文档库 最新最全的文档下载
当前位置:文档库 › 用函数观点看一元二次方程2

用函数观点看一元二次方程2

用函数观点看一元二次方程2

一、创设情境,引入新课

1.若二次函数2y ax bx c =++与x 轴的交点为(2,0)与(-3,0),则方程20ax bx c ++=的根为

2.如图是二次函数y =x 2

-2x -3的图象,你能看出哪些方程的根? 二、自主学习,固知提能

【探究1】例题:利用二次函数y =x 2-2x -2的图象,求方程x 2-2x -2=0的实数根。(精确到0.1)

分析:(1)用描点法画函数的图象,图象要求尽可能准确.

(2)确定抛物线与x 轴的两个交点的位置,估计方程x 2

-2x -2=0两根的范围:

(4) 时,y 的值最接近于0; 时,y 的值最接近于0。

【归纳】利用二次函数的图象求相应一元二次方程的近似解,步骤为: (1)作二次函数y =ax 2+bx +c 的图象,并由图象确定方程解的个数. (2)由图象中的交点位置确定交点横坐标的范围.

(3)利用计算器估算方程的近似解.(通常保留一位小数,可解方程检验近似根是否正确)

【思考】利用二次函数y =-x 2+2x -3的图象,求方程-x 2+2x -3=-8的近似解. 探索问题2

问题:抛物线y=ax 2

+bx+c 与x 轴的公共点是(-7,0),(3,0),求这条抛物线的对称轴。 归纳:若抛物线y=ax 2+bx+c 与x 轴的公共点是(x1,0),(x2,0),则对称轴是:

1.若二次函数y=ax 2+bx+c 经过点(3,0)和( -1,0) ,则其对称轴为 .

2.若二次函数

y=ax 2+bx+c

经过点(3,6)和( -1,6) ,则其对称轴

为 .

3、已知二次函数c bx ax y ++=2

的y 与x 的部分对应值如下表:则下列判断中正确的是( )

A .抛物线开口向上

B .抛物线与y 轴交于负半轴

C .当x =4时,y <0

D .方

程02

=++c bx ax 的正根在3与4之间

2

:2

1x x x +=

直线a

b -

=

4、抛物线y =2x 2+5x -3在x 轴上截得的线段长是 .

例1、若抛物线 y=ax 2+bx+c 经过两点(x 1,n),(x 2,n),则其对称轴为直线x=(x 1+x 2)/2 问题:已知抛物线y=2x 2-3x+m (m 为常数)与x 轴交于A 、B 两点,且线段AB 的长为0.5。 (1)求m 的值

(2)若该抛物线的顶点为P ,求△ABP 的面积。

若一元二次方程ax 2+bx+c=0的两个根是x 1、x 2, 则抛物线y=ax 2+bx+c 与x 轴的两个交点坐标分别是A (x 1,0

, B ( x 2,0 ) AB=|x 1-x 2|=

探究3、观察函数y=x 2

-2x-3的图象,利用图象回答: (1)方程x 2

-2x-3=0的解是什么; (2)x 取什么值时,函数值大于0; (3)x 取什么值时,函数值小于0.

解:(1)如图:抛物线与x 轴交于点(-1,0),(3,0),所以方程x 2-2x-3=0的解是-1,3.

(2)当x<-1或x>3时,y>0 (3)当-1

例2、已知二次函数y=ax 2

-5x+c 的图象如图所示: (1)求这个二次函数的解析式和图象的顶点坐标;

(2)何时y 随x 的增大而增大;何时y 随x 的增大而减少?当x 取何值时,y>0;当x 取何值时,y<0;当x 何值时,y=0?

例3、下列情形时,如果a>0,抛物线y=ax 2+bx+c 的顶点在什么位置? (1)方程ax 2+bx+c=0有两个不等的实数根; (2)方程ax 2

+bx+c=0有两个相等的实数根; (3)方程ax 2+bx+c=0没有实数根.

下列情形时,如果a>0,抛物线y=ax 2+bx+c 的顶点在什么位置? (1)方程ax 2+bx+c=0有两个不等的实数根; (2)方程ax 2+bx+c=0有两个相等的实数根; (3)方程ax 2+bx+c=0没有实数根.

1、抛物线y=ax 2+bx+c (a ≠0)的图象全部在轴下方的条件是( ) (A )a <0 b 2-4ac ≤0(B )a <0 b 2-4ac >0 (C )a >0 b 2

-4ac >0 (D )a <0 b 2

-4ac <0

2、已知二次函数y=-ax 2,下列说法不正确的是( ) A.当a>0,x≠0时,y总取负值 B.当a<0,x<0时,y随x的增大而减小 C.当a<0时,函数图象有最低点,即y有最小值 D.当x<0,y= -ax 2的对称轴是y轴

|

|a

例4、已知;二次函数y=2x 2-(m+1)x+(m-1).

(1)求证:不论m 为何值时,函数的图像与x 轴总有交点,并指出m 为何值时,只有一个交点; (2)当m 为何值时,函数图像过原点,并指出此时函数图像与x 轴的另一个交点; (3)若函数图像的顶点在第四象限,求m 的取值范围.

例5、已知抛物线y 1=2x 2

-8x +k +8和直线y 2=mx +1相交于点P(3,4m)。 (1)求这两个函数的关系式;

(2)当x 取何值时,抛物线与直线相交,并求交点坐标。 例6、已知二次函数y=x 2-kx-2+k.

(1)求证:不论k 取何值时,这个二次函数y=x 2-kx-2+k 与x 轴有两个不同的交点。 (2)k 为何值时,二次函数y=x 2

-kx-2+k 与轴两个交点A 、B 之间的距离最小?

(3)设此抛物线与y 轴的交点为C ,当k 为6时,求S △ABC .

课堂练习

1.二次函数y =x 2-3x +2,当x =1时,y =________;当y =0时,x =_______.

2.二次函数y =x 2

-4x +6,当x =________时,y =3. 3.如图,一元二次方程ax 2

+bx +c =0的解为________________ 4.如图一元二次方程ax 2

+bx +c =3解为_________________ 5.如图 填空:

(1)a________0 ; (2)b________0 (3)c________0;(4)b 2-4ac________0

6.根据下列表格中二次函数y =ax 2

+bx +c

2

+c=0的一个解x 的取值范围( )

A .6<x <6.17

B .6.17<x <

C .6.18<x <6.19

D .6.19<x <6.20

7.特殊代数式求值: ①如图,看图填空: (1)a +b +c_______0 (2)a -b +c_______0 (3)2a -b _______0 ②如图 2a +b _______0 4a +2b +c_______0

8.利用抛物线图象求解一元二次方程及二次不等式

(1)方程ax 2

+bx +c =0的根为___________; (2)方程ax 2+bx +c =-3的根为__________; (3)方程ax 2

+bx +c =-4的根为__________;

(4)不等式ax 2+bx +c >0的解集为________;

(5)不等式ax 2+bx +c <0的解集为________;

(6)不等式-4<ax 2+bx +c <0的解集为________.

9、根据图象填空:

(1)a_____0;(2)b_____0;(3)c______0; (4)△=b 2-4ac_____0;(5)a +b +c_____0; (6)a -b +c_____0;(7)2a +b_____0; (8)方程ax 2+bx +c =0的根为__________; (9)当y >0时,x 的范围为___________; (10)当y <0时,x 的范围为___________;

10.已知抛物线y =x 2

-2kx +9的顶点在x 轴上,则k =____________.

11.已知抛物线y =kx 2+2x -1与坐标轴有三个交点,则k 的取值范围___________. 12.已知函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图象如图所示,则关于x 的方程ax 2

+bx +c -4=0的根的情况是( )

A .有两个不相等的正实数根

B .有两个异号实数根

C .有两个相等实数根

D .无实数根

13.如图为二次函数y =ax 2+bx +c 的图象,在下列说法中:

①ac <0;②方程ax 2+bx +c =0的根是x 1=-1,x 2=3;③a +b +c >0;④当x >1时,y 随x 的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).

14. 已知一元二次方程20(0)a x b x c a ++= >的两个实数根1x 、2x 满足124x x +=和

123x x = ,那么二次函数2

(0)y ax bx c a =++ >的图象有可能是( )

15、如图为抛物线2

y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是

A .a +b =-1

B . a -b =-1

C . b <2a

D . ac <0

16、已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:

x … 0 1 2 3 4 … y

4

1

1

4

点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2

y 的大小关系正确的是( )

A .12y y >

B . 12y y <

C . 12y y ≥

D . 12y y ≤

(完整版)一元二次方程知识点及其应用

一、相关知识点 1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 (1)明确只有当二次项系数0≠a 时,整式方程02 =++c bx ax 才是一元二次方程。 (2)各项的确定(包括各项的系数及各项的未知数). (3)熟练整理方程的过程 3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法 1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解; 2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题: (1)开平方法:对于形如n x =2 或)0()(2 ≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如n x =2 的方程的解法: 当0>n 时,n x ±=; 当0=n 时,021==x x ; 当0-ac b 时,方程有两个实数根,且这两个实数根不相等; 当042 =-ac b 时,方程有两个实数根,且这两个实数根相等,写为a b x x 221- ==;

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

最新一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 要找准关系式 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元.

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

初三数学一元二次方程与二次函数测试题

初三数学第二次月考 班级 姓名 学号 一.选择题(每小题3分,共24分) 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3.抛物线3)2(2+-=x y 的对称轴是( ) 4.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤0 1. A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2 =x 5.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位, 所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 7. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___ 象限( ) A. 一 B. 二 C. 三 D. 四 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次 函数y=ax 2+bx 的图象只可能是( )

二.填空题(每小题4分,共32分) 2. 9.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________. 10. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________. 11. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析 式为_____________. 12.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的 根的情况是______________________. 13..若关于的方程 的根是整数,则k 的值可以是______.(只要求写出一个) 14.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 15.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次 函数的解析式:_____________________. 16.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点 的坐标是________________. O x y A B 1 1 三.解答题 1.用适当的方法解方程: (1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;

一元二次方程及其应用

一元二次方程及其应用 ◆课前热身文档设计者: 设计时间 : 文档类型: 文库精品文档,欢迎下载使用。Word 精品文档,可以编辑修改,放心下载 1.如果2是一元二次方程x 2 +bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x = B .2x =- C .1222x x ==-, D .4x = 4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2 16(1)9x -= ◆考点聚焦 知识点: 一元二次方程、解一元二次方程及其应用 大纲要求: 1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。 2.会用配方法、公式法、分解因式法解一元二次方程、 3.能利用一元二次方程的数学模型解决实际问题。 考查重点与常见题型: 考查一元二次方程、有关习题常出现在填空题和解答题。 ◆备考兵法 (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断, 注意一元二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. ◆考点链接

1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法: (1)直接开平方法:形如)0(2 ≥=a a x 或)0()(2 ≥=-a a b x 的一元二次方程,就可用 直接开平方的方法. (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2 ()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)公式法:一元二次方程2 0(0)ax bx c a ++=≠的求根公式是 221,2 4(40)2b b ac x b ac a -±-=-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程 的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. ◆典例精析 例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2 D .2- 【答案】A 【解析】本题考查了一元二次方程的根。因为x=3是原方程的根,所以将x=3代入原方程, 原方程成立,即06332 =--k 成立,解得k=1。故选A 。 例2(湖北仙桃)解方程:2 420x x ++= 【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解. 【答案】2 42x x +=-

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m. 则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答渠道的上口宽2.5m,渠深1m. 说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程与二次函数专题

二次函数与一元二次方程专题 一、知识要点: 二次函数图象与x 轴交点情况: 二、经典例题: 1.y=(m-2)22-m x +x -3=0是关于x 的二次函数,则m 的值是 2.(1)关于x 的二次函数y=22(1)1a x x a -++-经过坐标原点,则=a (2)二次函数y=2 (0)ax bx c a ++≠与x 轴两交点的横坐标分别为1和1-,则=++c b a ,=+-c b a (3)等腰ABC △三边的长都是二次函数y=x 2-5x+6与x 轴两交点的横坐标,则周长是 . 3.求下列二次函数与x 轴交点坐标. (1)2222y x mx m n =-+- (2)2()2y m n x nx m n =++-+ (0≠+n m ) 4.已知:关于x 的二次函数y=269kx x -+与x 轴有两个交点,则k . 5.已知关于x 的二次函数2 3y x m x m =-+()- 求证:该函数与x 轴必有两个交点.

6.若关于x 的二次函数y=x 2-x+m 和y=(m-1)x 2-2x+1都与x 轴有两个交点,求m 的整数值. 7.当k 为何整数时,关于x 的二次函数y=kx 2-4x +4和y=x 2-4kx +4k 2-4k -5都与x 轴交于整数点. 8.已知:m 为整数,且二次函数y=x 2-3x +m +2与x 轴正半轴有两个交点,求m 值. 9.已知:抛物线21y (32)22mx m x m =-+++开口向上. (1)求证:该二次函数与x 轴必有两个交点; (2)设抛物线与x 轴交点为A (1x ,0),B (2x ,0)(A 在B 左侧).若2y 是关于m 的函数,且2212y x x =-, 求这个函数的解析式; (3)若AB=3,求抛物线的解析式.

一元二次方程的起源和应用

一元二次方程的起源与应用 一年七班 唐梦雷 一、定义:(quadratic equation of one variable )是指含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 二、 起源 在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。 埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。 希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。 公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。 在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a 、b 、c 为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。 韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。 我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。 我国数学家还在方程的研究中应用了内插法。 三、一元二次方程的广泛应用 例1:下列关于x 的方程,哪些是一元二次方程? (1)35 22=+x ;(2)062=-x x ;(3)5=+x x ;(4)02=-x ; (5)12)3(22+=-x x x ;(6)2273x x = ;(7)312=+ x x ;(8)522=+y x 注意点: ①二次项系数不为“0”; ②未知数指数为“2”; ③是整式方程;④只含有一个未知数. 例1:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

相关文档
相关文档 最新文档