显著的改变,如:以往的“师问生答”变成了“畅所欲言”,“纹丝不动”变成了“自由活动”。“师说生听”变成了“自主探索”,学生的个性得到张扬,教学气氛很活跃。然而,凝眸反思,我们清醒地看到:一方面,在热闹与自主的背后,折射出放任与浮躁,我们的课堂数学教学多了些新

颖的形式和茫然的教学行为,却丢失了宝贵的东西“有效”,即数学课堂教学效益低的问题有待于解决。 另一方面,从课改以来大量的高中数学课堂教学现状看,高中数学老师放不开手脚。课堂上,主要以老师讲解为主,大搞题海战术。使老师和学生身心都很疲惫。许多教师循规蹈矩、安于平常,只为机械完成每天、每学期的教学任务,甘做在浅层次上无限重复简单劳动的教书匠,对教学理念很少追问,对教学行为缺乏反思,对教学风格不甚关心,对如何在同等时间内取得高效的教学质量很少思考、很少追求,因此数学课堂教学中存在一个突出的问题:教师教得很辛苦,学生学得很痛苦。学生没有达到有效学习、得到真正的发展。 总之,数学课堂教学失去了教师和学生生命价值的依托,也就失去了教学核心的生长性质,数学课堂就缺乏活力。如学生对数学没兴趣,感觉数学是一堆枯燥的数字和烦琐的公式,与生活联系不大;又比如学生学习数学缺乏动力,许多同学只是为了高考能考好一点的成绩,此外毫无动力,所以经常出现靠老师采取威逼利诱成绩才会有所进步;最后即使学数学,又有很多同学方法认识不当,成天把自己潜伏于“题海”中,以为学数学就是做题目。实施新课程以来,教育教学面对信息化、全球化、个性化的时代需求,教师也做出了自己的思考与应答,华东师大许纪霖教授有一句豪言“我改变不了这个世界,但我可以改变我的课堂。”作为一名普通

(完整)高中数学分层教学设计

高中数学分层教学教学设计 一意义与价值 现代课程理论的观点——教学设计是应用系统方法对各种课程资源进行有机整合,对教学过程中相互联系的各部分作出科学合理安排的一种构想。教学设计直接反映出教师的业务水平,反映教师对教材的理解程度和对新课标的把握尺寸,它直接影响课堂教学效果,尤其在全面推进素质教育的同时,更要注重培养学生的个性品质。所以我们在本课题的研究中把“高中数学分层教学设计”作为一个子课题研究,通过对本课题的研究,能彻底改变教师的教学观念,在提高教师业务水平的同时,是教师在教学方法有新的突破,在教学艺术出具特色,在教学风格上有自己的独特之处,为培养特色教师奠定基础,在全面提高教学质量的同时,更注重培养学生的个性品质及非智力因素。 二研究目的 1、教学设计科学合理,教学目标明确,教学设计环节齐全,教学过程中的其他环节紧扣教学目标,教学设计要科学严谨,不能有形式无内容,也不能有内容不注重形式,所有的教学设计都是围绕教学目标所设定,教学目标的实现是通过测试而实现的。 2、教学设计中要体现新课标的核心理念,新课标是教学的指导思想,深入理解新课程标准是对教学内容的定位,是确定教学内容三维目标的主要依据,同时在教学设计中,要贯穿分层教学思想,在备、讲、改、辅、作业等诸多环节中体现分层教学思想。 3 、通过对本课题的研究,教学设计要在科学合理可行的基础上,又要体现教学艺术和教学风格。 三研究内容 1、学生情况分层分析: 对学生学习改内容时,要分析各层学生原有的知识背景,学习该内容的生活经验和学习经验,对各层学生进行测试和访谈,学习该内容可能存在的困难对各层学生进行访谈,对学生的学习兴趣、学习积极性、学习方法、学习习惯对学生进行分层方法。 2 、教学内容分层分析:

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高三数学 深入分析高考中概率试题的特点与解题方法

深入分析高考中概率试题的特点与解题方法 1 概率试题的特点 (1)密切联系教材,试题通常是通过对课本原题的改编,通过对基础知识的重新组合、拓广,从而成为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题. (2)概率试题与其它数学试题有着明显的区别,它具有一定的应用性.近三年来出现过三种类型:一是课本中出现的,从实际生活中概括出来的;二是与横向学科有联系的问题;三是赋予时代气息的数学问题. (3)概率试题中注重了对四个基本公式的考查,即对等可能性事件的概率;互斥事件的概率加法公式;独立事件的概率乘法公式;事件在n次独立重复试验中恰发生k次的概率的考查. 2 概率试题的解题分析 2.1 通过对事件的理解与把握来解决问题 例1 (2000年新课程卷第17题)甲乙两人参加普法知识竞赛,其中选择题6个,判断题4个,甲、乙二人依次各抽一题. (Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析本题是一个等可能性事件的概率问题.同时注意到“甲、乙二人依次各抽一题”在解题中的作用,于是可利用排列知识及等可能事件的概率公式加以求解. 2.2 通过应用分类讨论的思想来解决问题 例2 (2002年新课程卷第19题)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立). (Ⅰ)求至少3人同时上网的概率; (Ⅱ)至少几人同时上网的概率小于0.3? 分析本题可应用分类讨论的思想将问题(Ⅰ)“至少3人同时上网的概率”转化为恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时

上网的四种类型,再结合相互独立事件同时发生或互斥事件有一个发生的概率的计算方法加以求解.同时问题(Ⅰ)的解决为第二问的求解做好了铺垫. 2.3 通过合理运用公式()1()P A P A =-来解决问题 例3 (2000年新课程卷第18题)用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作,当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1、N 2正常工作的概率. 分析 系 统N 1正常工作的概率由物理串联知识结合独立事件的乘法公式即可求得;而系统N 2正常工作的概率由“当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作”可知,必须分成三类:一元件A 、B 正常工作,元件C 不正常工作;二元件A 、C 正常工作,元件B 不正常工作;三元件A 、B 、C 都正常工作.在解题时容易遗漏第三种情况,且忘记不正常工作的元件,导致解题错误.但若我们合理使用公式()1()P A P A =-,则系统N 2正常工作的概率可以看成元件A 正常工作,元件B 、C 都不正常工作的对立事件的概率,从而可以简化计算过程. 3 概率试题对高考复习的启示 3.1 在复习中,不能因为概率这部分是新增加的内容而加以忽视,也不能因为概率与排列、组合同在一个章节,认为只可能出现填空、选择题的类别.因为从近三年的试卷看到,每年均有一个概率解答题,所以在复习中应引起足够的重视. 3.2 在复习中,应充分研究大纲、考纲,使学生做到:(1)五个了解,即了解随机事件的统计规律性;随机事件的概率;等可能事件的概率;互斥事件;相互独立事件.(2)四个会,即会用排列组合基本公式计算等可能事件的概率;会用互斥事件的概率加法公式计算事件的概率;会用独立事件的概率乘法公式计算事件的(N 1 (N 2

保合镇中学初中数学分层教学课题三阶段计划

保合镇中学初中数学分层教学课题三阶段 计划 文章 来源第三阶段(2010年3月一2010年6月)工 作计划 丰都县保合镇中学数学课题组 我校课题组经过第一、二阶段的研究,已基本将分层教 学理论和方案进行了学习,并进行了备课和上课进行了初步实践,取得了一定的效果,现将第三阶段的工作计划制定如下: 一、本阶段研究工作内容:课题理论知识和研究方案的学习探讨,分层备课的探讨和实施,课堂分层教学的探讨和实施,分层作业的探讨和实施等。 二、本阶段的研究目标:(1)课题组成员通过理论知识和研究方案的学习,加深对课题的认识,并能在教学中自觉实施.(2)力争通过研究达到对备课分层、授课分层、作业 分层各方面有一个基本系统的认识和做法。 三、本阶段研究工作周期定为:为2010年3月始,到2010年6月止。 四、本阶段计划使用的研究方法:①调查法:课题组对 我校学生学习情况进行调查分析,并促进其学习行为的转变。②经验总结法:通过对本阶段研究工作的总结,不断深化教师、学生对分层教学的认识,使老师和学生逐步与之相适应。

五、本阶段研究工作计划使用的研究措施: 实施分层教学是一项系统的工程,不能简单地将学生分班认作是分层教学,应该对此有一个全面系统的规划和安排。特别是要将分层教学中能力的培养始终作为研究的重点,因为只有学生能力的提高才能实现真正意义上的教学质量的提高,而能力的提高亦是素质教育的核心要求,因此,我们将在第一、二阶段研究的基础上认真进行课题理论知识和研究方案的学习探讨,分层备课的探讨和实施,课堂分层教学的探讨和实施,分层作业的探讨和实施等。 1、认真进行课题理论知识和研究方案的学习探讨我们将认真组织 参研人员学习分层教学理论和研究方 案,使全体课题组成员对课题理论和方案有了较深的理解和认识。 2、认真进行分层备课的探讨和研究 经过第一、二阶段课题组成员的认真学习和探讨,我们已形成了分层备课(即分层备课教案设计)从教学目标的制定、教法学法的制定、教学重难点的制定、教学过程的设计、练习与作业的设计等几方面设计出分层教学的教案。本阶段我们将更认真按此进行备课。七年级由陈晓东、舒卫东、孙斌、张有金负责,八年级由彭红忠、周友明、李建国负责,九年级由刘伟、孙克林、杨思荣负责。 3、用第一、二阶段形成的分层教学过程模式(四环节教学)进行教学探讨和研究。 教学过程主要按以下四个步骤进行设计: (1).情境导向,分层定标

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

基于核心素养背景下的高中数学教学研究

龙源期刊网 https://www.wendangku.net/doc/4c10567493.html, 基于核心素养背景下的高中数学教学研究 作者:易星星 来源:《学习与科普》2019年第34期 摘要:随着教育改革的逐渐进行,教育部对广大高中数学教师的教学要求也在随之不断提升,其要求教师在教学中要能在学生掌握知识的前提下,通过合适的教学手段增强学生的数学知识运用能力。而为了达成这一要求,就需要教师在教学中进行不断的探索,积极转变自己的教学观念,通过合适的教学调整增强学生的数学核心素养。 关键词:核心素养;高中数学;教学研究 数学核心素养是指学生在课堂上表现出的自主学习能力、主动思考能力和教学反思的能力。在过去的数学教学中,由于教师受到传统教育思想的影响,其在教学中过于重视知识型教学的开展,这使得教师过多的是用来讲授法来作为教学的手段。在如今,素质教育的教学理念逐渐深入人心,学生核心素养的培养也越来越受到广大教育研究者的重视。所以为了能在教学中实现学生核心素养的提升,教师就需要能通过采取有效的教学手段对自己的教学进行调整。针对这一问题,笔者结合自身教学经验,谈一谈自己的看法: 一、结合生活实际,构建生活化数学场景 在传统的数学教学中,教师过多的采用讲授法教学造成学生所学知识只是单纯的理论,学生并不能在实际问题的解决中将这些知识加以转化应用,实现实际问题的解决。这就预示着学生知识掌握了知识的表象,而不能对知识达到深入的理解。为了改变这一问题,高中数学教师在教学中要能认识到数学作为一门应用学科的本质,其知识都是来源于生活知识的总结延伸,所以在实际的数学教学中教师可以采用生活化教学的方法来开展数学教学,结合具体的教学内容,加入一些生活化的知识,让学生在数学中找到生活,实现对学生核心素养的培养。 例如,在讲《函数的应用》这一课时,若教师只单纯的强调函数知识的解题与推理的过程,学生可能很快会厌倦纯知识性的讲解过程,且函数是一门应用工具,为了让学生切实意识到函数的数学作用,教师在教学中应该结合生活中的问题来开展函数知识的教学,构建生活化的数学场景,使学生看到数学知识在解决实际问题时的应用,进而让学生了解如何使用所学到的知识来解决生活问题,增强其运用能力。 二、开展有效提问,加强课堂上提问环节 问题是数学教学的重要组成部分,如果教师可以在教学中巧妙地运用问题进行教学的引導,就可以实现对学生注意力的有效调动。同时通过问题的设置也可以促进学生进行高效思考,帮助学生从问题的思考中认识到学习的内容达成思维的引导。除此之外,通过有效的教学

新时期高中数学分层教学存在的问题及策略研究

教学方法 JIAOXUE FANGFA 40 数学学习与研究2019.3 新时期高中数学分层教学存在的问题及策略研究 ◎韩 蕾 (南京市金陵中学,江苏 南京210005) 【摘要】随着新时期教育体制改革的不断推进,目前大 多数学校已经在推行的分层教育模式,学生学习能力的差异性受到学校与教师的广泛重视.分层教学的应用,主要是根据学生的学习能力与接受能力因材施教,提升教学品质与时效,实现学生的自我能力发展.本文结合实际教学,探讨了新时期高中数学分层教学存在的问题及研究策略. 【关键词】高中数学;分层教学;问题;策略当进入到高中学习阶段,学生已经具备了一定的学习能力与接受能力.高中数学作为高中学习阶段的重要课程,在实际教学中,根据学生的学习差异性进行分层教学法的教导,能够充分调动学生数学学习的积极性,因材施教,提高学生个人存在感与接受能力,能更好地吸收数学知识. 一、高中数学分层教学所存在的问题(一)对学生数学学习能力把握不到位在传统的分层教学中,高中数学教师很难对学生数学的学习能力有一个全面的把握,由于初升高数学知识理论跨越性较大,且高中教学模式对成绩较差的学生来说确实有难度,再加上尖子生、一般生、学困生的思维性模式与学习方法的迥然不同,很容易造成教师对分层教学的准确实施及分配.分层教学是一种新型教学模式,很多教师还没有掌握其重要理论以及实践经验,这很容易影响到分层教学的针对性,且带来适得其反的效果. (二)对分层教学过于形式化 很多刚开始接触分层教学的教师很容易对其循序渐进,因材施教的理论缺乏透彻了解.这方面的理论主要是让教师在尊重学生差异性学习能力的前提下,使得学生更容易适应教学方式.每一名学生学习能力的差异性、学习方式的差异性、兴趣点的差异性都是分层教学需要关注到的重点.然而,分层教学在高中数学教学实践中却受到过于形式化,无法让教学方案真正融入实践教学当中,导致课堂效果不显著. (三)对分层教学过于单一化 对刚接触分层教学方法没有多久,很多教师对该教学方法的实施存在单一化,过于死板无法与传统教学模式或是其他教学模式融会贯通.一听说这种教学方法纷纷跃跃欲试,然而竹篮打水一场空,无法发挥分层教学的实质性作用.这违背了提高学生学习能力的初衷,忽略了提高学生的学习兴趣以及激发学生的学习潜能,不利于数学课堂教学的顺利进行. 二、高中数学分层教学的解决策略(一)全面认识分层教学 分层教学作为新时期高中数学的新型教学手段,教师要根据自身经验以及借鉴其他优秀教师的优秀分层教学方式,对分层教学法要有全面的认识.在学习研究分层教学法时,发挥自身创造力以及虚心好学的优良品质,积极学习分层教学的核心教学内涵与理论,根据高中数学教学大纲深入研究,切实把两者完美结合起来,让整个分层教学模式在教学过程中完美的连接起来,根据每个章节不同的教学目 标设计不同的分层教学方案,不断提高与加强自我的教学 经验与实践. (二)创新设计教学内容 分层教学的提出不仅是对学生的分层教育,也是对教师在教学中所存在的问题进行分层.作为高中数学教师,应当在分层教学的内容上多下苦功,要对备课、课后作业、课后辅导等也进行分层安排,对教学内容的设计时刻需要保持一颗激情创新的心,只要教师对课堂教学有积极创新设计的能力,其付出的精力和心血都会收到回报,让学生更喜爱教师的分层教学方式,减轻学生的学习负担,使得他们对数学知识更感兴趣,发挥各层次学生的学习潜能,让教师与学生共同进步. 在高中数学分层教学体验中,教师应根据学生课堂反馈以及自我课堂认识来调整数学教学的课堂进度,让学生对整个课堂数学知识的吸收循序渐进.从课堂的整体过程做考虑,由预习-课堂讲解-课后练习-复习,由易到难的过程能让学生对基础知识的掌握更扎实,同时也能引发学生的学习兴趣和增强学生的学习信心.因此,不断地创新设计教学内容能够让分层次的每个阶段学生在原有的基础上都有质的飞跃. (三)合理应用分层教学 分层教学是新时期高中数学教学史上的巨大变革,该教学方式不仅能让教师转变教学理念,也能让教师转变传统的教学思想.在高中数学的教学中,教师应合理应用分层教学,发挥分层教学的优势,在公平分层的情况下,设定尖子生、一般生、学困生这三种不同层次学生的测评标准,并且要根据每名学生之前的基础情况、错题情况、学习状态、反映逻辑能力等、制订好每名学生的评定标准.让每个层次的学生与学生之间产生竞争,让他们享受到学习成绩提高所带来的自信心与乐趣. 三、结语综上所述,分层教学法作为新时期高中数学的新型教学办法能让教师在实际教学中带来优异的教学成果,教师应给予高度重视,积极挖掘课程中适合分层教学的合理策略,总结经验、不断实践,全面分层提高学生学习数学的能力,提升教师课堂教学质量.【参考文献】 [1]程文,陈敏.分层教学模式在高中数学教学中的应 用探讨[J ].教育,2017(2):145.[2]王红莉, 王兵剑.高中数学分层教学的策略研究[J ].新课程(下), 2017(1):20.[3]刘昊鑫.高中数学分层教学策略研究[J ] .读写算:教师版,2016(33):280.[4]王天慧.试论当前高中数学分层教学存在的问题及对策[J ].教育,2016(12):202.[5]邬文兵.针对高中数学分层教学的对策探究[ J ].文理导航, 2017(32):14.

高中数学课堂的分层教学

高中数学课堂的分层教学 【摘要】新课改以促进学生的全面发展为目标,但是学生所掌握的基础知识不同、个体之间存在差异,课堂教学就不能一概而论,特别是高中数学逻辑学、抽象性较强,学生基础与能力对知识的领悟影响甚大,因此课堂教学一定要做到因材施教、因人而异,而分层教学恰能满足学生个体差异,促进学生共同发展。 【关键词】高中数学;分层教学 随着高中招生规模的日益扩大,进入普通高中的学生数学能力参差不齐,对知识的理解和掌握能力差距较大,这给高中数学教学带来挑战。为了满足课改要求,为了促进学生发展,提高数学课堂效率,使优生更优、差生渐优,走出课堂教学的恶性局面,使高中数学教学改革取得成效,这就要求我们教师要灵活施教,课堂教学中实施分层教学。这种教学方式既兼顾了学生的个体差异,又满足了学生的学习需求。对此本文以分层教学的内涵入手,结合自身教学实践详细剖析了分层教学的实施方法,以期为课改尽点绵薄之力。 1. 分层教学的内涵 1.1 激发兴趣,全员参与。兴趣是最好的老师,中学生具有强烈的好奇心和求知欲,好奇才能产生兴趣,而浓厚的学习兴趣又能激发求知欲。因此在课堂教学中,教师要充分了解学生的个体差异和认知水平、情感态度等,创设一定的学习情境,使所有学生集中精力,情绪高昂,对数学课堂充满激情,学生好学转化为乐学,这是开展教学的活动的前提。 1.2 以新代旧,梯度发展。“以旧引新,以新代旧”是数学课堂的重要原则。课堂初始,确定有效的课堂切入点,能激发学生的学习兴趣和热情,促进不同层次的学生都积极参与。选用生活事例和学生身边案例,导入就自然流畅,配合会主动默契。分层教学中实施“以旧引新,以新代旧”,以学生认知结构中的旧知识去接受新问题,由于学生的基础不同,教师应适当引导,启发学生寻找新旧知识的结点,鼓励学生大胆尝试,通过问题的设置分析,学生就可温故知新,达到对数学知识的全面整合。 2. 分层教学的的实施 2.1 合理分组。开展分层教学,教师首先要摸清每个学生的学习状况,这样才能对症下药。高中阶段,学校一般按照学生的综合成绩将全年级学生设置各层班级,教师要选用一套难易适中的题目对所教班级的学生进行测验,然后按照学生的成绩将其分为a、b、c三个学习小组,其中a组为优秀组,b组为中等组,c 组为基础组,为了顾及学生的自尊,在分组中要用语恰当,避免c组学生背上心理包袱,而且这个分组要机动设置,每次测验后根据学生成绩灵活调换,这样学生之间就会形成竞争格局,都在争先恐后跨越高层小组。

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中理科数学解题方法篇(概率与数据)

概率与数据 概率 1.随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 2.等可能事件的概率(古典概率): P(A)=。理解这里m、n的意义。比如: (1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是______(答:); (2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取2件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次品;④从中依 次取5件恰有2件次品。(答:①;②;③;④) 3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)=P(A)+P(B)。比如: (1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:); (2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)______(答:0.51); (3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得

到,那么在某一时刻,这个公用电话亭里一个人也没有的概率P(0)的值是(答:) 4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B)=1;P()=1-P(A); 5、独立事件:(事件A、B的发生相互独立,互不影响)P(A?B)=P(A) ? P(B) 。提醒: (1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件; (2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1-P(A B)=1-P(A)P(B); (3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1-P() =1-P()P()。比如: ①设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是______(答:); ②某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为_____________;这名同学至少得300分的概率为_____________(答:0.228;0.564); ③袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________(答:);

【实施方案】《高中数学分层教学的研究》实施方案

高中数学分层教学的研究实施方案 一、课题研究背景 传统的高中数学教学片面强调数学的严谨性、逻辑推理的形式 化,忽视数学的创造性;传统教学模式下的学习效果评价,只注重教 师对学生学习的评价,习惯于单凭考试成绩衡量学生的学习情况。这种单一的评价方式不能全面、综合的反映学生的发展程度,它是典型的“应试教育”评价方式,对学生的素质教育极为不利。分层教学是“着眼于学生的可持续性的、良性的发展”的教育观念指导下的一种教学实施策略。所谓“班内分层教学”就是在不打乱原班级的情况下,通过对学生分层、教学内容分层,对不同层次的学生区别施教,进行 分层递进教学。 二、理论依据 1、布鲁姆的“掌握学习理论”。布鲁姆认为。教学中应克服学生成绩呈正态分布曲线的偏见,即认为优中差学生各占班级学生人数的三分之一,甚至认为优等生只能是少数,多数是中等生和差等生。他 认为这种固定化的预想,是最浪费、最有破坏性的观念。它不仅遏制 了教师为提高学生学业成绩的努力与创造精神,而且也极大地挫伤了学生的学习积极性,容易导致老师将主要精力放在尖子学生身上而不 去注意后进生的现象。布鲁姆还认为:学生在学习能力和学习速度上有一定差异,但注意后进生的现象。布鲁姆还认为:学生在学习能力 和学习速度上有一定差异,但是,我们如果提供适当的学习条件,特 别是能为中等生和后进生提供更多的学习条件,90%以上学生的学习

效果会变得十分相似。布鲁姆的理论使我们认识到绝大多数学生的学 习没有学得会与学不会的区别,只有学得比较快和比较慢的区别。只要有充足的学习条件和学习时间,加上科学的指导,90%以上的学生都能对应学会的知识理解和掌握。 2、我国古代的教育教学理论为进行分层推进提供了传统经验。 孔子教学各因其材。孔子之后的墨子也主张教学要照顾学生的实际水平,做到“深其深,浅其浅,益其益,尊其尊”。这些宝贵的传统经验提示我们在教学中要做到因能归类、因人而异、因材施教。 三、课题研究目标 1、通过近几年的调查研究,通钢一中学习成绩方面优等生约20%,差等生约48%;学习习惯方面,优等生约15%,差等生约39%,学生普遍心理素质较差,平行班差生数偏多等。为了在教学中实施素质教育,全面提高学生的学习质量,提高课堂教学的效率。我们结合学习 外地先进经验,准备探索一条“班内分层教学”的新路,将会提高学 生的整体成绩。 2、有利于发展学校的办学特色。特色是一个学校的办学优势所 在,是一个学校教师队伍的优势所在。在开展课题研究活动时,首先 要分析我校的情况,使分层教学既依托学校现有的优势,又有利于促进学校特色的进一步发展。 四、研究方法 经验总结法、比较分析法 五、课题的实施计划

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

谈高中数学应用问题的教学探讨

谈高中数学应用问题的教学探讨【】:培养和提高学生的数学应用意识,是中学数学教学的迫切要求,在中学数学教学的始终都应注重学生应用意识的培养。高中数学新教材在每章开头的序言,问题引入,例、习题,“实习作业”和“研究性课题”中都编排了大量的应用问题,应根据高中学生的认知规律和思维特点进行应用问题的教学,培养学生的应用意识和应用能力。 【】:数学,课程,应用意识,实践 培养和提高中学生的数学应用意识,使学生掌握提出、分析和解决带有实际意义的或在相关学科,生产、生活中的数学问题,准确而灵活地运用数学语言研究和表述问题,是中学数学教育教学的迫切要求,在中学数学教学过程的始终都应注重学生应用意识的培养,加大应用问题的教学力度。数学应用问题,反映了数学与生产实际的联系,能很好地考查学生分析和解决问题的能力,同时对培养学生的数学素质也有很大的帮助,因此严士健、张奠宙和苏式冬在1993年《数学通报》上联名发表了文章《数学高考题能否出点应用题》.之后,在全国教育系统展开了“应用问题教学”的讨论,高考试题中出应用问题得到国家教委考试中心的充分肯定,引起了社会各界的广泛关注.国家教委考试中的这一肯定在中学数学教学中发挥了较好的导向作用,教师加强了数学应用内容的教学,学生的数学意识、数学建模能力有所提高,近几

年高考中应用题的得分率也在逐年提高.然而,总体来说,学生用数学解决实际问题的能力还比较弱,高考解答题中应用题得分还属于较低一类,平时课堂上数学应用题的教学也并不令人乐观,出现许多不健康的现象,教师一味地为了高考,完成任务式的为解题而讲题,教学效果偏低. 另一方面,新课改后的课本对于解决实际问题越来越重视,也越来越强调数学应用于实际,所以,如何更好的培养学生用数学解决实际问题的能力迫在眉睫.为了使数学应用问题的教学卓有成效,对学生这方面能力培养更加迅速,本人以自己多年的教学经验谈几点拙见,与大家共勉. 一、高中数学新教材中的应用问题传统教材对知识的来龙去脉和数学的应用重视不够,不重视引导学生运用所学知识解决日常生活、生产中遇到的实际问题,学生学数学用数学的意识不够,解决实际问题的能力脆弱。新教材对此做了大的调整,增加了具有广泛应用性、实践性的教学内容,重视数学知识的运用,增强数学应用意识,提高学生分析问题,解决问题的能力,把培养学生运用数学的意识贯穿在教材的各个方面。 1、每一章的序言,都编排了一个现实中的应用问题,引入该章的知识内容,以突出知识的实际背景。如在第三章《数列》以趣味话题:“国王对国际象棋棋盘发明者奖励的麦粒数”的计算作为章头序言,激发学习欲望,增加教材内容的

概率习题精选精讲

概 率 (1)随机事件——概率学把“可能性”引进数学 在概率学中,我们称一定发生的事件为必然事件,不可能发生的事件是不可能事件,可能发生也可能不发生的事件是随机事件. 概率也就是事件发生的可能性.所以必然事件的概率是1,不可能事件的概率是0,而随机事件的概率在区间(0,1)之中. 【例1】 同时掷两枚骰子,则以下事件各是什么事件? (1) 点数之和是正整数; (2) 点数之和小于2; (3) 点数之和是3的倍数. 【解析】(1)是必然事件,(2)是不可能事件;(3)是随机事件. (2)等可能事件——概率公式的起源 如果一次试验中可能出现的结果有n 个,而且这n 个结果出现的可能性相同,则称这类事件为等可能事件.由此导出基本概率公式是: ()m P A n = .(其中n 和 m 分别表示基本事件总数和事件A 发生的次数.) 【例2】将一枚骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为 ( ) A. 19 B. 112 C.1 15 D. 1 18 【解析】抛掷一枚骰子后,出现任何一面的可能性相同.所以本题属于等可能事件. 一枚骰子连续抛掷三次,则基本事件总数3 6 216n ==;设事件A ;连掷3次所得点数依次成等差数列,那么3数相等时有111, 222,…666等六种;3数不相等时有123,234,345,456,135,246及其反序数等12个.于是事件A 发生的次数61218m =+=种. 故()181 21612 P A = =.选B. (3)互斥事件——概率的加法原理 在某种试验中,不能同时发生的事件称为互斥事件.如果A 、B 是互斥事件,那么: ()()()P A B P A P B ?=+. 【例3】在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A . 310 B .15 C .110 D .112 【解析】设小球标注的数字之和为3与6的事件分别为A 、B.显然A 与B 不能同时成立,是互斥事件. 由于基本事件总数 2 510.n C ==事件 A 只有1+2=3一种,;事件 B 有1+5=2+4=6两种,.∵A 与B 互斥, ()()()12 3 10 10 P A B P A P B +∴?=+= =.选A. (4)对立事件——两互斥事件的特写 在一次试验中,如果事件A 与B 一定恰有一个发生,则称事件A 与B 是对立事件. 注意对立事件必然互斥,但是互斥事件不一定对立. 一般地,记A 的对立事件为 A .由于A 与A 具有互补性,所以()()1P A P B +=.这是简化概率计算的基本公式. 【例4】8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,这两个强队被分在一个组内的概率是多少? 【解析】 我们用a 、b 分别记八个队中的两个强队. 令C =“a 队与b 队分在同一组”, 则C =“a 队与b 队不在同一组”. a 队与 b 队不在同一组,只能分成两种情况:a 队在第一组,b 队在第二组,此时有C 3 6·C 3 3=C 3 6种分法;a 队在第二组,b 队在第一

相关文档