文档库 最新最全的文档下载
当前位置:文档库 › IQ正交调制解调原理

IQ正交调制解调原理

IQ正交调制解调原理
IQ正交调制解调原理

IQ调制原理

IQ解调原理

16QAM-星形和矩形星座图调制解调MATLAB代码

16QAM-星形和矩形星座图调制解调MATLAB代码

%% ------------------------------------------------------------ % 软件无线电课程设计 % % 方形、星形16QAM调制解调仿真% %%------------------------------------------------------------ %%主程序 clc clear %% 定义参数 fd=250*10^6; %码元速率250M fs=2500*10^6; %滤波器采样率 fc=2500*10^6; %载波频率2.5G f=10000*10^6; %对载波采样 data_len=200000; %数据长度 sym_len=data_len/4; %码元序列长度 M_QAM=16;%QAM数 k=log2(M_QAM);

SNR=1:12;%白噪声信噪比, %% ------------------------------------------------------------ bit_tx=randint(1,data_len);%产生随机序列echo off; rec_qam16=QamMod(bit_tx,16); %方形16QAM调制 star_qam16=SrarQamMod(bit_tx); %星形16QAM调制 base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波 base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波 for i=1:length(SNR) %信噪比从1dB到12dB计算误码率 SNR_=i %方形映射16QAM

数字通信中几种调制方式的星座图解析

数字通信中几种调制方式的星座图由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。一.星座图基本原理一般而言,一个已调信号可以表示为:(1)上式中,是低通脉冲波形,此处,我们为简单处理,假设,,即是矩形波,以下也做同样处理。假设一共有(一般总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这个消息序列分别映射到载波的幅度,频率和相位上,显然,必须有才能实现这个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1.当和为常数,即时,为幅度调制(ASK。 (2.当和为常数,即时,为频率调制(FSK。(3.当和为常数,即时,为相位调制(PSK。我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM。我们把(1)式展开,可得:(2)根据空间理论,我们可以选择以下的一组基向量:其中是低通脉冲信号的能量,。这样,调制后的信号就可以用信号空间中的向量来表示。当在二维坐标上将上面的向量端点画出来时,我们称之为星座图,又叫矢量图。也就是说,星座图不是本来就有的,只是我们这样表示出来的。星座图对于判断调制方式的误码率等有很直观的效用。由此我们也可以看出,由于频率调制时,其频率分量始终随着基带信号的变化而变化,故而其基向量也是不停地变化,而且,此时在信号空间中的分量也为一个确定的量。所以,对于频率调制,我们一般都不讨论其星座图的。二.星座图的

矢量调制星座图实验

实验三、矢量调制星座图实验 一、实验目的 1、掌握星座图的概念、星座图的产生原理及方法, 2、了解星座图的作用及工程上的应用。 二、实验内容 1、观察QPSK、OQPSK、MSK、GMSK基带信号的星座图。 2、比较各星座图的不同及他们的意义。 三、基本原理 星座图可以看成数字信号的一个“二维眼图”阵列,同时符号在图中所处的位置具有合理的限制或判决边界。代表各接收符号的点在图中越接近,信号质量就越高。由于屏幕上的图形对应着幅度和相位,阵列的形状可用来分析和确定系统或信道的许多缺陷和畸变,并帮助查找其原因。 星座图对于识别下列调制问题相当有用: * 幅度失衡 * 正交误差 * 相关干扰 * 相位噪声、幅度噪声 * 相位误差 * 调制误差比 在数字调制中,我们可以通过星座图来观察相位的变化、噪声干扰、各矢量点之间的相位转移轨迹等状况,通过星座图,我们可以很容易地看出各矢量调制的频谱利用率情况,应该说,改变基带信号的相位转移轨迹也就改变了调制信号的频谱特性。 星座显示是示波器显示的数字等价形式,将正交基带信号的I和Q两路分别接入示波器的两个输入通道,通过示波器的“X-Y”的功能即可以很清晰地看到调制信号的星座图。 我们知道QPSK信号可以用正交调制方法产生。在它的星座图中,四个信号点之间任何过渡都是可能的,如图7-2(a)所示。在这正方形星座图中对角过渡,必将产生180度相移,此时经限带后所造成的包络起伏最大。如果在正交调制时,将正交路基带信号相对于同相路

基带信号延时一个信息间隔,即符号间隔的一半,则有可能减小包络起伏。这种将正交路延时一段时间的调制方法称为偏移四相相移键控,常记作OQPSK ,又称为参差四相相移键控(SQPSK )。 将正交路信号偏移T 2 /2的结果是消除了已调信号中突然相移180度的现象,每隔T 2 /2信号相位只可能发生±90度的变化。因而星座图中信号点只能沿正方形四边移动,如图7-2(b )所示。滤波后的OQPSK 7-1中比值为无限大的情形。 图7-1 QPSK 信号限带前后的波形 (a )QPSK (b )OQPSK (c )MSK 图7-2 相位转移图 波形的跳跃与弯曲是由于载波相位不连续变化所引起的。采用PSK 调制方式时,在信号点配置图上信号的相位从一点转到另一点会发生瞬时变动,相位的不连续性是不可避免的。因此,只要采用PSK 调制方式,就会出现旁瓣。 MSK 信号配置图如图7-2(c)所示,1比特区间仅使用圆周的1/4,信号点必是轴上4个点中任何一个,因此,相位必然连续。采用MSK 旁瓣降低得非常明显,即使不使用截止特性较好的带通滤波器,也能获得邻道干扰少的调制信号。对MSK 稍加改进就可以获得较少旁瓣的调制方式。由MSK 信号点配置图可知,调制时出现旁瓣是由于调制载波相位急剧变化所引起的。MSK 的相位变化是连续的,但相位变化速率(相位的一次微分)在比特变化点变成不连续。要使相位的一次微分连续,相位点必须以恒定速度旋转,若接近比特变化点, 滤波后 QPSK

星座图详解

数字通信中几种调制方式的星座图 由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。 一.星座图基本原理 一般而言,一个已调信号可以表示为: ()()cos(2)N m n k s t A g t f t π?=+ 0t T ≤< (1) 0000 1,2......1,2.......1,2........1,2........N N m m n n k k ==== 上式中,()g t 是低通脉冲波形,此处,我们为简单处理,假设()1g t =,0t T <≤,即()g t 是矩形波,以下也做同样处理。假设一共有0N (一般0N 总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这0N 个消息序列分别映射到载波的幅度m A ,频率n f 和相位k ?上,显然,必须有 0000N m n k =?? 才能实现这0N 个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1).当n f 和k ?为常数,即0000,1,1m N n k ===时,为幅度调制(ASK)。 (2).当m A 和k ?为常数,即00001,,1m n N k ===时,为频率调制(FSK)。 (3).当m A 和n f 为常数,即00001,1,m n k N ===时,为相位调制(PSK)。 我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM)。 我们把(1)式展开,可得:

正交调制解调

多进制正交振幅调制技术及其在衰落信道下实现 1.背景: 在数字通信中.调制解调方式有三种基本方式:振幅键控、频移键控和相位键控。但单纯的这三种基本方式在实际应用中都存在频谱利用率低、系统容量少等不足。而在现代通信系统中,通信用户数量不仅在不断增加,人们亦不满足传统通信系统的单一语音服务,希望进行图像、数据等多媒体信息的通信。因此,传统通信调制解调方式的容量已经越来越不能满足现代通信的要求。近年来,如何在有限的频率资源中提供高容量、高速率和高质量的多媒体综合业务,是数字通信调制解调领域中一个令人关注的课题。 通过近十多年来的研究,分别针对无线通信信道和有线通信信道的特征,提出了不同的高频谱利用率和高质量的调制解调方案。其中的QAM调制解调方案为:发送数据在比特/符号编码器内被分成速率各为原来1/2的两路信号,分别与一对正交调制分量相乘,求和后输出。接收端完成相反过程,解调出两个正交码流.均衡器补偿由信道引起的失真,判决器识别复数信号并映射回二进制信号。不过.采用QAM调制技术,信道带宽至少要等于码元速率,为了码元同步,还需要另外的带宽,一般要增加15%左右。 2.QAM基本原理: 在QAM(正交幅度调制)中,数据信号由相互正交的两个载波的幅度变化表示。模拟信号的相位调制和数字信号的PSK(相移键控)可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。因此,模拟信号相位调制和数字信号的PSK(相移键控)也可以被认为是QAM的特例,因为其本质上就是相位调制。 QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt和sinwt)上。这样与幅度调制(AM)相比,其频谱利用率将提高1倍。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,QAM最高已达到1024-QAM(1024个样点)。样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM 的每个符号和周期传送4比特。 QAM调制器的原理是发送数据在比特/符号编码器(也就是串–并转换器)内被分成两

(完整word版)16QAM_星形和矩形星座图调制解调MATLAB代码

%% ------------------------------------------------------------ % 软件无线电课程设计 % % 方形、星形16QAM调制解调仿真 % %%------------------------------------------------------------ %%主程序 clc clear %% 定义参数 fd=250*10^6; %码元速率250M fs=2500*10^6; %滤波器采样率 fc=2500*10^6; %载波频率2.5G f=10000*10^6; %对载波采样 data_len=200000; %数据长度 sym_len=data_len/4; %码元序列长度 M_QAM=16;%QAM数 k=log2(M_QAM); SNR=1:12;%白噪声信噪比, %% ------------------------------------------------------------ bit_tx=randint(1,data_len);%产生随机序列 echo off; rec_qam16=QamMod(bit_tx,16); %方形16QAM调制 star_qam16=SrarQamMod(bit_tx); %星形16QAM调制 base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波 base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波 for i=1:length(SNR) %信噪比从1dB到12dB计算误码率SNR_=i %方形映射16QAM rf_rec_qam16=CarrierMod(fc,f,base_rec); %载波调制 rf_rec_qam16_n=awgn(rf_rec_qam16,SNR(i),'measured'); %加噪声 [rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_n); %载波解调bit_rec_rx=QamDemod(rec_qam16_rx,16); %MQAM解调 [num_qam16,perr_qam16_rec(i)]=biterr(bit_tx,bit_rec_rx);%误码率 qam16_data_rec(i,:)=rec_qam16_rx; %scatterplot(rec_qam16_rx); %星形映射16QAM

基于matlab的正交振幅调制与解调

题目:基于MATLAB的正交振幅 调制与解调仿真 学生姓名: 学生学号: 系别: 专业: 届别: 指导教师: 电气信息工程学院制 2012年5月

基于MATLAB的正交振幅调制与解调仿真 学生: 指导老师: 电气信息工程学院 1课程设计的任务与要求 1.1课程设计的任务 本课程设计通过Matlab,Simulink软件来仿真正交振幅调制和解调,要求进一步理解QAM,并掌握Matlab,Simulink软件的使用。 1.2课程设计的要求 设计平台为Matlab集成环境,在Matlab,Simulink软件下输入仿真程序,运行该程序,观察波形前后的变化。独立完成所有的设计。 1.3课程设计的研究基础 正交振幅调制(Quadrature Amplitude Modulation, QAM )是一种高效的数字调制解调方式,它在中、大容量数字微波通信系统、有线电视网络高数据传输、卫星通信等领域被广泛使用。 在多进制键控体制中,相位键控的带宽和功率占用方面都具有优势,即带宽占用小和比特信噪比要求低。因此,MPSK和MDPSK为人们所喜用。但是,在MPSK体制中,随着M的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难以保证。为了改善在M大时的噪声容限,发展出了QAM体制。在QAM体制中,信号的振幅和相位作为两个独立的参量同时受到调制[1]。 正交振幅调制(Quadrature Amplitude Modulation, QAM )是一种振幅和相位联合键控。正交振幅调制是二进制的PSK、四进制的QPSK调制的进一步推广,通过相位和振幅的联合控制,可以得到更高频谱效率的调制方式,从而可在限定的频带内传输更高速率的数据。正交振幅调制(QAM)的一般表达式为 y(t)= A cos c w t+m B sin c w t 0≤t<s T(1) m 上式由两个相互正交的载波构成,每个载波被一组离散的振幅{ A}、{m B}所调制, m 故称这种调制方式为正交振幅调制。式中, T为码元宽度;m=1,2,…,M,M为m A和m B s 电平数。

PSK的调制解调要点

1 引言 通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。 1.1 数字通信系统的模型 按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。而数字通信系统是利用数字信号来传递信息的通信系统。数字信号有时也称为离散信号。近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。本文讨论的也是数字通信中调制解调原理。数字通信系统的一般模型如图1所示。 图1 数字通信系统模型 其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。加密和解密是为了保证所传信息的安全。数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。模拟信号经过数字编码后也可以在数字通信系统中传输。 1.2 数字通信的特点 目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。 (1)数字通信系统抗干扰能力强,且噪声不积累。数字通信系统中传输的 信息源 信源编码 加密 信道编码 数字调制 信道 数字解调 信道译码 解密 信源译码 受信者 躁声源

最小频移键控(MSK)正交调制与相干解调系统的仿真

湖南科技大学潇湘学院信息与电气工程系 课程设计报告 课程: 题目: 专业: 班级: 姓名: 学号:

课程设计任务书 题目《通信原理》课程设计 设计时间2014.7.2-2014.7.6 设计目的: 1.巩固所学的专业技术知识; 2.熟悉SystemView,Matlab 仿真环境并能在其环境下了解并掌握通信系统的一般设计方法,具备初步的独立设计能力; 3.提高综合运用所学理论知识独立分析和解决问题的能力; 4.更好地将理论与实践相结合。 设计要求: 建立系统的数学模型:在System View仿真环境下,从各种功能库中选取、拖动可视化图符,组建系统,在信号源图符库、算子图符库、函数图符库、信号接收器图符库中选取满足需要的功能模块,将其图符拖到设计窗口,按设计的系统框图组建系统;设置、调整参数,实现系统模拟;设置观察窗口,分析模拟数据和波形。 总体方案实现: 调制模块:采用正交调幅方式产生MSK信号。对输入数据进行差分编码,把差分编码器的输出数据用串/并变换器分成两路,然后进行加权,最后用两路加权后的数据分别对正交载波cosωct和sinωct进行调制、叠加。 解调模块:采用相干解调的方法进行解调。 指导教师评语:

一、课程设计的目的 1.掌握电路设计的基本思路和方法; 2.掌握系统各功能模块的基本工作原理; 3.提高对所学理论知识的理解能力; 4.能提高对所学知识的实际应用能力; 二、设计方案的论证 2.1 MSK 的基本原理 MSK (Minimum Frequency Shift Keying)又称快速移频键控 (FFSK),是 2FSK 的改进 形式。所谓“最小”是指这种调制方式能以最小的调制指数(0.5)获得正交信号,“快速” 是指在给定同样的频带内,MSK 能比 2PSK 的数据传输速率更高,且在带外的频谱分量 要比 2PSK 衰减的快。 MSK 是恒定包络连续相位频率调制,其信号的表示式为 1≤≤ t , ? + t +s cos)(? = ω π a k ( ) c MSK 2T s ωc 为载波角频率,Ts 为码元宽度,ak 为第 k 个输入码元,取值为 ±1;φk 为第 k 个 码元的相位常数,在时间 kTs ≤t ≤(k+1)Ts 中保持不变,其作用是保证在 t=kTs 时刻信号 相位连续。 令 则信号的表? t t π a k t )( s + cos)( = θ( ω ) 示式为t θ+ )(t = k c MSK k k 2T s 1 ; +f 当=a k π c =+: 1时 1 ω 2π T s 2 ?f =当a k =?: 1时 1 ω π 2 c 2π T s 2 = ? f = ?f =? f 2 1 1 调制指数 ?f 0.5 2T s s f MSK 信号的时间波形如图所示: 图 2-1 MSK 信号的时间波形图

QAM和星座图

正交调制读书报告 NJUer 摘要:正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用,本文探讨了正交振幅调制技术的相关原理,并从星座图的角度认识这种调制方式的实现和相关应用。 关键词:正交幅度调制QAM、星座图 一、正交幅度调制 QAM是一种振幅和相位联合调制,也即其已调信号的振幅和相位均随数字基带信号变化而变化。采用M(M>2)进制的正交振幅调制,可记为MQAM。M越大,频带利用率就越高。 在移动通信中,随着微蜂窝的出现,使得信道传输特性发生了很大变化。过去在传统蜂窝系统中不能应用的正交振幅调制也引起人们的重视。QAM数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。它以其灵活的配置和优越的性能指标,广泛的应用于数字有线电视传输领域和数字MMDS系统。 为改善数字调制的不足之处,如:频谱利用率低、抗多径抗衰弱能力差、功率谱衰减慢、带外辐射严重等,人们采取了如下的几种方式,如提高功率利用率以增强抗噪声性能;适应各种随参信道以增强抗多径抗衰落能力等。另外,在恒参信道中,正交振幅调制(QAM)方式具有高的频谱利用率,因此正交振幅调制(QAM)在卫星通信和有线电视网络高速数据传输等领域得到广泛应用。 二、QAM调制的原理和星座图 2.1、数据经过信道编码之后,被映射到星座图上,图1就是QAM调制器的基本原理框图。

:正交幅度调制信号(QAM)调制解调系统的性能分析

摘要 正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛使用。 由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。为了在有限信道带宽中高速率地传输数据,可以采用多进制(M进制,M>2)调制方式,MPSK则是经常使用的调制方式,由于MPSK的信号点分布在圆周上,没有最充分地利用信号平面,随着M值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。MQAM称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M值和信号功率条件下,具有比MPSK更高的抗干扰能力。 关键词:QAM 调制解调星座图误码率

目录 摘要 ................................................................................................................ 错误!未定义书签。前言 ................................................................................................................ 错误!未定义书签。一基本原理 .................................................................................................. 错误!未定义书签。 1.1硬件方面 ......................................................................................... 错误!未定义书签。 1.1.1芯片SHT10介绍.................................................................. 错误!未定义书签。 1.1.2 CC2530介绍........................................................................ 错误!未定义书签。 1.2软件方面 ......................................................................................... 错误!未定义书签。 1.2.1 zigbee协议介绍................................................................ 错误!未定义书签。 1.2.2 zigbee协议栈结构............................................................ 错误!未定义书签。二系统分析 .................................................................................................. 错误!未定义书签。三详细设计 .................................................................................................. 错误!未定义书签。 3.1 总体软件结构图............................................................................. 错误!未定义书签。 3.2硬件模块设计.................................................................................. 错误!未定义书签。 3.3 编码 ................................................................................................ 错误!未定义书签。四总结 .......................................................................................................... 错误!未定义书签。五参考文献 .................................................................................................. 错误!未定义书签。六致谢 .......................................................................................................... 错误!未定义书签。附录 ................................................................................................................ 错误!未定义书签。

IQ正交调制及星座图

IQ正交调制及星座图 一个信号有三个特性随时间变化:幅度、相位或频率。然而,相位和频率仅仅是从不同的角度去观察或测量同一信号的变化。人们可以同时进行幅度和相位的调制,也可以分开进行调制,但是这既难于产生更难于检测。但是在特制的系统中信号可以分解为一组相对独立的分量:同相(I)和正交(Q)分量。这两个分量是正交的,且互不相干的。 正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。 图1中的QAM调制器中I和Q信号来自一个信号源,幅度和频率都相同,唯一不同的是Q信号的相位与I信号相差90o。具体关系如下图所示,当I的幅度为1的时候,Q的幅度为0,而当I的幅度为0的时候,Q的幅度为1,两个信号互不相干,相位相差90o,是正交的。 模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是QAM的特例,因为它们本质上就是相位调制。 I-Q的调变信号可由同相载波和90度相移的载波相加合成,在电路上下直接牵涉到载波相位的改变,所以比较好实现。其次,通常I-Q图上只有几个固定点,简单的数字电路就足以腾任编码的工作。而且不同调变技术的差异只在于

I-Q图上点的分布不同而已,所以只要改变I-Q编码器,利用同样的调变器,便可得到不同的调变结果。 I-Q解调变换的过程也很容易,只要取得和发射机相同的载波信号,解调器的方块图基本上只是调变器的反向而已。从硬件的开点而言,调变器和解调器的方块图上,没有会因为I-Q值的不同(不同的I-Q调变技术)而必须改变的部份,所以这两个方块图可以应用在所有的I-Q调变技术中。 QAM解调各点波形

正交幅度调制信号(QAM)调制解调系统的性能分析概要

***************** 实践教学 ***************** 兰州理工大学 计算机与通信学院 2013年春季学期 通信系统仿真训练 题目:正交幅度调制信号(QAM)调制解调系统的性能分析 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 正交振幅调制(QAM)是一种振幅和相位联合键控。它是功率和带宽相对高效的信道调制技术,误码率较低。本次课程设计主要是对正交幅度调制解调工作过程的仿真,绘制了QAM的星座图及误码率曲线,在调制信号加入噪声对抗噪声性能进行了分析,并和QPSK进行对比得到相应结论。 关键词:QAM;调制解调;星座图;误码率

目录 第一章前言 (1) 第二章正交幅度调制解调系统基本原理 (2) 2.1 调制及解调的相关概念 (2) 2.2 正交振幅调制系统 (2) 2.2.1 正交幅度调制技术及QAM (2) 2.2.2 QAM的误码率性能 (7) 2.2.3 眼图的分析 (8) 第三章正交幅度调制解调的仿真及结果分析 (10) 3.1 正交调制过程 (10) 3.1.1随机序列的产生 (10) 3.1.2 序列的串并变换 (10) 3.1.3 成型滤波(平方根升余弦滤波器) (10) 3.1.4 调制 (11) 3.2 加高斯白噪声及解调 (12) 3.3 误码率曲线 (12) 3.5 QAM和PSK的眼图及星座图分析 (14) 总结 (19) 参考文献 (20) 附录 (21) 致谢 (29)

第一章前言 随着现代通信技术的发展,特别是移动通信技术高速发展,新的需求层出不穷,促使新的业务不断产生,因而导致频率资源越来越紧张。在有限的带宽里要传输大量的多媒体数据,频谱利用率成为当前至关重要的课题。 16QAM技术因为具有高频谱利用率、高功率谱密度等优势,被广泛应用于高速数据传输系统.在很多宽带应用领域,比如数字电视广播,Internet宽带接入,QAM系统都得到了广泛的应用。QAM也可用于数字调制。数字QAM有4QAM、8QAM、16QAM、32QAM 等调制方式。其中,16QAM和32QAM广泛用于数字有线电视系统。 无线通信技术的迅猛发展对数据传输速率、传输效率和频带利用率提出了更高的要求。选择高效可行的调制解调手段,对提高信号的有效性和可靠性起着至关重要的作用。由于QAM已经成为宽带无线接入和无线视频通信的重要技术方案。关于调制解调技术的仿真研究对于QAM理论研究和相关产品开发具有重要意义。 目前,我国的有线电视采用DVB-C标准。DVB系统的信源编码统一使用MPEG-2编码。模拟信号经抽样、量化、编码后形成的数字基带信号,其码率很高,占用的频带也很宽。QAM(Quadrature Amplitude Modulation)就是用两个调制信号对频率相同、相位正交的两个载波进行调幅,然后将已调信号加在一起进行传输或发射。在NTSC制和PAL制中形成色度信号时,用的就是正交调幅方式将两个色差信号调制到色度副载波上。 在移动通信中频谱利用率一直是人们关注的焦点之一,随着微蜂窝(Microcell)和微微蜂窝(Picocell)系统的出现,使得信道的传输特性发生了很大变化,接收机和发射机之间通常具有很强的支达分量,以往在蜂窝系统中不能应用的但频谱利用率很高的QAM已引起人们的重视,许多学者已对16QAM及其它变型的QAM在PCN中的应用进行了广泛深入地研究。这是近年来被国际上移动通信技术专家十分重视的一种信号调制方式。

psk调制与解调

课程设计任务书 学生姓名:陈欢专业班级:通信0902班 指导教师:艾青松工作单位:信息工程学院 题目: 4PSK调制与解调系统仿真 设计任务与要求: (1)任务:设计一个4PSK调制解调系统 (2)要求: 1)4PSK信号波形的载频和相位参数应随机置或者可有几组参数组合供选择2)系统中要求加入高斯白噪声 3) 4PSK解调方框图采用相干接收形式 4)分析误码率 (3)说明:设计报告必须包括建模仿真结果。 参考文献: 1.《通信原理》王福昌熊兆飞黄本雄清华大学出版社 2006 2.《MATLAB仿真技术与应用教程》钟麟王峰国防工业出版社 2003 3.《MATLAB通信仿真与技术应用》刘敏魏玲国防工业出版社 2001 时间安排: 第18周安排任务,设计仿真,撰写报告。 第19周完成设计,提交报告,答辩。 指导教师签名: 2011 年月日系主任(或责任教师)签名: 2011 年月日

目录 摘要.............................................. 错误!未定义书签。ABSTRACT .......................................... 错误!未定义书签。 1 基本原理与方法................................. 错误!未定义书签。 MATLAB软件介绍.............................. 错误!未定义书签。 4PSK的基本特点.............................. 错误!未定义书签。 4PSK调制解调原理............................ 错误!未定义书签。 4PSK调制原理............................ 错误!未定义书签。 4PSK解调原理............................ 错误!未定义书签。 误码率的分析................................ 错误!未定义书签。 2 基于SIMULINK的4PSK调制解调系统............... 错误!未定义书签。 信源的产生.................................. 错误!未定义书签。 串并转换.................................... 错误!未定义书签。 将非极性信号转换成极性信号.................. 错误!未定义书签。 调制........................................ 错误!未定义书签。 信号的传输.............................. 错误!未定义书签。 信号的解调.............................. 错误!未定义书签。 比特错误率统计.............................. 错误!未定义书签。 3 4PSK源程序及仿真分析........................... 错误!未定义书签。 4PSK调制.................................... 错误!未定义书签。 4PSK解调.................................... 错误!未定义书签。 4PSK误码率分析........................... 错误!未定义书签。 4 小结........................................... 错误!未定义书签。参考文献.......................................... 错误!未定义书签。

2FSK正交调制解调的设计与仿真实现汇总

2FSK正交调制解调的设计与仿真实现 摘要:通信技术的发展为现代沟通交流提供了很大的便利,通信仿真技术是对设计的通信系统进行模拟仿真的一门科学技术,以提升系统的可用性。现代通信系统分为无线通信和有线通信,在各个领域发挥越来越重要的作用,MATLAB是实现通信仿真的重要技术手段,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。利用它可以构造各种复杂的模拟、数字、数模混合通信系统和各种多速率系统,也可用于各种线性或非线性控制系统的设计和仿真。它是一个强有力的动态系统分析工具,可进行包括数字信号处理系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析。 关键词:2FSK正交调制解调;设计应用;仿真 1.MATLAB简介 MATLAB是目前流行的用于科学研究、工程计算的软件,起源于矩阵运算,并已经发展成为一种高度集成的计算机语言。MATLAB具有强大的数学运算能力、方便实用的绘图功能及语言的高度集成性,除具备卓越的数值计算能力之外,它还提供了专业水平的符号计算、文字处理、可视化建模仿真、实时控制等功能。 在通信领域MATLAB更是优势明显,因为通信领域中很多问题是研究系统性能的,传统的方法只有构建一个实验系统,采用各种方法进行测量,才能得到所需的数据,这样不仅需要花费大量的资金用于实验系统的构建,而且系统构建周期长,系统参数的调整也十分困难。而MATLAB的出现使得通信系统的仿真能够用计算机模拟实现,免去构建实验系统的不便,而且操作十分简便,只需要输入不同的参数就能得到不同情况下系统的性能,而且在结构的观测和数据的存储方面也比传统的方式有很多优势,MATLAB在通信仿真领域得到越来越多的应用。 2.数字调制2FSK 2FSK信号可以看作两个不同载频的ASK信号的叠加,2FSK调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。本次课程设计采用的是前面一种方法。目前常用的2FSK的解调方式有两种:相干解调方式和非相干解调方式,根据已调信号由两个载波f1、f2调制而成,相干

正交调制解调

正交调制解调 为了提高频谱利用率,通信系统常采用正交调制。一般我们在教科书上看到的正交调制模型为: I(t)为同相支路(I路)的基带信号,Q(t)为正交支路(Q路)的基带信号。I路信号与载波相乘,Q路信号与载波相乘,然后将两路乘积加起来作为发送信号s(t),即 。之所以Q路信号采用-sin是因为这样可以方便用等效复数基带模型来表示。接下来简要回顾一下等效复数基带模型。由于信道是模拟的,所以信道本身肯定不可能传输复数信号。输入信号包含相互独立的I/Q两部分,在理论分析上常用I(t)+jQ(t)来表示,即I路信号代表复数信号的实部,Q路信号代表复数信号的虚部,这就是正交调制的复数基带模型。如果我们将I/Q两路载波也用类似的方式表示为复数载波。则发送的信号实际上是复数基带信号与复数载波混频后的实部,即

与之相对应,接收端解调时需要采用下面的结构 注意到接收端解调时使用的I/Q两路载波需要与发送端一致,否则会造成解调错误。 好了,介绍完教科书上的内容,我们谈谈工程实现。笔者在工作中发现,实际在设计DDS查找表时,I路存储的为正弦波形,Q路存储的为余弦波形。这个事实上和我们在教科书看到的结构等效,因为I/Q 两路载波均为周期信号,只要二者相位相对关系不变,波形表初相的选择并不重要。比如相对于 只是绝对相位落后了,但是两路载波相位的相对关系不变,所以二者等价。 如果我们改变I/Q两路载波相位相对关系会怎样呢?举一个例子,也有大量的设备中采用这种载波结构,显然其相位相对关系发生了变化。这种变化对于基带解调有哪些影响呢?答案是极性。为了说明这个问题,我们假设信号s(t)就是一个单载波信号,则经过混频器和低通滤波器之后,I路解调输出为 ,而Q路解调输出为。显

QPSK两种不同星座图方式误码率比较及其仿真程序

clc; clear all; close all; nsymbol = 50000;%%每种信噪比下符号数的发送符号数 data = randi([0,1],1,nsymbol*2); %%产生1行,nsymbol列均匀分布的随机数0,1 qpsk_mod1 = zeros(1,nsymbol); qpsk_mod2 = zeros(1,nsymbol); data_receive1 = zeros(1,nsymbol); data_receive2 = zeros(1,nsymbol); data_receive = zeros(1,nsymbol*2); Wrongnumber = 0; SymbolWrongnumber = 0; for i=1:nsymbol %%调制 symbol1 = data(2*i-1); symbol2 = data(2*i); if symbol1 == 0 & symbol2 == 0 qpsk_mod1(i) = 1; qpsk_mod2(i) = 0; elseif symbol1 == 0 & symbol2 == 1 qpsk_mod1(i) = 0; qpsk_mod2(i) = 1; elseif symbol1 == 1 & symbol2 == 1 qpsk_mod1(i) = -1; qpsk_mod2(i) = 0; elseif symbol1 == 1 & symbol2 == 0 qpsk_mod1(i) = 0; qpsk_mod2(i) = -1; end end SNR_dB = 1:10;%%%信噪比dB形式 SNR = 10.^(SNR_dB/10);%%信噪比转化为线性值 for loop= 1:10 sigma = sqrt(1/(2*SNR(loop)));%%%根据符号功率求噪声功率 qpsk_receive1 = qpsk_mod1 + sigma * randn(1,nsymbol); qpsk_receive2 = qpsk_mod2 + sigma * randn(1,nsymbol); %%添加复高斯白噪声for k=1:nsymbol if qpsk_receive2(k) > qpsk_receive1(k)

相关文档
相关文档 最新文档