文档库 最新最全的文档下载
当前位置:文档库 › 散粮计算表格

散粮计算表格

散粮计算表格
散粮计算表格

Excel 在散粮船稳性衡准计算中的应用

范育军

(南通航运职业技术学院 航海系,江苏 南通226006)

摘 要:依据SOLAS 1974对散装谷物船进行稳性衡准三项指标的核算,是散粮船配积载工作的重中之重。运用Excel 编制散粮船稳性衡准核算程式,能高效简捷地解决稳性衡准的核算问题,具有广泛的适用性。

关键词:船舶货运;散装谷物;Excel ;稳性;应用研究

中图分类号:U 文献标识码:A 文章编号:

1 前言

现行的《国际散装谷物安全装运规则》中的核心部分,是SOLAS 1974(1974年国际海上人命安全公约)对散装谷物船(即散粮船)稳性衡准的要求,即:

① 经自由液面修正后的初稳性高度m GM 30.00≥; ② 由于谷物移动使船舶产生的横倾角 12≤h θ; ③ 剩余动稳性rad m S ?≥075.0。

无论装货港制定的散粮船稳性衡准计算格式如何,其实质都是依据对以上三个指标的核算而编制的。通常情况下的核算步骤是:先根据装载情况计算出经自由液面修正后的初稳性高度GM 0和绘制静稳性曲线,即GZ -θ曲线;尔后根据1969等效条例绘制出谷物移动倾侧力臂曲线,即λ-θ曲线;再确定右边界线θ=θm ;最后判定θ

h

是否小于120,应用近似积分计算出三条曲线所围成

的面积,即动稳性S (即图1中阴影部分)是否大于0.075m ·rad 。可见整个核算过程相当繁琐,若计算结果不满足要求而需要调整装载方案时,需要将上述核算过程重新计算。因此航海人员常采用一些较为简化的核算方法,其中最为简化的核算方法莫过于采用“谷物许用倾侧力矩法”。

“谷物许用倾侧力矩法”中的谷物许用倾侧力矩M a 是指恰能同时满足公约或规则中稳性三项指标要求时所允许的全船谷物倾侧力矩的最大值。该方法使用简便,越来越受到广大航海者的青睐。中国船级社(CCS )已在“海船法定检验技术规则”中明确规定:散装谷物船舶必须配备“谷物许用倾侧力矩M a 表”,供船上人员使用。

2 利用Excel 编制散粮船稳性衡准计算的程式

随着计算机在船舶上的普及使用,船舶在配积载计算方面变得快捷、方便和准确。笔者在实践中利用Excel 编制散粮船稳性衡准计算程式,更快捷、更方便,具有自动查表、自动内插计算功能;具有简单的逻辑判断功能,能通过运算直接给出结论;如改变或调整货物装载方案,能立刻得出是否满足要求的结论,具有普遍的应用性。现将利用Excel 编制的散粮船稳性衡准计算程式介绍如下: 2.1 使用到的几个相关函数简介

2.1.1 MATCH 函数:返回在指定方式下与指定数值匹配的数组中元素的相应位置。

函数语法为:MATCH (lookup-value, lookup-array, match-type )

2.1.2 INDEX 函数:返回数据清单或数组中的元素值,此元素由行序号或列序号的索引值给定。

函数语法为:INDEX (array, row-num, column ) 2.1.3 LOOKUP 函数:指定在给定的比较值中查找的值。

函数语法为:LOOKUP (lookup-value, lookup-vector, result-vector )

图 1

2.1.4 IF函数:比较两个数字、函数、公式、标签或逻辑值的等式。

函数语法为:IF(logical-test, value-if-true, value-if-false)

2.2 具体编制散粮船稳性衡准计算程式的步骤

2.2.1创建文件和对工作表命名

创建新文件,并将其工作簿命名(以中国船级社制定的散粮船稳性衡准计算格式为例)为“CCS散粮稳性衡准”,打开该文件,并将工作表Sheet 1命名为“散粮稳性衡准”、工作表Sheet 2命名为“静水力参数表”、工作表Sheet 3命名为“M a及内插表”。

2.2.2设计专用工作表格式、输入数据和有关函数的应用

分别在三个工作表中设计出如下表-1、表-2和表-3三个表式,并根据船舶资料填入有关数据(如以“L”轮为例)。

21

22

A 表-1中分“装载情况”和“计算结果及结论”两部分,在“装载情况”中的灰底粗体数字为数据输入部分,根据货物种类、货物装载以及油水配置情况输入;其它数字为数据输入和计算的结果。

如:单元格D5=B5*C5,G5=B5*E5,B10=SUM(B5:B9),B18=SUM(B12:B17),船舶排水量△:B20=B10+B18,积载后船舶的合重心高度KG:C20=D20/B20,船舶的合重心距舯距离X g:E20=F20/B20等。注意输入后须按回车键即得到计算结果。在“计算结果及结论”中大多数数据是从表-2和表-3中自动查表或内插计算后引用而来的,如船舶平均吃水d m:C23=静水力参数表!A22等等;根据公式得出计算倾侧力矩M u:H27=(H13+H15+H16+H17)/F1+1.12*(H12+H14)/F1;利用自动查找功能和内插原理得出许用倾侧力矩M a:H26= Ma及内插!B17;单元格H28和H29是运用IF函数:H28=IF(H27<=H26,"符合要求","不符合要求"),H29=IF(H27<=H26,"OK","需要采取适当措施")。

B 在表-2中,“静水力参数表”根据船舶资料输入,而自动查找功能是MATCH函数和INDEX函数的应用。具体操作如下:

对单元格G21输入“=MATCH(B22,B1:B18,1)”结果为16(注:B22为数据引用,即B22=散粮稳性衡准!B20);对单元格G23输入“=G21+1”,结果为17;对单元格B21输入“=INDEX(B1:B18,G21,1)”,结果为32600;对单元格B23输入“=INDEX(B1:B18,G23,1)”,结果为33250。同样可以得到A21结果为9.8,A23结果为10,然后通过内插:A22=A21+(B22-B21)*(A23-A21)/(B23-B21),结果为9.83。同理可得到C22、D22、E22和F22的值供表-1中有关单元格的引用与计算。

C 在表-3中,对于最大许用倾侧力矩M a的查找和内插计算原理与上述B步骤相似。与上述B相比:不仅要进行行查找与内插,而且要进行列查找与内插。在列查找中,第一步运用MATCH函数和INDEX 函数与上述B中完全相同,第二步是运用LOOKUP函数。

如对单元格A17输入“=LOOKUP(A16,B11:K11,B13:K13)”,结果为13770;对单元格C17输入“=LOOKUP(C16,B11:K11,B13:K13)”,结果为13017.2;内插原理亦与上述B同,其计算的结果值供表-1中单元格H26的引用。

3 工作表的保护与使用

为了防止误操作或公式被修改,可以对该工作表实行保护。先将需要输入数据的单元格进行解琐设定,方法是选中该单元格,鼠标单击右键,点击“设置单元格格式”、在“保护”标签“琐定”项的复选框中取消琐定选择。然后在文件菜单“工具”栏中选择“保护”之“保护工作表”,输入密码并确定。

使用时将各舱分配货物的重量、油水重量、谷物积载因素以及各舱谷物体积倾侧力矩等输入到“散粮稳性衡准”表中指定的单元格中,便可立即得出结论。

编制该计算表的方法简单、易懂,且具有广泛的适用性。

参考文献:

[1]朱滨.利用EXCEL自行编制调水尺程式[J].航海技术,2004(1).

[2]徐邦桢,等.海上货物运输[M].大连:大连海事大学出版社,2001.

Application of Excel to Ship’s Stability Calculation of Grain in Bulk

FAN Yu-jun

(Nantong Vocation & Technical Shipping College, Nantong Jiangsu 226006) Abstract: It is an important that the work of ship’s stowage plan base on SOLAS 1974 to calculate the three guideline of the ship’s stability of grain in bulk. This paper gives us how to using Excel to work out the calculation program of bulk grain ship. It is provided with applicability.

Keywords: Cargo Shipping; Grain in bulk; Excel; Stability; Application research

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

excel表格自动计算设置方法

竭诚为您提供优质文档/双击可除excel表格自动计算设置方法 篇一:excel表间怎样实现自动计算 excel表间怎样实现自动计算?我在银行工作,日常业务是制作如下的表格,其中表1是分户账,表2是总账。 如果我在表1的第2、3、4行分别输入数据后,自动生成余额,那么在表2中怎样才能自动生成所需的数据呢?您可以用excel97中的宏来解决这个问题。这里向您提供一个例子,具体的实现您可以仿照此例子进行设计。下面假设表1为sheet1,表2为sheet2,并仅就借方发生额进行您所要的自动统计。选择“工具”*“宏”*“宏...”,输入一宏名“test”,并输入如下代码: subtest() dimiasinteger dimkasinteger dimjasstring sheets(“sheet1”).select i=0 Fork=1to2

j=“b” j=j&k Range(j).select i=i+Val(activecell.FormulaR1c1) nextk sheets(“sheet2”).select Range(“b1”).select activecell.FormulaR1c1=i endsub 执行该宏后,表2中的借方发生额就是您所要的值了。您可以对此段程序分析并修改为适合您需求的宏。 简述excel中“合并计算”的功能作用(excel表格自动计算设置方法),并叙述步骤 最佳答案所谓合并计算,用财务人员通俗的话讲,就是 把多个格式一致的报表,汇总起来 主要做法是: 新建一个与各报表格式一致的表格用作汇总表 点击要汇总的数据项所在单元格 点菜单:"数据-合并计算" 弹出"合并计算"对话框 在引用位置中,选择某一报表的相同位置 点添加

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

暖气散热量计算方法

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持.
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn)
式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差 tp-tn 越大,散热量也越大。如果它们成直线关系变化,则 Ks 就应该是常数。但是,事 实上散热量的增大倍数要高于温差的增长倍数。 Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。准确测量 Fs 是 十分困难的,而 Fs 的取值又影响到 Ks 值的大小。同一组散热器,采用的 Fs 越大,Ks 就越小;Fs 越小, Ks 就越大。由于 Ks 值不能单独用来评价散热器的优劣,可见公式 Qs=KsFs(tp-tn)用来表达散热器的热工 特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出 Ks 值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。 【例】单管系统温降计算及散热器选择: 已知:供水温度为 95℃,回水温度为 70℃,各层热负荷如图 18 59 所示,房间设计温度为 18℃,计算 选择各层散热器。 图 18 59 【解】(1)计算立管的总热负荷
Q=6550kcal/h (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-5 73)℃=89 27℃
1 文档来源为:从网络收集整理.word 版本可编辑.

散热片散热面积计算

散热片作为强化传热的重要技术之一,广泛地应用于提高固体壁面的传热速率。比如飞机、空调、电子元件、机动车辆的散热器、船用散热器等[1]。对散热片强化传热的研究引起国 内外众多学者的关注,如对散热片自然对流的研究[2-7],对散热片强制对流的研究[8-12 ]。前人对散热片的研究大致可分为两类:其一,采用实验的手段,在一定范围内改变散热片组的结构尺寸和操作参数,比较其传热性能,从而得出散热片组最优的结构尺寸和最优的操作参数;其二,采用数学方法,对某一具体情况推导出偏微分方程,简化其边界条件,求其数值解。本文深入分析散热片组间流体的流动特性及传热特性,总结各种因素对传热的影响,采用最优化技术及先进的计算机软件技术,对自然对流情况下矩形散热片组的散热过程进行了优化研究,并设计典型实验,检验优化结果。 2 散热片散热过程分析散热片多用于强化发热表面向空气散热的情况,故本文以与空气接触的散热片 为研究对 象。由于散热片表面温度(一般不超过250 C )不高,散热片组对空气的辐射换热量采用式(1) 计算可知,它所占比例小于总散热量的3%。因此,散热片表面与周围环境之间的散热主要 是对流传热。式(1)中的F为辐射角系数,本文散热片组的辐射角系数由G N ELLISON [13] 介绍的方法求得。 (1) 散热片传热是一个比较复杂的物理过程,对此过程,国内外学者进行了深入的实验研究,他们的工作主要着重于传热系数大小、传热系数与流体流速以及流道的几何形状等因素的内在联系。在实验研究中得到了许多适用于具体实验条件的准数关联式。这些结果对传热过程 的了解和散热片的设计有重要的意义。 在自然对流条件下,散热片组的结构参数(散热片的间距、高度、厚度 )是散热片散热的 主要影响因素,散热片组的结构见文献[ 14]。 2.1 间距对散热片散热的影响 描述流体与固体间对流传热的基本方程式为: Q=hA AT (2) 从上式可以看出,通过提高传热系数h,增大传热面积来强化流体与散热片表面间的对 流传热效果。当基面宽度 W给定时,假定传热温差AT,传热系数h不变,这样散热量 Q 的提高就取决于换热面积 A 的大小。增加散热片数量就可以增加换热面积,有利于散热。但散热片数目的增多,减小了散热片间的距离S,传热系数h也随之降低。 2.2 高度对散热片散热的影响 提高散热片的高度 H可以增加换热面积 A,从而达到强化传热的目的。但增加高度会使散热片顶部的局部传热系数降低,导致平均传热系数的降低。此外,高度也影响着从散热片基面到端部的温度降。高度越大,温度降也越大,导致散热片表面与周围大气的平均温度差就随之降低,不利于散热。实际上,散热片的高度还将受到整机外型尺寸的限制。 2.3 厚度对散热片散热的影响 散热片越薄,则单位长度上可装载的散热片的数量就越多,从而增大散热面积,强化散热片的散热;随着散热片厚度的增大,散热片表面与周围大气的平均换热温度差AT就随之 降低,这对于散热是不利的。在实际的应用中,厚度3的大小往往受工艺水平高低所限。一

excel表格如何自动求减

竭诚为您提供优质文档/双击可除excel表格如何自动求减 篇一:小编告诉你excel表格怎自动加减乘除 小编告诉你excel表格怎自动加减乘除 如图数据编辑以后,在合计单元格内输入 =e3*F3 直接回车 如图数据编辑好以后,在单元格内输入=h3+h4+h5+h6直接回车就ok了! 篇二:excel表格自动计算技巧 excel表格自动计算技巧 一、显示单元格例有计算式的结果的设置方法 首先:插入-名称-定义在弹出的对话框“当前工作薄的名称”中输入:x或“结果”的自定义名称,再在“引用位置”处粘贴= eValuate(substitute(substitute(substitute(substitut e(计算!$c$1,"[","("),"]",")"),"×","*"),"÷","/")) 公式(注意要有“=”号。再对公式中“计算!$c$1”选择上,然后再到需要做公式的单元格中点击即可。如要相对引用,

则要删除$字符。已经ok,你在c1输入表达式比如15+5×3,在d1中输入=x看看(应该是30)。 二、如何在excel中输入计算式后另一单元显示计算结果菜单--插入--名称--定义:输入aa(任意取名),在下面输入公式:=eValuate($a$1) 然后在b1单元格输入公式:=aa 但本式不能识别如:[、×、÷等符号进行计算,使用第一种较好。 三、如何在excel中编写自定义函数,象在表格中调用sum()一样?第一种情况: 单元格a1=2;单元格b1=2;单元格c1=2 单元格d1=(a1+b1)×c1显示结果为8; 那么如何才能在单元格e1中显示(2+2)×2的计算表达式,并且建立关联,当单元格d1变成=(a1+ba)^c1计算式后,显示结果为16;那么e1也就自动显示为(2+2)^2的计算表达式,也就是说随着单元格d1的计算公式变化,单元格e1显示的计算表达式也随之变化。 第二种情况: 是当计算的单元格任意变化时,怎么办?比如说计算式e1=a1+b1+c1+d1,也有d2=a2+b2+c2,还有 F3=a1+b1+c1+d1+e1时。如何将计算式变为计算表达式。即计算式可以在任意一个单元格,计算公式所引用数据的单元

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

散热器的散热量计算

冀州市冀暖北方暖气片厂 本标准参照采用国际标准ISO3147—1975(E)《热交换器—供水或蒸汽主环路的热平衡实验原理和试验方法》、ISO3148—1975《用空气冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3149—1975《用液体冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3150—1975(E)《辐射散热器、对流散热器和类似设备—散热量计算和结果的表达式》。 1、主题内容与适用范围本标准规定了在闭式小室内测试采暖散热器(简称散热器,暖气片)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。本标准适用于以热水或蒸汽为热媒的采暖散热器。 2、术语 2.1辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。 2.2对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。 3、测试原理 3.1散热器的散热量散热器的散热量应由下式求得:Q=Gp(h1—h2) 式中:Q——散热器的散热量,W;Gp——热媒的平均流量,Kg/s;h1——散热器进口处热媒的焓,J/Kg;h2——散热器出口处热媒的焓,J/Kg。注:h1、h2 的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得。 3.2热媒参数的测量3.2.1热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。3.2.2热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2~5℃的过热度,测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过1℃。3.2.3热媒温度系指散热器进出口处的温度。如不可能在该处测量时,则测温点与散热器进(出)口之间的距离不得大于0.3m。应对这段管道严格保温,并在计算散热量时减去这部分散热量。保温层应延伸到测温点之外0.3m以上。3.2.4热媒参数测量的准确度应符合以下要求:流量:±0.5% 温度:±0.1℃压力(绝对):±1%压差:当压差大于1KPa时±5% 当压差小于1KPa时±0.05%KPa 4、测试装置和要求 4.1测试装置测试装置应包括:a、安装被测散热器的闭式小室;b、小室六个壁面外的循环空气或水夹层;c、冷却夹层内循环空气或水的设备d、供给被测散热器能量的热媒循环系统。此系统应符合本标准的要求;e、检测和控制的仪表及设备。 4.2闭式小室的要求4.2.1小室内部的净尺寸应为:地面:(4±0.2m)×(4±0.2m) 高度:2.8±0.2m 4.2.2小室在任何情况下应为气密的。4.2.3小室的内表面应涂不含金属涂料的油漆。4.2.4小室采用空气冷却时,其构造应符合下列要求:4.2.4.1小室周围应设夹层,夹层内应维持稳定的温度环境。4.2.4.2小室的四壁、门、窗(若采用)、屋顶和地面的热阻偏差应在20%以内。4.2.4.3小室门应直接对着夹层外门。夹层外门必须气密,并宜具有和夹层墙相同的热阻。4.2.4.4夹层外围护层的墙、屋顶和地面总热阻应大于或等于1.73m3.K/W。4.2.4.5夹层内由可控温的送回风系统形成的循环空气,使小室的六个面得到均匀冷却。夹层的宽度宜为0.5m(不得小于0.3m);夹层内冷却空气的平均速度宜为0.1~0.5m/s。4.2.5采用水冷却时,小室的构造应符合下列要求:4.2. 5.1冷却水的循环方式应使小室表面温度均匀。4.2.5.2安装被测散热器的墙壁内表面,应在整个宽度离地面1.25m的高度内贴以保温板,保温板的厚度宜为6mm,其热阻应为0.05±0.05m2.K/W。板的外表面若刷油漆,应采用不含金属涂料的油漆。4.2.5.3冷却水的总流量应不小于6000Kg/h,每面墙的水流量应可分别控制。 5、闭式小室内各参数的测试及准确度 5.1小室内的空气温度小室内的空气温度应采用屏蔽的敏感元件在下列各点进行测量。5.1.1在内部空间的中心垂直轴线上a.基准点离地面0.75m高,准确到±0.1℃;b.离地面0.05、0.50、1.50m;距屋顶0.05m的四点,准确到±0.2℃。 5.1.2在每条距两面相邻墙1.0m处的垂直线上,离地面0.75、1.50m高的两点(共八点),准确到±0.2℃。} 5.2小室内表面温度小室的内表面温度应在下列各点进行测量:a.六个内表面的中心点,准确到±0.2℃;b.安装被测散热器的墙壁内表面的垂直中心线上,距地面0.30m的点,准确到±0.2℃。 5.3其他参数的测量除5.1和5.2所规定的各点外,还应测量下列参数;a.小室内空气的相对湿度;b.采用空气冷却时夹层内的空气温度,准确到±0.5℃; c.采用水冷却时,冷却系统入口处的水温准确到±0.2℃; d.大气压力,准确到±0.1KPa。

excel自动计算表格

竭诚为您提供优质文档/双击可除excel自动计算表格 篇一:excel表间怎样实现自动计算 excel表间怎样实现自动计算?我在银行工作,日常业务是制作如下的表格,其中表1是分户账,表2是总账。 如果我在表1的第2、3、4行分别输入数据后,自动生成余额,那么在表2中怎样才能自动生成所需的数据呢?您可以用excel97中的宏来解决这个问题。这里向您提供一个例子,具体的实现您可以仿照此例子进行设计。下面假设表1为sheet1,表2为sheet2,并 仅就借方发生额进行您所要的自动统计。选择“工具”*“宏”*“宏...”,输入一宏名“test”,并输入如下代码:subtest() dimiasinteger dimkasinteger dimjasstring sheets(“sheet1”).select i=0 Fork=1to2

j=“b” j=j&k Range(j).select i=i+Val(activecell.FormulaR1c1) nextk sheets(“sheet2”).select Range(“b1”).select activecell.FormulaR1c1=i endsub 执行该宏后,表2中的借方发生额就是您所要的值了。您可以对此段程序分析并修改为适合您需求的宏。 简述excel中“合并计算”的功能作用,并叙述步骤 最佳答案所谓合并计算,用财务人员通俗的话讲,就是 把多个格式一致的报表,汇总起来 主要做法是: 新建一个与各报表格式一致的表格用作汇总表 点击要汇总的数据项所在单元格 点菜单:"数据-合并计算" 弹出"合并计算"对话框 在引用位置中,选择某一报表的相同位置 点添加 如此,把所有报表相同位置都添加进去

Excel表格自动计算技巧

Excel表格自动计算技巧 一、显示单元格例有计算式的结果的设置方法 首先:插入-名称-定义在弹出的对话框“当前工作薄的名称”中输入:X或“结果”的自定义名称,再在“引用位置”处粘贴=EVALUATE(SUBSTITUTE (SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(计算!$C$1,"[","("),"]",")"),"×","*"), "÷","/"))公式(注意要有“=”号。再对公式中“计算!$C$1”选择上,然后再到需要做公式的单元格中点击即可。如要相对引用,则要删除$字符。 已经OK,你在C1输入表达式比如15+5×3,在D1中输入=x看看(应该是30)。 二、如何在Excel中输入计算式后另一单元显示计算结果 菜单--插入--名称--定义:输入AA(任意取名),在下面输入公式: =EVALUATE($A$1) 然后在B1单元格输入公式:=AA 但本式不能识别如:[、×、÷等符号进行计算,使用第一种较好。 三、如何在Excel中编写自定义函数,象在表格中调用SUM()一样? 第一种情况: 单元格A1=2;单元格B1=2;单元格C1=2 单元格D1=(A1+B1)×C1显示结果为8; 那么如何才能在单元格E1中显示(2+2)×2的计算表达式,并且建立关联,当单元格D1变成=(A1+BA)^C1计算式后,显示结果为16;那么E1也就自动显示为(2+2)^2的计算表达式,也就是说随着单元格D1的计算公式变化,单元格E1显示的计算表达式也随之变化。 第二种情况: 是当计算的单元格任意变化时,怎么办?比如说计算式E1=A1+B1+C1+D 1,也有D2=A2+B2+C2,还有F3=A1+B1+C1+D1+E1时。如何将计算式变为计算表达式。即计算式可以在任意一个单元格,计算公式所引用数据的单元格可以任意变化,需要显示计算表达式的单元格也是任意的。 针对第一种问题,分两步做:

第一性原理计算判断材料稳定性的几种方法

第一性原理计算判断材料稳定性的几种方法 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物A m B n(A,B为该化合物中包含的两种元素,m,n为相应原子在化学式中的数目),其结合能可表示为: 其中E(A m B n)为化学式A m B n的能量,E(A)和E(B)分别为自由原子A和B的能量,E b越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物A m B n,其形成能可表示为: 其中E(A)和E(B)分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那

么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态A x B y的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[[1]] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含n个原子,那么声子谱总共有3n支,其中有3条声学支,3n-3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为

散热与风量的计算doc资料

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。 上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A

其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5 (T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解 2011-06-02 17:06 轴流风机风量散热器的信息讲解 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单 位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0)(n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 11n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1(0a a In I += 3. 方案二 用递推公式 )1(11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()() 11111+<<++n a I n a n 当1n a +≥n 或 ()()n 1111≤<++n I n a 当1 n n a 0+<≤ 取递推初值为 ()()()()11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥N N 或 ()()]1111[21N N a I N +++= 当1a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %--------------------------------------------

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

相关文档