文档库 最新最全的文档下载
当前位置:文档库 › 《运筹学》_习题_线性规划部分练习题及_答案

《运筹学》_习题_线性规划部分练习题及_答案

《运筹学》_习题_线性规划部分练习题及_答案
《运筹学》_习题_线性规划部分练习题及_答案

一、思考题

1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?

3. 建立一个实际问题的数学模型一般要几步?

4. 两个变量的线性规划问题的图解法的一般步骤是什么?

5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?

6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?

10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。

1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。

3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。

7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0

>j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。

9. 单纯形法计算中,选取最大正检验数

k σ对应的变量k x

作为换入变量,可使目 标函数值得到最快的减少。

10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型

1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润?

2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、

100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

设有某种原料的三个产地为

321,,A A A ,把这种原料经过加工制成成品,再运往销售地。假设用4吨原料可制成1吨成品,产地1

A 年产原料30万吨,同时需要成品7万吨;产地2

A 年产原料26万吨,同时需要成品13万吨;产地

3

A 年产原料24万吨,不需要成品。

又知

1

A 与

2

A 间距离为150公里,

1A 与

3

A 间距离为100公里,

2

A 与

3

A 间距离为200公里。原料运费为3千元 / 万

吨公里,成品运费为2.5千元 / 万吨公里;在

1

A 开设工厂加工费为5.5千元 / 万吨,在

2A 开设工厂加工费为4千元 / 万吨,在3

A 开设工厂加工费为3千元 / 万吨;又因条件限制,在

2A

设厂规模不能超过年产成品5万吨,1

A 与

3

A 可以不限制(见表2——2),

问应在何地设厂,生产多少成品,才使生产费用(包括原料运费、成品运费和加工费)最少?

旅馆至少需要多少服务员。

5时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如表2 — 4所示 6.市场对Ⅰ、Ⅱ两种产品的需求量为:产品Ⅰ在1 — 4月份每月需1万件,5—9月份每月需3万件,10 —

12月份每月需10万0件;产品Ⅱ在3 — 9月份每月需1.5万件,其它每月需5万件。某厂生产这两种产品的成本为:产品Ⅰ在1 — 5月份内生产时每件5元,6 — 12月份内生产时每件4.50元;产品Ⅱ在在1 — 5月份内生产时每件8元,6 — 12月份内生产时每件7元;该厂每月生产两种产品能力总和不超过12万件。产品Ⅰ容积每件0.2立方米,产品Ⅱ容积每件0.4立方米。该厂仓库容积为1万5千立方米,要求:(1)说明上述问题无可行解;(2)若该厂仓库不足时,可从外厂租借。若占用本厂仓库每月每立方米需1元,而租用外厂仓库时上述费用增加为1.5元,试问在满足市场需求情况下,该厂应如何安排生产,使总的生产加库存费用最少?(建立模型,不求解)

7.某工厂Ⅰ、Ⅱ、Ⅲ三种产品在下一年个季度的合同预定数如表 2 —5所示,该三种产品第一季度初无库存,要求在在第四季度末每种产品的库存为150件。已知该厂每季度生产工时为15000小时,生产产品Ⅰ、Ⅱ、Ⅲ每件需3,4,3小时。因更换工艺装备,产品Ⅰ在第二季度无法生产。规定当产品不能按期交货时,产品Ⅰ、Ⅱ每件每迟交一个季度赔偿20元,产品Ⅲ赔偿15元,又生产出来的产品不在本季度交货的,每件每季度的库存费为5元。问应如何安排生产,使总的赔偿加库存费用最小。

8.(天)如表2 —6 所示,本月可供使用的机器的时间为:A为15天,B为20天,C为24天。每箱玩具的价格为Ⅰ:1500元;Ⅱ:1700元;Ⅲ :2400元。问怎样安排生产,使总的产值最大。

接费用),加工工时等由表2—7给出,工厂有供纺纱的总工时7200h ,织带的总工时1200h (1) 列出线性规划模型,以便确定产品数量,使总的利润最大。

(2) 如果组织这次生产的固定成本(即与产品数量无关的间接费用)为20万元,线性规划模型有何变化?

10.2—8所示,试确定各种服装的生产数量,使总的加工费用最小。

11.某制衣厂生产两种服装,现有100名熟练工人。已知一名熟练工人每小时生产10件服装Ⅰ或6件服装Ⅱ。据销售部门消息,从本周开始,这两种服装的需求量将持续上升。见表2 — 9,为此,该厂决定到第8周末需培训出100名新工人,两班生产。已知一名工人一周工作40小时,一名熟练工人每周时间可培训出不多余5名的新工人(培训期间熟练工人和培训人员不参加生产)熟练工人每周工资400元,新工人在培训期间工资每周80元,培训合格后参加生产每周工资260元,生产效率同熟练工人。在培训期间,为按期交货,工厂安排部分工人加班生产每周工作50小时,工资每周600元。又若所定的服装不能按期交货,每推迟交货一周的赔偿费为:服装Ⅰ每件10元,服装Ⅱ每件20元。工厂应如何安排生产,使各项费用总和最少。

12.某家具制造厂生产五种不同规格的家具。每种家具都要经过机械成型、打磨、上漆几种主要工序。每种家具的每道工序所用时间及每道工序的可用时间,每种家具的利润由表2—10给出。问工厂应如何安排生产,使总的利润最大?

13.某混合饲料场饲养为某种动物配置。已知此动物的生长速度和饲料中的三种营养成分甲、乙、丙有关,且每头动物每天需要营养甲85克,乙5克,丙18克。现有五种饲料都含有这三种营养成分,每种饲料每公斤所含营养成分及每种饲料成本如表2—11所示,求即满足动物成长需要又使成本最低的饲料配方。

14

单位生产费用要增加6元,加工后单位售价增加9元。产品B可以按单位售价7元出售,也可以在第三车间继续加工,单位生产费用要增加4元,加工后单位费用可增加6元。原料N的单位购入价为2元,上述生产费用不包括工资在内。3个车间每月最多有20万工时,每工时工资0.5元,每加工1单位N需1.5个工时,如A继续加工,每单位需3工时,如B继续加工,每单位需2个工时。原料N每月最多能得到10万单位。问如何安排生产,使工厂获利最大。

15.某公司有30万元可用于投资,投资方案有下列几种:

方案Ⅰ:年初投资1元,第二年年底可收回1.2元。5年内都可以投资,但投资额不能超过15万元。 方案Ⅱ:年初投资1元,第三年年底可收回1.3元。5年内都可以投资。 方案Ⅲ:年初投资1元,第四年年底可收回1.4元。5年内都可以投资。

方案Ⅳ:只在第二年年初有一次投资机会,每投资1元,四年后可收回1.7元。但最多投资额不能超过10万元。 方案Ⅴ:只在第四年年初有一次投资机会,每投资1元,年底可收回1.4元。但最多投资额不能超过20万元。 方案Ⅵ:存入银行,每年年初存入1元,年底可收回1.02元.

投资所得的收益及银行所得利息也可用于投资.求使公司在第五年底收回资金最多的投资方案.

16.某工厂生产Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品,产品Ⅰ需依次经过A 、B 两种机器加工,产品Ⅱ需依次经过A 、C 两种机器加工,产品Ⅲ需依次经过B 、C 两种机器加工,产品Ⅳ需依次经过A 、B 机器加工。。有关数据如表2—12所示,请为该厂制定一个最优生产计划。

六、表2—13中给出求极大化问题的单纯形表,问表中2121

为何值时以及表中变量属于哪一种类型时有: (1

) 表中解为唯一最优解; (2)表中解为无穷多最优解之一;

(3)表中解为退化的可行解;(4)下一步迭代将以1x

代替基变量5x ;

(5)该线性规划问题具有无界解;(6)该线性规划问题无可行解。

七、某医院的护士分四个班次,每班工作12 h 。报到的时间分别是早上 6点 ,中午12点,下午 6 点,夜间 12点。每班需要的人数分别为19人,21人,18人,16人。问:

(1) 每天最少需要派多少护士值班?

(2) 如果早上6点上班和中午12点上班的人每月有120元加班费,下午6点和夜间12点上班的人每月分别有100元和150元加班费,如何

安排上班人数,使医院支付的加班费最少?

八、某石油公司有两个冶炼厂。甲厂每天可生产高级、中级和低级的石油分别为200,300和200桶,乙厂每天可生产高级、中级和低级的石油分别为100,200和100桶。公司需要这三种油的数量分别为 14000,24000和14000桶。甲厂每天的运行费是5000元,乙厂是4000元。问:

(1) 公司应安排这两个厂各生产多少天最经济?

(2) 如甲厂的运行费是2000元,乙厂是5000元。公司应如何安排两个厂的生产。

列出线性规划模型并求解。

《运筹学》习题解答

第二章 线性规划模型及其单纯形法

二、(1) X (2) √ (3) √ (4) √ (5) X (6) X (7) √ (8) √(9) X (10) √ 三、

1. 解:设决策变量

1211,x x 分别表示第一年投资到项目Ⅰ、Ⅱ的资金额;2321,x x 分别表示第二年投资到项目Ⅰ、Ⅲ的资金额;

3431,x x 分别表示第三年投资到项目Ⅰ、Ⅳ的资金额。则得线性规划模型如下:

3423123121114.06.05.02.02.02.0max x x x x x x Z +++++=

??

?

???

??

??

?

≥≤≤≤≤++-+--≤+++-≤+0,,,,,1000001500002000003000005.02.02.03000002.0300000342312312111342312342312312111231221111211x x x x x x x x x x x x x x x x x x x x x

2. 解:设五种饲料分别选取54321

,,,,x x x x x 公斤,则得下面的数学模型:

543218.03.04.07.02.0min x x x x x Z ++++=

???

???

?=≥≥++++≥++++≥++++)5,4,3,2,1(01008.022.05.0305.022.05.070012623543215432154321j x x x x x x x x x x x x x x x x j ;

3. 解:设

j

i x 表示由

i A 运往j A 的原料数(单位:万吨)

)3,2,1,=j i 。其中j i =时,表示i A 留用数;j i y 表示由i A 运往

j

A 的成品数(单位:万吨)(

)3,2,1,=j i 。其中j i =时,表示i A 留用数;i z 表示在i A 设厂的年产成品数(单

位:万吨)(

)3,2,1=i 。则这一问题的数学模型为:

3

2132312321

1312323123211312345.5)(5.2)(3min z z z y y y y y y x x x x x x Z ++++++++++++++=

???????????

?????

?????=≥≥≥≤=++=++=++=++=++=++=++=++=++=++=++)

3,2,1,(0,0,05137

4442413

30232221231

2111

33332312232221

1131211333231323222121312111333231232221

131211j i z y x z y y y y y y z y y y z

y y y z y y y z x x x z x x x z x x x x x x x x x x x x i j i j i

4. 解:设=i x i (1,2,3,4,5,6)为第i 班开始上班的服务员人数。则数学模型:

654321min x x x x x x Z +++++=

??????

?????=≥≥+≥+≥+≥+≥+≥+)6,,1(030

40

708090

80655

4

433221

16 j x x x x x x x x x x x x x j

5. 用321

,,x x x 分别表示大豆、玉米、麦子的种植公顷数;54,x x 分别表示奶牛和鸡的饲养数;76,x x 分别表示秋冬季和春夏

季的劳动力(人日)数,则有 7654321252020900460041003000max x x x x x x x Z ++++++=

??

?

???

??

?

??=≥≤≤≤+++++≤+++++≤+≤+++)7,,2,1(0)(1500)(200)(40003.0504017550)(35006.010*******)(150003400)(1005.154754321654321544

321 j x x x x x x x x x x x x x x x x x x x x x j

鸡舍限制牛栏限制劳动力限制劳动力限制资金限制土地限制

6. 解:(1)因为10 — 12月份市场需求总计45万件,这三个月最多生产36万件,故需10月初有9万件的库存,超过该厂的最大仓库容积,

故按上述条件,本题无解。 (2)考虑到生产成本、库存费用和生产能力,该厂10— 12月份需求的不足只需在7— 9月份生产出来留用即可,故设:

i x 为第i 个月

生产的产品Ⅰ的数量;i y

为第i

个月生产的产品Ⅱ的数量;i i

u

z ,分别为第i 个月末产品Ⅰ、Ⅱ的库存数,i i s s 21,分别为用于第(i +

1)个月库存的原有及租用的仓库容积(立方米),则所求问题的数学模型为:

∑∑∑===+++++=126

11

7

2151

)

()75.4()85(min i i i i i i i i i s s y x y x Z

???

???

?????

???

????

?≥=≤=+=+=≤+=+=+=-+=-+=-+=-+=-+=-+=-+=-+=-=-========0,,,,,)12,11,10,9,8,7(15000

)12,11,10,9,8,7(4.02.0)12,11,10,9,8,7(120000500001000005000010000050000100000150003000015000300001500030000)6,5,4,3(15000)2,1(50000)6,5(30000)4,3,2,1(10000211211112111211

10111110111091010

9109899898

788787777i i i i i i i i i i i i i i i

i i s s u z y x i s i s s u z i y x u y z x u u y z z x u u y z z x u u y z z x u u y z z x u y z x i y i y i x i x

7. 解:设

j i x 为第

i 个季度生产的产品

j 的数量;

j i s 为第

i 个季度末需库存的产品

j

的数量;

j i t 为第

i 个季度不能交货的产品j 的

数量;

j

i y 为第

i 个季度对产品j 的预定数量,则有:

[]

∑∑∑===+++=4

1313

1

321515)(20min i i j j

i i i i s t t t Z

???????????≥===-+=+===≤++∑∑∑∑====0,,)3,2,1;4,3,2,1()3,2,1(1500)4,3,2,1(15000114

14

1

1

2321j i j i j i i

k i k j k j i j i j k i i j i j i i i i t s x j i y s t x j y x x i x x x 8.设j x 为第)3,2,1(=j j 种玩具的生产数量,则有:

321240017001500max x x x Z ++= ??????

?≥≤+≤++≤++为整数0,,24252022315

623212

1321321x x x x x x x x x x x

9.解:(1)设A、B、C、D四种产品的生产数量分别为

4321,,,x x x x ,则有:

4321)140406()3501050()28140()42168(max x x x x Z -+-+-+-=

???

?

?≥≤+≤+++0

,,,12005.027200410234321434321x x x x x x x x x x

(2)当增加固定资本20万元时,线性规划模型没有变化。

10.解:设

j i x )3,2,1;4,3,2,1(==j i 为第j

台制衣机生产第i 种服装的天数,则有:

∑∑∑===++=4

1

4

1

3

24

1

115010080min i i i i i i x x x Z

??

???

????==≥≤++≤++≤++≤++)3,2,1;4,3,2,1(08000

45041015070006803502009000

70045028010000

80060030043

4241333231232221131211j i x x x x x x x x x x x x x j i

11.解:设i i

y x ,分别表示第i 周用于生产服装Ⅰ或服装Ⅱ的工人数,i z 表示第i 周开始加班的工人数,i w 为从第i 周开始参加培训新工

人的熟练工人数,

i u 表示第

i 周起开始接受培训的新工人数,

1i v 和

2i v 分别为第

i

周末没能按期交货的服装Ⅰ或服装Ⅱ的数量,

1i M 和

2

i M 分别为第

i 周对服装Ⅰ或服装Ⅱ的定货量,则有:

∑∑∑===-++++=8

1

8

1

218

1

)]8(26080[)2010(600min i i i

i i i i u i v v z Z

[][]?????????????

????≥≤≤≤=≤≤++=+++=++==+==+∑∑∑∑∑∑======0,,,,,,)

81(5100)

82(25.010025.0100)

8,,2,1(240)

8,,2,1(400218

11

11111

1

221

111i i i i i i i i

i

i i

i

t i t i i i

k i k

i i i i k

i k i i i i v v u w z y x i w u u i z u w y x z w y x k M v y k M v x

12.解:设五种家具的产量分别为54321

,,,,x x x x x 件,则有

5432135.25.437.2min x x x x x z ++++= ??????

?≥≤++++≤++++≤++++0,,,,28005433239504653436003264354321543215432154321x x x x x x x x x x x x x x x x x x x x 13.解:设

j x )

5,4,3,2,1(=j 为每公斤混合饲料中所含五种饲料的重量,则有

5432134562min x x x x x z ++++=

??????

?≥≥++++≥++++≥++++0,,,,1802.025.035.070.008.0520.015.004.006.010.08580.050.100.300.250.054321543215432154321x x x x x x x x x x x x x x x x x x x x

14.解:设1x :产品A 的售出量;2x :A 在第二车间加工后的售出量;

3x :产品B 的售出量;4x :B 在第三车间加工后的售出量;

5x :第一车间所用的原料数量。则有

5432175.2875.98max x x x x x z -+++=

?????

????≥=-+=-+≤++≤0,,,,0

203200000

5.123100000

54321543

5215425x x x x x x x x x x x x x x x

15.解:设

j i x 为第

i 种投资方案在第

j

年的投资额

)5,,2,1;6,,2,1( ==j i ,则有:

6542231402.17.13.12.1max x x x x z +++=

????????

??

?????≥≤=≤++++=++=+++=++≤=++++=+++0200000)4,3,2,1(1500002.14.14.13.12.102.13.12.102.12.110000002.130000054

164

5431221365

63

2112645414621163231342616242322212

61312111j i j x x j x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x x

16.解:设)4,3,2,1(=j x j 为第j 种产品的生产数量,则有

43214321256.295.325.2752385549max x x x x x x x x Z ----+++= ?????????≥≤+≤++≤++0,,,7015

101201010201502020104321

3

24314

21x x x x x x x

x x x x x

其中:49=65-16 ;27.5=200/20 + 150/10 ,依次类推。

六、解:(1)

,0,021<<≥c c d ;

(2)

0,0,021≤≤≥c c d , 但 21,c c 中至少有一个为零 ;

(3)

0=d ,或 0>d ,而01>c ,且234a d =; (4)01

>c ,234a d >; (5)0,012≤>a c ;

(6)

5x 为人工变量,且0,021≤≤c c .

七、解:设4321

,,,x x x x 分别表示早上 6点 ,中午12点,下午 6 点,夜间 12点

开始上班的人数。则有

(1)4321min x x x x Z +++=;(2)

4321150100)(120min x x x x Z +++=

?????????≥≥+≥+≥+≥+0,,,16182119432143322141x x x x x x x x x x x x ; ?????????≥≥+≥+≥+≥+0,,,16

1821

19432143322141x x x x x x x x x x x x

解得:(1)0,16,2,19,374321=====*

x x x x z ;

(2)

0,16,2,19,41204321=====*

x x x x z 。

八、解:(1)解得

60,40,44000021===*x x z ; (2)解得 60,40,38000021===*x x z 。

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值就是 。 3. 已知变量x,y 满足约束条件+201-70x y x x y -≤??≥??+≤? ,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95 ]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值 就是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( ) A. -3 B 、 3 C 、 -1 D 、 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B 、 1 C 、 5 D 、 无穷大

线性规划题及答案

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 2x -y _2 例1、设变量x、y满足约束条件x 一y _ _1,则z =2x ? 3y的最大值为__________ 。 x y _1 二、已知线性约束条件,探求非线性目标关系最值问题 \ >1, 例2、已知」x-y+1兰0,则x2+y2的最小值是_」“(x-1)2+(y+2『”值域? 2x - y - 2 <0 三、约束条件设计参数形式,考查目标函数最值范围问题。 Zf x _0 例3、在约束条件y_0 下,当3乞s乞5时,目标函数Z=3x?2y的最大值的变化范围是() |y x _s y 2x^4 A. [6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线x2-y2 =4的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是() fx-yZ0 「x-yX0 『x-y^0 "x-y 兰0 (A) x y _ 0 (B) x y 乞0 (C) x y 乞0 (D) x y _ 0 0 _x _3 0 _x _3 0 _x _3 0 _x _3 五、已知最优解成立条件,探求目标函数参数范围问题。 (1 ::: x :「v ‘::4 例5已知变量x,y满足约束条件若目标函数ax y (其中a 0)仅在 [―2 兰x—y 兰2 点(3,1)处取得最大值,则a的取值范围为 __________ 。 六、设计线性规划,探求平面区域的面积问题 丄x y _ 2 _ 0 _ 例6在平面直角坐标系中,不等式组x_y,2_0表示的平面区域的面积是()(A)4、、2 (B)4 [八0 (C) 2.2 (D)2 七、研究线性规划中的整点最优解问题 ”5x-11y —22, 例7、某公司招收男职员x名,女职员y名,x和y须满足约束条件<2x+3yX9, 则 、2x 兰11. z =10x 10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如z =-—a时,可把z看作是动点P x, y与定点Q b, a连线的斜率,这样目 x —b 标函数的最值就转化为PQ连线斜率的最值。 x—y+ 2W 0,V

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

六种经典线性规划例题

线性规划常见题型及解法 求线性目标函数的取值范围 2 2 2 x y A D y 2 O x x=2 求可行域的面积 y y M 5 2 x y 2 y x y 2 x y 2 x y x (3,5] y =2 ( 13 例1 x+2y 时 6 的点 C 、 x , 个 y 6 y 3 2 x + y —3 = 0 C 、 5 A 、 4 B 、 1 D 、无穷大 () 0,将 有 最小值 故选A .B A --- 作出可行域如右图 点个数为13个,选D x + y =2 则z=x+2y 的取值范围是 () 旦y =2 0 0表示的平面区域的面积为 三、求可行域中整点个数 解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6] 解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的 面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 (x 0,y 0) (x 0,y p 0) (xp 0,y 0) (xp 0,y p 0) 是正方形内部(包括边界),容易得到整 y)中整点(横纵坐标都是整数)有() D 、 14 个 2x 例2、不等式组x x 若x 、y 满足约束条件 y O C V —? x 2x + y —6= 0

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

线性规划经典例题及详细解析

1 / 6 一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22 x y +的最小值是 。 3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤?? ≥??+≤? ,则 错误! 的取值范围是( )。 A 。 [错误!,6] B.(-∞,错误!]∪[6,+∞) C.(-∞,3]∪[6,+∞) D 。 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件?? ? ??≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大 值是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处 取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的 值为( ) A. -3 B. 3 C 。 -1 D. 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B. 1 C. 5 D 。 无穷大

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划练习题含答案

线性规划练习题含答案 一、选择题 A .4 5 - B .1 C . 2 D .无法确定【答案】B 【解析】解:如图所示 要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24 (,)33 ,(可行域最 左侧的点)的边界重合即可。注意到a>0,只能与AC 重合,所以a=18.已知点集{}2 2 (,)48160A x y x y x y =+--+≤, {} (,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N . 若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是 A. 1 B. 2 C. 22 D. 4【答案】B 【解析】解:因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。【题型】选择题 9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥??-≤??-+≥? (α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A . -5 B .1 C . 2 D . 3 【答案】D 【解析】解:当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三 角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=310.已知方程:2 20x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22 (3)z a b =++的取值范围为 A. B. 1(,4)2 C. (1,2) D. (1,4)【答案】B 【解析】解: 2( ,2)2222f (x)x ax 2b,f (0)0 f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1z 2解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线 a+2b+1=02的距离为,最小为,由题目,不能去边界2=++><>>++<++>=++11.的取值范围是则满足约束条件变量122,012430 ,++=≤-+≥≥?????x y s y x x y x y x ( )A .[1,4] B .[2,8] C .[2,10] D .[3,9]【答案】B 【解析】约束条件034120x y x x y ≥≥+-≤?????表示的区域如图,221112y y s x x ++=++=?,11y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],112y x ++?的取值范围是[2,8]。 12.若变量x,y 满足约束条件1 325x y x x y ≥-?? ≥??+≤? 则z=2x+y 的最大值为 (A )1 (B)2 (C)3 (D)4【答案】C 【解析】:∵ 作出可行域,作出目标函数线,可得直线与 y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =13.在集合 }4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是

高考全国卷线性规划真题含答案完整版

高考全国卷线性规划真 题含答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1,0,x y x y y +≤?? -≥??≥? 则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330233030x y x y y -≤?? -+≥??+≥? ,则2z x y =+的最小值 是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件32600 0x y x y +-≤?? ≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料 kg ,乙材料 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件???? ?x -y +1≥0,x +y -3≥0,x -3≤0,则z = x -2y 的最小值为________.

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划题及答案完整版

线性规划题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值是 . “()()2221++-y x ”值域? 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件0 024x y y x s y x ≥??≥??+≤??+≤?下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范 围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 五、已知最优解成立条件,探求目标函数参数范围问题。 例5已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 六、设计线性规划,探求平面区域的面积问题 例6在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A) 七、研究线性规划中的整点最优解问题 例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件 ?? ???≤≥+-≥-.112, 932,22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如b x a y z --= 时,可把z 看作是动点()y x P ,与定点()a b Q ,连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

相关文档
相关文档 最新文档