文档库 最新最全的文档下载
当前位置:文档库 › 0-1.0MPa精密压力表标准装置不确定度评定报告

0-1.0MPa精密压力表标准装置不确定度评定报告

0-1.0MPa精密压力表标准装置不确定度评定报告
0-1.0MPa精密压力表标准装置不确定度评定报告

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

不确定度评估

测量不确定度评估报告

测量不确定度的评估 1. 概述 测量依据 计量标准 表1 计量标准器和配套设备 被测对象 测量方法 见检定规程。 2. 分辨力带宽测量结果不确定度的评估 2.1. 数学模型 1234D D D D D =+++ 式中: D ——频谱分析仪分辨力带宽误差; 1D ——信号发生器频率稳定性引入的误差; 2D ——信号发生器频率分辨力引入的误差; 3D ——3dB 衰减器不准引入的误差; 4D ——重复性引入的误差。

2.2. 不确定度传播率 4 4 222c 1 1 ()()i i i i u D u D u ====∑∑ 式中:灵敏系数/1i i c D D =??=。 2.3. 标准不确定度评定 2.3.1. 信号发生器频率稳定性引入的相对标准不确定度 信号发生器稳定度为11110-?,服从均匀分布,包含因子3=k ,用 B 类不确定度评定方法,其标准不确定度611 1a u k -== 2.3.2. 信号发生器频率分辨力引入的相对标准不确定度 分辨力服从均匀分布,包含因子k =用B 类不确定度评定方法,

其相对标准不确定度 2a u k ==读数分辨力

2.3.3. 3dB 不准引入的相对标准不确定度 衰减器RSP3dB 衰减值上级量传不确定度为0.025dB U = 1.96k =,可认为衰减器衰减值修正后的最大允许误差为±0.025dB 。该 误差引起的频率读数误差服从均匀分布,包含因子k =用B 类不 确定度评定方法,其相对标准不确定度3a u k ==读数误差 2.3.4. 重复性引入的相对标准不确定度

压力表检定过程中不确定度评定

XXXXXXXXXXXXXXXXXXXXXXX 压力表检定过程中不确定度评定 摘要 随着实验室认可行业的发展,对检定出具的数据精确度要求越来越严格。本文根据JJF1059-2008 《测量不确定度评定与表示》的要求,依据JJG52-2013《弹性元件式一般压力表、压力真空表及真空表检定规程》,对压力表检定过程中出现的示值误差测量不确定度进行分析,从而找出影响压力表检定数据不确定度的各种因素,来提高检定数据的准确度。 关键词示值误差测量不确定度标准不确定度扩展不确定度 引言 一般压力表、压力真空表及真空表 (以下简称压力表)不确定度的评定,依据JJG52-2013《弹性元件式一般压力表、压力真空表及真空表检定规程》,压力表的不确定度是通过与精密压力表比对测得的。本文采用一只0.1级、量程(0-4) MPa的精密数字压力表检定一只2.5级、量程(0-2.5)MPa,分度值0.1MPa 的一般压力表,以此来评定压力的测量不确定度。(2.5MPa的压力表检定过程需要检0、0.5、1.0、1.5、 2.0、2.5六个点,我们取1.0这个点作为评定依据)。 一、压力表的结构 弹簧管式一般压力表主要由弹簧管、传动机构、指示机构和表壳等四大部分组成,见图。 1—表壳;2—弹簧管;3—指针;4—上夹板;5—连杆;6—表盘;7—接头;8—活节螺丝; 9—扇形齿轮;10—中心齿轮;11—游丝;12—下夹板; 13—中心轴 弹簧管式一般压力表结构图 1.2 压力表的工作原理

压力表的工作原理是弹簧管在压力和真空作用下,产生弹性变形引起管端位移,其位移通过机械传动机构进行放大,传递给指示装置,再由指针在刻有法定计量单位的分度盘上指出被测压力或真空量值。二、测量过程简述 ⑴.测量依据:JJG52—2013,《弹元件式一般压力表、压力真空表和真空表检定规程》。 ⑵环境条件:温度20.3℃,相对湿度小于60%,等温2h以上。 ⑶测量标准:标准器为0.1级数字压力表,允许示值误差±0. 5%。 ⑷被测对象:准确度为2.5级一般压力表,型号为Y-60,测量范围为(0~2.5)MPa. ⑸测量方法:通过升压和降压一个循环,将被测压力表在各检定点与标准表比较逐点读取被测压力表示值,被测压力表示值与数字压力表压力值之差为该压力表的示值误差。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

压力表不确定度

一、1.测量依据:JJG52-1999 《弹簧管式一般压力表、压力真空表和真空表》 2.环境条件:温度(20±5)℃、相对湿度不大于85% 3.测量标准:精密压力表,量程为0~2.5MPa准确度等级为0.4级 4.被测量对象:测量范围0~1.6MPa,准确度等级为1.6级的普通压力表5.测量方法:通过升压和降压两个循环将被测压力表各检定点与标准器比 较逐点读取被检压力表显示值。被检压力表显示值与标准压力表显示值 之差即为被检压力表示值误差。 6.评定结果的使用:在符合上述条件下的测量,一般可直接使用本不确定度的评定结果。 二、数学模型δ= P 被—P 标 式中:δ—被检压力表示值误差 P被—被检压力表在被测点上的示值 P标—精密压力表的标准压力值 三、输入量的标准不确定度的评定 1.输入量P被的标准不确定度u(P被)的评定输入量P被的标准不确定度u(P被)的来源主要是普通压力表的测量重复性,可以通过连续测量得到测量列,采 用A类方法进行评定。取一块量程为1.6MPa,准确度等级为1.6级的普通压 力表,在1.2MPa点作10次等精度重复测量,得到测量结果P 被I (I=1,2,3...)为以下测量数列 则测量结果的算术平均值为:P被=1.208MPa

单次测量P 被 的实验标准差为 s ()P 被 = () () 11 2 -∑-=n i n i P P 被 被 = 0.0063 MPa 算术平均值的实验标准差 s ()P 被 = () n s P 被 =0.0020 MPa 对于A 类评定u ()P 被 ,可由n 次独立重复观察的算术平均值的标准差作为测量 结果的标准不确定度为 u ()P 被 = s ()被 =0.0020 MPa u ()P 被 的自由度 ν 被 = n – 1 = 9 2.输入量 P 标 的标准不确定度 u (P 标) 的评定 1). 输入量P 标 的标准不确定度u (P 标)的来源主要是精密压力表装置的最大 允许示值误差,由上级检定部门出具的检定证书中给出其值为±0.4%, 而在区间内属均匀分布,包含因子为3,可按B 类不确定度评定。 α1 =0.4%×2.5 MPa = 0.01 MPa u (P 标1) = k α 1 = 3 01.0 = 0.0058 MPa 估计 ()() 11标标P u P u ? = 0.1,故自由度()501=标P ν 2) 输入量标P 的标准不确定度u ()2标P 的来源主要是,在工作中至少存在

温度示值误差不确定度评定报告

1. 测试方法 按照JJF1101-2019 环境试验设备温度、湿度参数校准规范要求,被测温设备设置温度20℃,开启运行,被测设备达到设定值并稳定后开始记录设备温度及各布点温度,记录时间间隔为2min ,30min 内共记录16组数据。计算各温度测试点30min 内测量的最高温度与设定温度的差值,即为温度上偏差,各测点30min 内测量的最低温度与设定温度的差值,即为温度下偏差。 2. 测量模型 2.1. 温度上偏差公式 s t t t -=?max max 式中, max t ?—— 温度上偏差,℃; max t —— 各测点规定时间内测量的最高温度,℃; s t —— 设备设定温度,℃。 由于上偏差与下偏差不确定度来源和数值相同,本文仅以温度上偏差为例进行不确定度评定。 3. 标准不确定度分量 不确定度来源:被校对象测量重复性引入的标准不确定度,标准器分辨力引入的标准不确定度分量,标准器修正值引入的标准不确定度分量,标准器的稳定性引入的标准不确定度分量。 3.1. 测量重复性引入的标准不确定度分量1u 使用温度巡检仪对被测对象20℃温度点重复测定10次,测量结果如下: 3.2. 标准器分辨力引入的标准不确定度分量2u 标准器的温度分辨力为0.01℃,区间半宽度为0.005℃,服从均匀分布,取包含因子

3=k ,则℃003.03005 .02==u 3.3. 标准器修正值引入的标准不确定度分量3u 标准器温度修正值的标准不确定度204.0==k U ℃,,则℃02.03== k U u 3.4. 标准器稳定性引入的标准不确定度4u 本标准器相邻两次校准温度修正值最大变化±0.10℃,按均匀分布,取包含因子3=k ,则℃06.0310 .04==u 4. 标准不确定度汇总表 标准不确定度分量汇总表 5. 合成标准不确定度 由于12u u <,则分辨力引入的不确定度包含于测量重复性引入的标准不确定度,不计入合成标准不确定度分量中,1u 、3u 、4u 相互独立,则 ℃08.0242321=++=u u u u c 6. 扩展不确定度 取包含因子3=k ,则 温度上偏差校准不确定度:℃16.0==c ku U ; 7. 不确定度报告 校准温度℃20=t 时,温度上偏差校准不确定度:)℃(216.0==k U

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

1.6级一般压力表不确定度评定

1.6级一般压力表示值误差测量结果 不确定度评定报告 1. 测量过程简述 1.1测量依据:JJG52-1999《弹簧式一般压力表、压力真空表和真空表检定规程》。 1.2测量标准:活塞压力计,测量范围:(0.1~6)MPa;准确度:0.05级。 1.3被测对象:传递标准为1.6级一般压力表(以下称压力表),编号:1125535;测量范围:(0~4)MPa。 1.4环境条件:温度(20±5)℃,相对湿度小于85%,恒温2h以上。 1.5测量过程:压力表传压介质为液体,按照规定连接和安装压力表和活塞压力计,用活塞压力计为压力表加压至4.0MPa,检查并处理好测试系统的泄漏,依据规程和比对细则要求的项目进行测量。在压力为 2.0MPa时连续进行10次测量,用于进行该点的测量不确定度评定。 2.数学模型: δ=p被-p标+△p 式中:p被——压力表在被测点上的示值; p标——加在标准器活塞承重盘上的专用砝码产 生的标准压力值; △p——高度差引起的示值误差。

3.输入量p 被标准不确定度u (p 被)的评定 3.1测量重复性引起的标准不确定分量u (p 被1)的评定。 u (p 被1 )由输入量的重复性引入,在压力表在检定点 2.00MPa 重复测量10次得: 次数 1 2 3 4 5 6 7 8 9 10 测得值 (MPa ) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 P =∑=10 1 101i Pi =1.98(MPa ) 单次试验标准差:s = 1 10) (10 1 2 --∑=i p p =0.00(MPa) u (p 1)= 10 s =10 00.0 =0.00(MPa) 3.2压力表的示值估读引起的标准不确定分量u (p 被2) 压力表分度值为0.05MPa,在检定工作中按1/5估读,产生1/5的估读误差,按均匀分布,取包含因子k = 3,可得: u (p 3)=3 01.0=0.58×10-2(MPa) 3.3输入量p 被的标准不确定度u (p 被)的计算。 由于输入量p 被的分项彼此独立不相关,所以: u (p 被)= )()(2212被被p u p u +=2 20058.000.0+ =0.58×10-2 (MPa) 4.输入量p 标标准不确定度u (p 标)的评定 输入量p 标的标准不确定度的来源主要是0.05级活塞式压力计的准确度,标准器选用测量范围为(0.1~6)MPa 、

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

低温测量不确定度评估报告

低温测量不确定度评定报告 报告编号:201403 1. 测量方法 1.1)按图1所示的线路连接样品; 试验供电电源:220V ±5%~, 50Hz ±1%,电路导线横截面积:1.0mm2。 1.2) 样品放置在试验箱外,将样品感温探头放入试验箱中,进入试验箱的毛细管长度应大于150mm ; 1.3)接通电路,开启试验箱,从常温开始降温,观察指示灯状态,至指示灯熄灭,记录试验起始和结束时间、试验起始温度和指示灯熄灭瞬间样品的动作温度。 2. 数学模型 n x t t = 式中,x t 为样品在低温箱中的实际温度,n t 为低温箱温度显示仪表的相应读数。 3. 不确定度来源 3.1 通过分析识别出影响结果的因素有测量重复性,人员的读数,温度试验箱的偏差,温度试验箱 内的时间波动度与空间均匀性,降温速率,环境温度湿度的影响,电源电压的波动,读数的时延等等。 3.2 不确定度分量的分析评估 温度试验箱的特性对本次测量结果有较大的影响,如箱体的精度,偏差,波动度,均匀性等。 温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致,因此需考虑降温速率所引入的不确定度。 图1

由于在温度箱内进行试验,因此,环境温湿度对结果的影响也较小,基本忽略。 电源电压的波动通过稳压源控制电压参数的可变性,从而使得影响程度最小化。 读数的时延,我们通过选择熟练的操作人员的操作而减小其影响。人员的读数影响较小,可忽略。 综上所述,不确定度分量如下: A 类评定:1. 重复性条件下重复测量引入的标准不确定度分量1u . B 类评定:2. 低温箱的校准(温度偏差)引入的标准不确定度分量2u 3. 低温箱的最大偏差引入的标准不确定度分量 3u 4. 温度变化速率(温度波动度)引入的标准不确定度分量4u 5. 温度均匀度引入的标准不确定度分量 5u 4. 不确定度分量评定 4.1 1u 的计算 (测量重复性) 将样品在重复性条件下重复测量4次指示灯熄灭时的瞬间温度,测的数据列表如下: () () C 4349.01u 10 1 2 1?=--= ∑=n t t i i 4.2 2u 的计算 (温湿度箱的校准) 由校准证书给出扩展不确定度为0.3 °C ,K=2,则标准不确定度为: 15.023 .02== u 4.3 3u 的计算 (温湿度箱的最大偏差) 校准证书显示温度箱在-30°C ~70°C 的最大偏差为0.45°C ,服从均匀分布,3=k ,则 2598 .03 45.03== u 4.4 4u 的计算 (温度变化速率,即温度波动度) 温度箱的降温速率为1K/min ,在到达温控器响应的温度时,温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致。由校准证书给出温度箱的波动度为±0.23°C , ° C °C

一般压力表比对不确定度评定

一般压力表比对不确定度评定 1.简述 1.1 依据:JJG52-1999《弹簧管式一般压力表压力真空表和真空表检定规程》 1.2 环境条件:a.温度(20±5)℃ b.湿度≤85% c.气压:大气压 d.静置:2h 以上 1.3 0.4级精密压力表 1.4 比对表:1.6级(0~ 2.5)Mpa 一般压力表 1.5 被检表升压和降压的检点与精密表对照,读取被检表示值。 2 数学模型: =P 被—P 标+△p P 被-----被测仪表在被测点上的示值 P 标-----加在标准器上的压力值 △ p -----高度差引起的示值误差 3 各分量的相对标准不确定度 3.1 测量重复性u(P 被1)= 2s =0.0011( Mpa );(s=0.0016 Mpa ) 相对标准不确定度u rel (P 被1)= (u(P 被1)/ P)×100%≈0.044% (P=量程) 3.2 估读u(P 被2) 依据规程±1/5分度值估计,d=0.05 Mpa 。服从均匀分布,则: u rel (P 被2)=( 3a )×(1/ P) ×100%≈0.23% (P=量程) 3.3温度 依据规程,则 △=kP(t-20) 服从均匀分布 △:误差 k :温度影响系数=0.0004/℃ P :量程 u(P 被3)= %10013??P a =%1003 5?P kP ≈0.12% 3.4 由于我所压力表标准装置的被检表和精密标准表几乎在一水平面上,故不考虑△p 4 标准器的相对标准不确定度 依据规程,精密标准表最大允许误差为±0.01 Mpa ,区间半宽a=0.01 Mpa ,服从均匀分布,则: u (P 标)= 3 a ≈0.006( Mpa )

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

菌落总数测定结果不确定度评估报告

废水菌落总数测定结果不确定度评估 1. 实验前准备 1.1 设备:恒温培养箱、无菌吸管10ml(具0.1ml刻度)、微量移液器、无菌锥形瓶、无菌培养皿 1.2 培养基及试剂:平板计数琼脂、无菌生理盐水 1.3 因浓缩苹果清汁中一般菌落不容易生长,故用废水作为样品检测。 2. 检测依据及步骤 2.1依据:GB4789.2—2010《食品卫生微生物学检验菌落总数测定》 2.2步骤:定量吸取废水,制备成15份均匀的检测样品,每份样品做两个平行样。 ↓ ↓ ↓ ↓ ↓ 3. 不确定度来源分析 检测步骤主要包括样品的吸取、稀释(移液器)、培养、计数、及结果修约等,由于结果发散性较大的特点,在本次实验中,我们只对样品吸取、重复测定结果的不确定度进行量化分析。

3.1 样品吸取过程中使用刻度吸管体积的相对标准不确定度u rel (V ) 3.1.1 吸管体积校准引入的标准不确定度u (V ) 在吸取样品的过程中均使用经检定合格的10ml 刻度吸管,其允许误差为±0.05ml ,故10ml 吸管体积校准引起的不确定度按矩形分布(k=3)为: u 1(V )= 3 05.0=0.029ml 则样品吸取过程中使用刻度吸管体积的相对标准不确定度: u rel (V )= () V V u = 10 029.0=0.0029ml 3.2 重复测定结果的标准不确定度 菌落总数测定结果不确定度评定 3.2.1 对测定结果X 1、X 2分别取对数,得到lg X 1和lg X 2 3.2.2 每一个样品的残差(在重复性条件下得出n 个观测结果X k 与n 次独立观测结果的算术 平均值X 的差)平方和:() 2 2 1 lg lg ∑=-i i X X 式中:i X lg —每一个样品测定结果的对数值;

压力表测量不确定度评定

压力表测量不确定度评 定 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

压力表测量不确定度的评定 1 概述 1.1 测量依据 JJG52-1999《弹簧管式一般压力表压力真空表和真空表检定规程》 1.2 环境条件 a 、温度:(20±5)℃ b 、湿度:≤85% c 、气压:大气压 d 、静置:2h 以上 1.3 测量标准 0.4级(0-40)MPa 精密压力表 1.4 被检对象 1.6级(0-10)MPa 弹簧管式一般压力表 1.5 测量过程 通过升压和降压两个循环将被测压力表在各检定点与标准器比较,读取被检表示值。此时被检表示值与标准器产生的标准压力值之差值即为被检压力表的示值误差。 2 数学模型 ΔP=P i -Ps 式中:ΔP- - -被检表的示值误差; P i - - -被检表检定点的压力示值; Ps- - -标准器检定点的压力值。 根据数学定义,灵敏系数就是对数学模型表达式的各分量求偏导,即: 1=??= i i x f c 则: 1=???= i pi P P c 1-=???=s ps P P c

3 各分量的相对标准不确定度的分析计算 3.1 被检表示值相对标准不确定度分量 (1)重复性的影响 取一只1.5级,(0-10)MPa ,最小分度值为0.2 MPa 的弹簧管式一般压力表,对该表进行全量程的检定,选取示值误差最大点8MPa ,在该点重复测量10次,以该点的测量重复性来估算其相对标准不确定度。如表1所示: 表1 测量重复性一览表 相对标准不确定度为: %169.0%10010 0169 .0%1001.11.1≈?=?=P S u (2) 温度的影响 根据规程的规定,检定弹簧管式一般压力表的温度范围为(20±5)℃,温度对被检表的影响,其表达式为: △=kP (t-20) △:误差

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

压力表比对的不确定度分析

压力表比对的测量结果的不确定度评定 1 概述: 1.1、测量依据:JJG52-1999弹簧管式压力表检定规程。 1.2、环境条件:温度:19℃、相对湿度:80%。 1.3、测量标准:YS -60型、0.05级活塞式压力计 4MPa 、0.25级标准压力表。 1.4、被测对象:(0- 2.5)MPa 、1.6级工业用压力表。 1.5、测量方法:通过升压和降压两个环节,将被测点压力表在各个检定点与标准压力表比较,逐点读取被检压力表示值,此时被检压力表指示值与标准压力表指示值之差为被检压力表示值误差。 1.6、评定结果使用:符合上述条件的测量结果,一般可直接使用本不确定度评定结果。 2 数学模型: n m P P P -=? 式中:P ?为一般压力表示值误差; m P 为一般压力表示值; P n 为标准压力示值。 3 合成方差及灵敏系数 由于P m 和P n 互相独立不相关,故合成方差公式如下: u c 2=c m 2u m 2+c n 2u n 2

其中,C m = p i f ??=1; C n = p f ? ?=-1 式中:u c ——示值误差的合成标准不确定度; c m ,c n ——由被检一般压力表、标准器引入的灵敏系数; u m ——由被检一般压力表引入的标准不确定度; u n ——由标准器引入的标准不确定度。 4.标准不确定度分析计算 4.1 由被检表方面引起的标准不确定度u m 4.1.1 被检压力表的测量重复性u m1 输入量P 的标准不确定度的来源主要是被检压力表的测量不重复性,可通过连续测量得到测量列,采用A 类方法评定,对一块0-2.5MPa 、1.6级压力表在2.5MPa 检测点(此检测点误差最大)分 别以升压、降压各重复测量5次,所得数据如表1所示: 表1测量列 次数(升压) 1 2 3 4 5 实测值(MPa ) 2.485 2.480 2.490 2.490 2.485 次数(降压) 1 2 3 4 5 实测值(MPa ) 2.490 2.480 2.490 2.490 2.485 其平均值:4865.2)485.2480.2485.2(10 11=+++==∑- i p n p 单次标准差(t 分布);

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

精密压力表0.05级不确定度分析-100kap

文件名称:压力标准器不确定度评定 编写: 审核: 批准:

1.1目的 评定0.05级数字压力计标准装置在20℃±2℃,相对湿度≤85%,并放置2h 的情况下,输出值测量的不确定度。 1.2检测依据的标准 JJG875-2005《数字压力计》 1.3检测使用的仪器设备 (1) 0.05级数字精密压力表:量程(-100~250)kPa (2) 高压气体压力泵 1.4检测程序 采用直接比较法,即用高压气体压力泵通过升压和降压将被检仪表在各检定点与标准器比较,逐点读取被检仪表和标准器示值,两者差值即为被检仪表的示值基本误差,示值基本误差也可以用其相对误差形式表示。 2.数学模型 R s p p p ?=- 式中:p ?—压力计各检定点示值误差,kPa 或MPa ; R p —压力计各检定点正,反行示值,kPa 或MPa ; s p —标准数字压力计各检定标准示值,kPa 或MPa 。 3.不确定度来源 0.05级数字压力计输出值测量的不确定度来源主要包括: (1) 测量重复性的不重复引入的不确定度u A ,采用A 类方法评定; (2) 数字压力计溯源引入的不确定度u B1,采用B 类方法评定; (3) 工作介质高度差误差修正引入的不确定度u B2,采用B 类方法评定。 4.标准不确定度评定 4.1测量重复性的不重复引入的不确定度u A 标准不确定度u A 的来源主要是数字压力计的测量的重复性,可以通过连续测量得到测量列,采用A 类方法进行评定3.1 A 类不确定度由检定数据决定,所以必须有检定数据才能统计结果 以0.05级数字压力表(-100~250)kPa 为标准,具体数据见前面重复性验证数据,结果如下:

压力表测量不确定度评定

压力表测量不确定度评定 The final edition was revised on December 14th, 2020.

压力表测量不确定度的评定 1 概述 测量依据 JJG52-1999《弹簧管式一般压力表压力真空表和真空表检定规程》 环境条件 a、温度:(20±5)℃ b、湿度:≤85% c、气压:大气压 d、静置:2h以上 测量标准 级(0-40)MPa精密压力表 被检对象 级(0-10)MPa弹簧管式一般压力表 测量过程 通过升压和降压两个循环将被测压力表在各检定点与标准器比较,读取被检表示值。此时被检表示值与标准器产生的标准压力值之差值即为被检压力表的示值误差。 2 数学模型 ΔP=P i-Ps 式中:ΔP- - -被检表的示值误差; P i- - -被检表检定点的压力示值; Ps- - -标准器检定点的压力值。

根据数学定义,灵敏系数就是对数学模型表达式的各分量求偏导,即: 1=??= i i x f c 则: 1=???= i pi P P c 1-=???=s ps P P c 3 各分量的相对标准不确定度的分析计算 被检表示值相对标准不确定度分量 (1)重复性的影响 取一只级,(0-10)MPa ,最小分度值为 MPa 的弹簧管式一般压力表,对该表进行全量程的检定,选取示值误差最大点8MPa ,在该点重复测量10次,以该点的测量重复性来估算其相对标准不确定度。如表1所示: 表1 测量重复性一览表

相对标准不确定度为: %169.0%10010 0169 .0%1001.11.1≈?=?=P S u (2) 温度的影响 根据规程的规定,检定弹簧管式一般压力表的温度范围为(20±5)℃,温度对被检表的影响,其表达式为: △=kP (t-20) △:误差 k :温度影响系数k=℃ P :量程 从表达式可以看出,误差的分布服从均匀分布,以半区间计算: %1001 32.1??= P a u %1003 5?=P kP %1003 0004 .05??= =% (3) 示值变动量的影响 根据JJG52-1999 检定规程的规定,示值变动量的最大允许值为允许基本误差的一半,其分布也属于均匀分布,以全区间计算: %1001 33.1?? = P a u P P 13 %6.12121???? ? ???= 3 4%6.1=

相关文档
相关文档 最新文档