文档库 最新最全的文档下载
当前位置:文档库 › [10]brake squeal-a literature review

[10]brake squeal-a literature review

[10]brake squeal-a literature review
[10]brake squeal-a literature review

Brake squeal:a literature review

Antti Papinniemi a,*,Joseph https://www.wendangku.net/doc/4a13860898.html,i a ,Jiye Zhao b ,

Lyndon Loader b

a Acoustics &Vibration Unit,School of Aerospace &Mechanical Engineering,University College,The University of New South Wales,Australian Defence Force Academy,Canberra,ACT 2600,Australia

b PBR Automotive Pty Ltd,264East Boundary Road,East Bentleigh,VIC 3165Australia Received20November 2000;receivedin revisedform 18May 2001;accepted14June 2001Abstract

Brake squeal,which usually falls in the frequency range between 1and16kH z,has been one of the most di?cult concerns associated with automotive brake systems since their inception.It cau-ses customer dissatisfaction and increases warranty costs.Although substantial research has been conducted into predicting and eliminating brake squeal since the 1930s,it is still rather di?cult to predict its occurrence.In this paper,the characteristics and current di?culties encountered in tackling brake squeal are ?rst described.A review of the analytical,experimental and numerical methods used for the investigation of brake squeal is then given.Some of the challenges facing brake squeal research are outlined.#2002Elsevier Science Ltd.All rights reserved.

1.Introduction

Brake squeal has been one of the most di?cult concerns associated with auto-motive brake systems since their inception.Research into predicting and eliminating brake squeal has been conducted since the 1930s [1,2].Initially drum brakes were studied due to their extensive use in early automotive brake systems.However,disc brake systems are usedmore extensively in mod ern vehicles andhave become the focus of brake squeal research.

Figs.1and 2show a typical disc brake system with a ‘‘?st type’’caliper design.A disc brake system consists of a rotor that rotates about the axis of the wheel.The caliper assembly is mountedto the vehicle suspension system through an anchor *Corresponding author.

E-mail address:z2278180@https://www.wendangku.net/doc/4a13860898.html,.au (A.Papinniemi).

bracket.The caliper housing can slide on the anchor bracket through the two pins.Brake pads with moulded friction material can also slide on the anchor bracket.A piston can slide inside the caliper housing.When hydraulic pressure is applied,the piston is pushedforwardto press the inner padagainst the rotor andin the mean time,the housing is pushedin the opposite d irection to press the outer padagainst the rotor,thereby generating a braking torque.

Like all the other applications with friction interface,noise andvibration are inherent by-products of brake application.Brake noise and vibration has been clas-si?ed according to its frequency as judder,groan,hum,squeal,squelch and

wire

Fig.1.A typical ‘?st’type brake

system.

Fig.2.Schematic of a disc brake system.

392 A.Papinniemi et al./Applied Acoustics 63(2002)391–400

A.Papinniemi et al./Applied Acoustics63(2002)391–400393 brush[3].The squeal noise that is particularly annoying usually falls into a fre-quency range from1to16kHz.

Brake squeal is generatedby the vibration of an unstable vibration mod e of the brake system.In this condition the brake rotor can act as a loudspeaker since it has large?at surfaces that can readily radiate sound.The occurrence of brake squeal is a concern since it causes signi?cant discomfort to the vehicle occupants and leads to customer dissatisfaction and increased warranty costs.Unfortunately,the large body of research into brake squeal has failed to provide a complete understanding of,or the ability to predict its occurrence[1–26].This is partly because of the complexity of the mechanisms that cause brake squeal andpartly because of the competitive nature of the automotive industry,which limits the amount of cooperative research that is publishedin the open literature.

Although a comprehensive review of brake squeal was conducted by Yang and Gib-son in1997[4],it was focussedto some d egree on the material aspects of a brake system. The objective of this paper is to outline the characteristics andcurrent d i?culties encounteredin tackling brake squeal andto review the analytical,experimental and numerical methods used for the investigation of brake squeal.

2.Characteristics of brake squeal

One of the biggest contributors to brake squeal is the friction material,since squeal excitation occurs at the friction interface,andit normally takes approxi-mately12months to?nalise a friction material selection.This certainly makes it very di?cult to predict a priori the propensity of a brake system to squeal.Also, often in the design of a brake system,priority is given to requirements such as braking performance,cost andease of manufacture.The common practice for the di?erent components of a brake system to be manufactured by di?erent suppliers further complicates matters.The large number of vehicles produced means that even a low squeal propensity foundd uring initial testing of a brake system can become a major concern once a vehicle is in production due to a much larger population size. Modi?cations towards the end of development phase will have two potential risks: (1)leading to production delays and increased costs to both the brake and vehicle manufacturers and(2)leading to products not fully validated with potential?eld warranty concern.

The most signi?cant complication in brake research is the fugitive nature of brake squeal;that is,brake squeal can sometimes be non-repeatable.There are many potential squeal frequencies(unstable modes)for a brake system.Each individual component has its own natural modes.The number of modes for a rotor within human hearing range may be up to80.The modal frequencies and modal shapes of the rotor,caliper,anchor andpadwill change once these parts are installedin-situ. During a brake application,these parts are dynamically coupled together resulting in a series of coupled vibration modes,which are di?erent from the component free vibration modes.The addition of the friction coupling forces at the friction interface results in the sti?ness matrix for the system containing unsymmetric o?-diagonal

coupling terms.From the stability point of view,this coupling is considered to be the root cause of the brake squeal.A brake system may not always squeal given the ‘‘same’’conditions.Alternatively,small variations in operating temperature,brake pressure,rotor velocity or coe?cient of friction may result in di?ering squeal pro-pensities or frequencies.Figs.3and4show the percentage occurrence of brake squeal obtainedat PBR Automotive Pty Ltdusing a Rubore d rag type noise d ynamometer andan AK noise matrix for various brake pressures andtemperatures respectively.It can be seen from Fig.3that there is no simple relationship between the percentage occurrence andfrequency of the brake squeal andthe brake pad pressure.Similarly,the in?uence of temperature on both the occurrence andfre-quency of the brake squeal is quite complex(Fig.4).

Due to the above-mentioned di?culties in designing a noise free brake system, e?orts to eliminate brake squeal have largely been empirical,with problematic brake systems treatedin a case by case manner.The success of these empirical?xes depends on the mechanism that is responsible for causing the squeal problem.The most fundamental method of eliminating brake squeal is to reduce the coe?cient of friction of the padmaterial[5–7].H owever,this obviously red uces braking perfor-mance andis not a preferable methodto employ.The use of viscoelastic material (damping material)on the back of backplate can be e?ective when there is sig-ni?cant padbend ing vibration[8,9].Changing the coupling between the padand rotor by mod ifying the shape of the brake padhas also been founde?ective[10,11]. Other geometrical modi?cations that have been successful include modifying caliper sti?ness[12,13],the caliper mounting bracket[14,15],padattachment method[16] androtor geometry[17,18].

3.Analysis of brake squeal

3.1.Analytical methods

The earliest research into brake squeal suggestedthat the variation in the friction coe?cient with sliding velocity was the cause[19].Not only is there a di?erence between the static and dynamic coe?cient of friction,but it was thought the drop in kinetic friction with increasedslid ing velocity couldleadto a stick-slip cond ition and produce self-excited vibration.However,squeal has been shown to occur in brake systems where the coe?cient of kinetic friction is constant[20],andhas ledto ana-lysis of the geometrical aspects of a brake system.

Spurr proposed an early sprag-slip model that describes a geometric coupling hypothesis in1961[6].Consider a strut inclined at an angle to a sliding surface as shown in Fig.5(a).The magnitude of the friction force is given by

F?

L

1à tan

where is the coe?cient of friction and L is the load.It can be seen that the friction force will approach in?nity as approaches cot .When =cot the strut‘sprags’or locks andthe surface can move no further.Spurr’s sprag-slip mod el consistedof a double cantilever as shown in Fig.5(b).Here,the arm O0P is inclinedat an angle 0 to a moving surface.The arm will rotate about an elastic pivot O0as P moves under the in?uence of the friction force F once the spragging angle has been reached. Eventually the moment opposing the rotation about O0becomes so large that O00P replaces O0P,andthe inclination angle is red ucedto 00.The elastic energy storedin O0can now be releasedandthe O0P swings in the opposite direction to the moving

surface.The cycle can now recommence resulting in oscillatory behaviour.

Others extended this idea in an attempt to model a brake system more completely.Jarvis andMills useda cantilever rubbing against a rotating d isc in 1963[21],Earles andSoar useda pin-d isc mod el in 1971[22],andNorth introd ucedhis eight-d egree of freedom model in 1972[23].The culmination of these e?orts was a model published by Millner in 1978[24].Millner modelled the disc,pad and caliper as a 6degree of free-d om,lumpedparameter mod el andfoundgoodagreement between pred ictedand https://www.wendangku.net/doc/4a13860898.html,plex eigenvalue analysis was usedto d etermine which con?gura-tions wouldbe unstable.Parameters investigatedinclud edthe coe?cient of padfric-tion,Young’s mod ulus of padmaterial,andthe mass andsti?ness of caliper.Squeal propensity was foundto increase steeply with the coe?cient of friction,but squeal wouldnot occur below a cut o?value of 0.28.H e foundthat for a constant friction value,the occurrence of squeal and squeal frequency depends on the sti?ness of pad material (Young’s modulus).Caliper mass and sti?ness also displayed distinct nar-row regions where squeal propensity was high.

The common conclusions of these models are that brake squeal can be caused by geometrically induced instabilities that do not require variations in the coe?cient of friction.Since these closed form theoretical approaches cannot adequately model the complex interactions between components foundin practical brake systems,their applicability has been limited.However,they do provide some good insight into the mechanism of brake squeal by highlighting the physical phenomena that occur when a brake system squeals.

3.2.Experimental methods

The frequencies of a squealing brake are highly dependent on the natural fre-quencies of the brake rotor [17].Consequently it is of fundamental importance to be able to determine the vibration modes of the rotor.Not only will an understanding of the vibration modes of the rotor help predict how a brake system may vibrate,but it is also necessary in developing countermeasures to eliminate the problem.The existence of in-plane modes in addition to the bending modes is a further complica-tion,andthere is evid ence that the in-plane mod es can be the cause of some type of brake squeals as well as the bending modes

[18].

Fig.5.(a)Single strut rubbing against moving surface;(b)sprag-slip system.

396 A.Papinniemi et al./Applied Acoustics 63(2002)391–400

A.Papinniemi et al./Applied Acoustics63(2002)391–400397 Accelerometers provide an e?ective tool for determining the vibration mode shapes andthe forcedresponse of a system.Fig.6(a)shows a bend ing mod e shape of a typical brake rotor that has been determined experimentally.A model was cre-atedusing STAR MODAL software that consistedof384gridpoints over the surface of a brake rotor.Frequency response measurements were made with a B&K2032FFT analyser using a B&K4374uni-axial accelerometer anda B&K8001imped ance head. The excitation was introduced with a B&K4810shaker driven by a random noise sig-nal.Unfortunately,the contact mounting requiredfor accelerometers limits their usage on rotating brake components.They can only be usedfor analysis of stationary brake components making it almost impossible to determine the mode shapes of a squealing brake rotor.

Optical techniques have been usedmore recently.In particular,d ouble pulsedlaser holographic interferometry has been successfully appliedto squealing brake systems [16,17,25,26].This has allowedthe coupledmod e shapes of a complete brake system to be determined while it is squealing.A holographic image is produced by triggering a laser at the maximum and minimum amplitude of a vibrating object.The di?erence in optical path length,causedby the d eformedshape of the vibrating object,creates an interference fringe pattern on a holographic plate.The mode shape can then be determined by interpreting the fringe pattern.

The advantage of holographic interferometry is that the mode shapes of a brake rotor can be determined while it is squealing.Included in the holographic image can be the rotor as well as the pads,anchor bracket and caliper.The technique can be appliedto a brake system mountedon a brake d ynamometer.Suspension compo-nents,such as the spindle,spring and damper,can also be included to simulate the on car performance of the brake system.

An example of the value of double pulsed holography in investigating a squealing brake was work done by Nishiwaki et al.in1989[17].In the brake system that was being investigatedit was apparent that the mod e shape of the vibrating brake rotor was stationary with respect to the brake caliper.Hence,the mode shape is also sta-tionary with respect to the area of excitation.The rotor was modi?ed by changing the symmetry of the rotor about its axis of rotation.The mode shapes of the mod-i?edrotor must now rotate with respect to the area of excitation,preventing the

mode.

rotor from vibrating in the original vibration

398 A.Papinniemi et al./Applied Acoustics63(2002)391–400

3.3.Numerical methods

Finite element analysis(FEA)has been usedin the analysis of brake squeal.Mod al analysis of brake components is an area where FEA can be readily applied.Fig.6(b) shows a?nite element model of a brake rotor.The model,consisting of8700Tet92 solid elements,was developed using a commercial?nite element code ANSYS5.6. Unfortunately,the coupling between brake components leads to vibration modes that di?er to those found for the individual components.Therefore,the real interest among researchers is to be able to model an entire brake system.

The critical aspect in the modelling of a complete brake system is the coupling between components,particularly the rotor/padinterface.The contact sti?ness itself is adjusted using experimental results,but the more di?cult aspect is to introduce the tangential friction coupling.Liles includ edfriction coupling between rotor andpadas o?diagonal terms in the sti?ness matrix and used a complex eigenvalue analysis to assess the stability of a brake system[5].Once the model was developed,the e?ect of varying parameters such as friction coe?cient,padgeometry andcaliper sti?ness, could be determined.Dihua and Dongying also used a similar approach to improve the design of an anchor bracket[14].The work of these,and other,researchers has shown that it is possible to create models that incorporate the friction coupling between the rotor andthe pad.H owever,there has been little experimental evid ence to verify the accuracy of these models.They may be useful for studying the e?ect of varying parameters within the brake system,but their ability to model the important friction interface is limited.As small variations in operating temperature,brake pres-sure,rotor velocity or coe?cient of friction may result in di?ering squeal propensities or frequencies(Figs.3and4),an accurate pred iction of brake squeal using numerical methods requires an accurate determination of material properties(particularly for the friction material)under di?erent operating conditions.Furthermore,proper model-ling of the boundary conditions especially where the coupling between various components is important remains a challenge.

4.Challenges for the future

Presently,research into brake squeal is focusedon speci?c brake systems or genera-tion mechanisms.The challenge for the future is to be able to develop general techni-ques andguid elines to eliminate brake squeal d uring the d esign stage.Given the complexity of the mechanisms that generate brake squeal,it appears that general guidelines are some way o?in the future.For the present,the reduction of squeal noise for speci?c brake systems is achievable,with the additional knowledge acquired in each case adding to the overall understanding of brake squeal.

Theoretical analysis of brake systems is di?cult given the complexity of the mechanisms andthe lack of an ad equate mod el for the friction interface that causes brake squeal.However,this should not limit the development of simpli?ed models as valuable insight can be gained.Understanding obtained by studying simpli?ed models can assist in the interpretation of experimental results and the development of improvedcomputational tools.

A.Papinniemi et al./Applied Acoustics63(2002)391–400399

The application of FEA to brake squeal appears to o?er some https://www.wendangku.net/doc/4a13860898.html,-mercial software packages are being continually re?nedwith improvedmod elling features andthe friction coupling capabilities are improving.The rapidd evelopment in computer aid edengineering systems shouldmake it feasible to analyse every aspect of a brake system from braking performance to vibro-acoustic analysis,thus allowing brakes to be designed with minimum propensity to squeal and desirable braking performance.

Experimental methods will still play an important role for a number of reasons. Firstly,they o?er more e?ective analysis tools than numerical or purely theoretical methods.Secondly,diagnosis of the cause of brake squeal problems can often only be foundby experimentation.Finally,the veri?cation of solutions to squeal pro-blems,andthe applicability of FEA mod els,can only be achievedthrough experi-mental means.Ultimately the future elimination of brake squeal will be con?rmed though experimental results andthe?nal testing of brake systems. Acknowledgements

This study forms part of a project funded by the Australian Research Council under the SPIRT scheme and the industry partner is PBR Automotive Pty Ltd. References

[1]Lamarque PV,Williams CG.Brake squeak:the experiences of manufacturers andoperators and

some preliminary experiments.Research report no.8500B.The Institution of Automobile Engi-neers,1938.

[2]Mills H R.Brake squeak.Research report nos.9000B(1938)and9162B.The Institution of Auto-

mobile Engineers,1939.

[3]Lang AM,Smales H.An approach to the solution of disc brake vibration problems.Institute of

Mechanical Engineering,C37/83,1983,p.223-31.

[4]Yang S,Gibson RF.Brake vibration andnoise:reviews,comments,andproposals.Int J of Materials

Product Technol1997;12(4-6):496–513.

[5]Liles GD.Analysis of disc brake squeal using?nite element methods.SAE Paper,No.891150,1989.

[6]Spurr RT.A theory of brake squeal.I Mech E Auto Div Proc No.1,1961/62.p.30-40.

[7]Bergman F,Eriksson M,Jacobson S.In?uence of disc brake topography on generation of brake

squeal.Wear1999;225-229:621–8.

[8]Ho?man CT.Damper design and development for use on disc brake shoe and lining assemblies.

SAE paper No.880254,1988.

[9]Lewis TM,Shah P.Analysis andcontrol of brake noise.SAE paper No.872240,1987.

[10]Flint J.Instabilities in brake systems.SAE paper No.920432,1992.

[11]Nossier TA,Said MAR,El Nahas NS,Abu El Fetouh G.Signi?cance of squeal in disc brake design.

Int J of Vehicle Design1998;19(1):124–33.

[12]Matsui H,Murakami H,Nakanishi H,Tsunda Y.Analysis of disc brake squeal.SAE paper No.

920553,1992.

[13]Murakami H,Tsunada N,Kitamura T.A study concerned with the mechanism of disc brake squeal.

SAE paper No.841233,1984.

[14]Dihua G,Dongying J.A study on disk brake squeal using?nite element methods.SAE paper No.

980597,1998.

400 A.Papinniemi et al./Applied Acoustics63(2002)391–400

[15]Baba H,Okade M,Takeuchi T.Study on reducing low frequency brake squeal from modal analysis

of mounting bracket.SAE paper No.952697,1995.

[16]Fieldhouse JD,Newcomb TP.An investigation into disc brake noise using holographic inter-

ferometry.Institute of Mechanical Engineering,C427/11/213,1991.

[17]Nishiwaki M,Harada H,Okamura H,Ikeuchi T.Study on disc brake squeal.SAE paper No.

890864,1989.

[18]Matsuzaki M,Izumihara T.Brake noise caused by the longitudinal vibration of the disc rotor.SAE

paper No.930804,1993.

[19]North MR.A survey of publishedwork on vibration in braking systems.MIRA Bulletin No.4,

1969.

[20]H ulten J.Brake squeal—a self exciting mechanism with constant friction.SAE Truck andBus

Meeting,Detroit,MI,USA,1993.

[21]Jarvis RP,Mills B.Vibrations induced by dry friction.I Mech E Proc1963/64;178(1/32):847–57.

[22]Earles SWE,Soar GB.Squeal noise in disc brakes.Paper C101/71.I Mech E Symposium on Vibra-

tion andNoise in Motor Vehicles,1971.

[23]North MR.Frictionally induced,self excited vibrations in a disc brake system.PhD thesis,Lough-

borough University of Technology,1972.

[24]Millner N.An analysis of disc brake squeal.SAE paper No.780332,1978.

[25]Felske A,Hoppe G,Matthai H.Oscillation in squealing brakes—analysis of vibration modes by

holographic interferometry.SAE paper No.780333,1978.

[26]Fieldhouse JD,Newcomb TP.Double pulsed holography used to investigate noisy brakes.Optics

Lasers Engng1996;25:455–94.

十分钟学会右脑图像式记忆法

十分钟学会右脑图像式记忆法 多少同学在背诵记忆的过程中重复着使用低效的方法?下面是的小编为你们整理的文章,希望你们能够喜欢 这个大概数不胜数,努力是好事,但如果能在努力背诵记忆的基础上,去学习和使用一些新的方法去背诵,就能够显著的提高效率。学习不是单纯的体力活,方法的优劣很大程度上会决定我们的效率和一段时间内的发展上限。 一般的背诵方法是怎样的呢? 是不停的念诵,一遍又一遍的大声的吼出来。这是初中高中很常见的记忆方法。但是我们想要提高效率,就得了解下更多的一些个方面。比如人到底是怎么去记忆的? 在NLP看来,人获取外界信息主要通过五感。视听嗅味触这五感在人的主观经验中,又可以分为三种内感官,即视觉内感官、听觉内感官和感觉内感官。 我们的记忆和背诵,就是从外界获取信息,并牢固建立起链接的过程。那么信息在人的大脑中主要呈现为视觉、听觉和感觉,而一般的背诵方法,主要利用的是我们的听觉进行记忆。 一遍遍的背诵,建立起来的就是听觉的记忆。 那么在这三种内感官中哪一种比较发达呢?其实是视觉! 不同人的感官类型敏感度各有不同,但从中国人普遍的情况来看,

视觉更为发达。同样的表达方式,写下来的文字表达的信息量更大且更精准,视觉获取的信息更快。而如果通过语音念出文字,获取的速度会慢很多,而且有相当多的字词同音必须通过字形来区分。 所以,视觉的记忆是比听觉的记忆更有优点的。但是为什么大部分学校里还是利用听觉背诵居多呢? 我认为主要有这几点原因: 从历史上,就是以听觉背诵为主。古人的文章是合辙押韵的,利用听觉背诵就很有优势,而现代的文章有几个合辙押韵? 看起来热闹。如果是静静的看不出声,老师们总觉得你没在背 惯性。改变传统做法是很困难的。 那么我们到底应该怎么去背诵呢? 并不是只单纯的用其中一种方式,而是在我们已经惯用听觉记忆的基础上,增加视觉记忆的方法,两者同时进行。通过两个渠道获取并且巩固记忆,就能更好的增加我们的效率。 右脑图像式记忆法 右脑图像式记忆法有其适用的范围,适合精确度高的逐字的记忆。 主要的原理,是在我们的头脑中形成我们所要背诵文字的视觉印象后,通过正倒背加强文字的形象。当视觉记忆巩固的时候,重复进行听觉的背诵,就能够非常的流畅。可以很好的解决背一半儿想不起来的问题。 在回忆的时候,就能够看到大概的文字的影像,背出来就会比较流畅。

10以内加减混合或带括号口算精彩试题

10以内加减混合口算(1)姓名()对()题时间:日期:()月()日星期() 1+3+5= 4+9-7= 7+3-4= 4+2-5= 2+8-6= 3+0-2= 1+0+4= 3+4+2= 5+3-1= 8+2-7= 1+9-5= 2+4-3= 3+1+6= 0+7-2= 2+8-3= 5+4-3= 3+6-3= 3+4-4= 2+0+5= 2+6-4= 5+0+2= 1+8-5= 2+4-3= 4+3+2= 7+3+1= 2+6-4= 1+6-2= 4+5-10= 4+4-4= 4+2+4= 7+3-6= 9+0-5= 8+2-3= 1+9-6= 5+1+3= 1+7+2= 2+4+3= 9+0+1= 5+0-3= 3+7-6= 2+4+2= 0+8+2= 3+5+1= 4+4-2= 4+4+2= 7+1-7= 5+5-3= 4+2-1= 9+1-9= 2+8-5= 9+0-4= 3+4+2= 2+3-2= 2+8-9= 3+2-1= 4+4-3= 0+4+5= 2+7+1= 0+1+5= 1+0+7= 0+9+1= 4+4-2= 0+2+7= 2+4-5= 5+1-3= 3+1+5= 2+4-3= 8+1-7= 3+5-4= 3+7-5= 7+1-4= 1+0+7= 2+3+2= 5+3-4= 3+4+3= 6+1+3= 8+2-4= 2+7-4= 8+2-6= 4+4-7= 3+3-5= 1+0+8= 7+2-6= 2+3-4= 7+2-2= 5+4-8= 6+2-4= 2+5-3= 4+4-7= 4+4+2= 3+1-2= 3+0+7= 6+4-5= 2+6-3= 4+0+5=

幼儿园大班10以内加减法口算练习题

幼儿园大班10以内加减法口算练习题班级姓名:得分 2+6= 9-7= 3+2= 3+4= 5+4=3+5= 7+1= 9-3= 8-3= 5-4= 8-2= 0+8= 3+1= 6+1= 7+3=10-2= 7-2= 6-4= 9-2= 10-9=5+5= 5+2= 9-4= 8+1= 2-1=4+6= 2+7= 9-5= 3+3= 4-2=10-4= 1+2= 5-3= 0+1= 10-7=2+4= 6-5= 4+4= 5-1= 1+9=8-4= 6+0= 3-3= 1+5= 10-5=1+1=8+1= 4-1= 9-3= 3+6=

10-2= 7-2= 6-4= 9-2=10-9=5+5= 5+2= 9-4= 8+1= 2-1=4+6= 2+7= 9-5= 3+3= 4-2=10-4= 1+2= 5-3= 0+8= 10-7= 2+4= 6-5= 4+4= 5-1= 1+9=8-4= 6+0= 3-3= 1+5= 10-5=1+1= 8+1= 4-1= 9-3= 3+6=3+6= 9-7= 3+2= 3+4= 5+4=3+5= 7+1= 9-3= 8-3= 5-4=

10-2= 7-2= 6-4= 9-2= 10-9=5+5= 5+2= 9-4= 8+1= 2-1=4+6= 2+7= 9-5= 3+3= 4-2=10-4= 1+2= 5-3= 0+8= 10-7=2+4= 6-5= 4+4= 5-1= 1+9=8-4= 6+0= 3-3= 1+5= 10-5=1+1= 8+1= 4-1= 9-3= 3+6=2+6= 9-7= 3+2= 3+4= 5+4=3+5= 7+1= 9-3= 8-3= 5-4=

10以内加减法练习题可打印

5+4= 3+6= 4+2= 9+0= 2+7= 1+7= 6+4= 7+3= 2+3= 0+10= 10-2= 9-3= 8-7= 9-5= 6-2= 5-4= 10-9= 7-3= 8-4= 7-6= 2+6=9-7= 3+2=3+4= 5+4=3+5=7+1= 9-3= 8-3= 5-4= 8-2=0+8= 3+1= 6+1=7+3=10-2= 7-2=6-4=9-2=10-9= 5+5=5+2=9-4=8+1= 2-1=4+6= 2+7=9-5= 3+3=4-2=10-4= 1+2= 5-3= 0+8=10-7=2+4= 6-5=4+4=5-1=1+9= 用时()分钟,错了()题

8-4=6+0=3-3= 1+5= 10-5=1+1=8+1=4-1= 9-3=3+6=2+6= 9-7= 3+2=3+4=5+4=3+5= 7+1=9-3=8-3=5-4= 8-2=0+8=3+1=6+1= 7+3=10-2=7-2=6-4= 9-2= 10-9=5+5=5+2= 9-4=8+1=2-1=4+6= 2+7= 9-5=3+3=4-2= 10-4= 1+2= 5-3= 0+8= 10-7= 2+4= 6-5= 4+4= 5-1=1+9=8-4=6+0= 3-3=1+5=10-5=1+1= 用时()分钟,错了()题

8+1=4-1=9-3=3+6= 3+6=9-7=3+2= 3+4= 5+4=3+5=7+1=9-3= 8-3=5-4= 8-2=0+8= 3+1=6+1=7+3=10-2= 7-2=6-4=9-2=10-9= 5+5=5+2=9-4=8+1= 2-1=4+6=2+7=9-5= 3+3=4-2=10-4= 1+2= 8-4=6+0=3-3=1+5= 10-5=1+1=8+1=4-1= 9-3=3+6=1+4=1+5= 1+6=1+7= 1+8=1+9= 2+1=2+2=2+3=2+4= 用时()分钟,错了()题

(完整版)教你10分钟学会微信排版【图文编辑】

教你10分钟学会微信排版 一、要不要排版? 当然要。 有人鼓吹不要排版,说人家许多大V都没怎么排版。 别学。 首先,没有硬货,再不排版,就是找死。长得一般,再不打扮,能行? 其次,六神磊磊、小道消息的Fenng和环时的老金,随便写点啥,阅读和转发量都比你的硬货多。为啥?因为人家的内容有资历和名气加持啊,所谓一句顶一万句。 问你一句:是真的没时间排版,还是懒,宁可在群里吹水? 二、用什么编辑器? 第三方编辑器没必要折腾。多一种工具,多一些麻烦。 那用什么? 微信公众号后台自带的编辑器就行。虽然简陋了点,但是足够用了。 就像你手里有一把简单的刀,还不满足,到处去找花里胡哨的刀,却没把时间用在练功夫上。何苦? 我问你: 手中这把简单的刀,你都摸熟了? 微信自带编辑器的每个功能,你都试了一遍? 每个功能的排版效果你都知道了? 如果没有,即便给你一个顶级编辑器,你也只会其中几项基本功能。 排版讲求美感,恕我直言,各种编辑器很多,排出来花样不少,但,美感好的文章,真的不多。 三、怎样才算好的排版? 其实,排版很简单,目的就两点: 一、让读者眼睛爽,印象深; 二、更重要的,为了突出内容,让读者专注于内容,读完文章,知道你到底传达了什么意思或者什么情感。 所以,评估一个排版的好坏,不是单纯看花样、看创意,而是,是否有助于实现这两点目的。如果没有,那么花样越多,反而造成干扰。 排版要注意三点: 颜色和字号,突出重点内容; 段间距和行间距,形成平衡的布局; 线条和符号,引导视线。 简约、突出重点内容、实现必要的引导,即可。 四、怎么利用微信编辑器的各个功能呢? 复制文字,粘贴到微信编辑器中。 记住,不要用ctrl+v,这样会保留原来的样式,调整起来麻烦, 要用ctrl+shift+v。 全选正文,设定行间距。 微信默认的行间距是1,这样太拥挤,最好调为1.5或者1.75。 如果文字少,那就调为2倍,这样让文章显得不那么单薄。

10以内加减混合或带括号口算试题(供参考)

10以内加减混合口算(1) 姓名()对()题时间:日期:()月()日星期() 1+3+5= 4+9-7= 7+3-4= 4+2-5= 2+8-6= 3+0-2= 1+0+4= 3+4+2= 5+3-1= 8+2-7= 1+9-5= 2+4-3= 3+1+6= 0+7-2= 2+8-3= 5+4-3= 3+6-3= 3+4-4= 2+0+5= 2+6-4= 5+0+2= 1+8-5= 2+4-3= 4+3+2= 7+3+1= 2+6-4= 1+6-2= 4+5-10= 4+4-4= 4+2+4= 7+3-6= 9+0-5= 8+2-3= 1+9-6= 5+1+3= 1+7+2= 2+4+3= 9+0+1= 5+0-3= 3+7-6= 2+4+2= 0+8+2= 3+5+1= 4+4-2= 4+4+2= 7+1-7= 5+5-3= 4+2-1= 9+1-9= 2+8-5= 9+0-4= 3+4+2= 2+3-2= 2+8-9= 3+2-1= 4+4-3= 0+4+5= 2+7+1= 0+1+5= 1+0+7= 0+9+1= 4+4-2= 0+2+7= 2+4-5= 5+1-3= 3+1+5= 2+4-3= 8+1-7= 3+5-4= 3+7-5= 7+1-4= 1+0+7= 2+3+2= 5+3-4= 3+4+3= 6+1+3= 8+2-4= 2+7-4= 8+2-6= 4+4-7= 3+3-5= 1+0+8= 7+2-6= 2+3-4= 7+2-2= 5+4-8= 6+2-4= 2+5-3= 4+4-7= 4+4+2= 3+1-2= 3+0+7= 6+4-5= 2+6-3= 4+0+5= 0+9-8= 2+5-3= 9+1-5= 7+2-7= 8+2-9=

去括号解一元一次方程练习题

去括号与去分母解一元一次方程练习题 (一)选择题 1.方程4(2-x )-4(x+1)=60的解是( ) (A)7. (B) . (C) -. (D)-7.` 2.下列方程的解法中,去括号正确的是( ) (A) ,则. (B) ,则 (C),则. (D),则. 3.解方程 时,去分母后,正确的结果是( ) (A).(B).(C). (D). 4.若与互为相反数,则的值为( ) (A). (B). (C). (D). 5.在解方程时,下列变形比较简便的是( )(A)方程两边都乘以20,得. (B)去括号,得.(C)方程两边都除以,得. (D)方程整理得 . 6、某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a 7、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大,则原来的两位数为( ) A .54 B .27 C .72 D .45 8、一个长方形的周长为26 cm ,这个长方形的长减少1 cm ,宽增加2 cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程( ) A .1(26)2x x -=-+ B .1(13)2x x -=-+ C .1(26)2x x +=-- D .1(13)2x x +=-- (二)填空题 1.当x=______时,代数式 与的值相等. 2.当a=______时,方程的解等于. 3.已知是方程的解,那么关于x 的方程的解是__________. 4.去括号且合并含有相同字母的项:(1)3x+2(x-2)= (2)8y-6(y-2)= 5.x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.

十分钟让你学会号脉

十分钟学号脉 在临床中,基本上来个病人就把手脖伸到诊桌上让中医大夫号脉,但辩脉是很复杂的,脉学共有27种,但作为非专业人员,掌握以下10种现象就足够了,也比较容易理解。 人体的五脏,就是说,左手的寸、关、尺对应人体的心、肝、肾, 右手的寸、关、尺对应人体的肺、脾,命门从这个角度入手比,沉浮滑容易多了。号脉时左手寸脉能摸到代表心脉正常摸不到说明心血不足。大多都有心悸接不上气的现象左手关脉正常为不强不弱太强说明肝气太盛,太弱也不行,大多有胃炎一类的病左手尺脉太弱,头上不是头晕就头痛或头脑不清醒,有时我分不清就说患者头有问题。 右手寸脉太弱为肺虚一般有咳嗽现象太强也不行。

右手关脉太弱为脾弱有便溏腹痛一类太强左手关脉弱 的话胃炎是跑不掉的。 右手尺脉弱大多腰痛身上沉困。 以上是一点心得,希望为大家指点方向,请深资中医,老中医们不要把我批评的体完无肤。 戏说脉诊 告诉你一个秘密,教你轻轻松松学中医,自自在在学脉诊,也许,你从这里起步,开始了你的学习中 医的生涯,成为一名上好的中医大夫。一个好的中医大夫就是一座医院,带着三个手指头可以走遍天下,这 是西医永远也做不到的。闲话少叙,书回正传: 学习脉诊首先从实用脉诊开始,从习以为常入门。实用脉诊分:大小,快慢,硬软,浮沉,匀乱10种。有人要问了,书上有几十种,你的才10种,有否搞错?错不了!这是脉学和实践中总结出来的一点东西,写出来供大家欣赏多了繁琐,少了不够,要明白看下去就知了。 1、脉大小。主管察气。脉大气旺,脉小气虚。(看,多简便呀!)

2、脉快慢。主管察精,脉快精虚,脉慢精足。(现在脉慢的人不多了,只有初中生,军人,运动员了。) 3、脉硬软。主管察火,脉硬火多,脉软火少。(太简便了吧?) 4、脉浮沉。主管表里。(亦可说阴阳)脉浮表症,脉沉里症。(一目了然,简单得不可思义呀!) 5、脉匀乱。主管察安危。脉匀则生命及心脏平安,脉乱则生命及心脏危险。(太直观了!) 例如:肝硬化的脉,是快、小、硬、沉,(两关独居中)。套入脉理,则为精亏,气虚,火多,里即病在内脏,两关微浮一些,为气火位于肝胃,(我又把它戏为黄豆脉,一切癌症艾滋病白血病均为黄豆脉),你叫我看病,不用你出声,我一看脉就能说出你有什么病,好玩吧? 比如感冒的脉:大,浮,硬,快,套入脉理,为气旺,病表(表即躯体感冒属表症)火多,精亏,看到这样的脉,你说你肚疼,那你在说谎,一摸你的脉,你体内隐藏的病,便无处躲藏,现形毕露,好玩吧?只要你到了这种水平,心情就愉快了。 当你学习实用脉诊学好之后,你再继续学习经典,学习李时珍的《李频湖脉诀》,王叔和的《脉诀》,大学教材《中医诊断学》《难经》等,到那时你就是一个诊脉高手,诊病断病如举手之劳,爽吧!

10以内带括号加减法口算练习

3+( )=10 0+( )=4 4+( )=9 1+( )=8 6+( )=10 4+( )=8 5+( )=7 10+( )=10 2+( )=6 3+( )=5 2+( )=9 4+( )=6 3+( )=3 7+( )=8 6+( )=9 1+( )=10 8+( )=9 5+( )=10 6+( )=7 3+( )=10 ( )+5=10 ( )+2=5 ( )+6=9 ( )+8=10 ( )+3=8 ( )+6=6 ( )+7=8 ( )+0=5 ( )+1=7 ( )+4=6 ( )+2=8 ( )+3=7 ( )+3=8 ( )+2=9 ( )+3=10 ( )+2=4 ( )+6=7 ( )+7=10 ( )+0=6 9-( )=2 6-( )=1 10-( )=8 7-( )=6 5-( )=2 7-( )=7 10-( )=5 9-( )=0 10-( )=4 3-( )=2 9-( )=5 0-( )=0 8-( )=2 10-( )=3 5-( )=1 6-( )=4 7-( )=4 9-( )=7 4-( )=4 8-( )=4 ( )-3=3 ( )-6=2 ( )-7=3 ( )-0=6 ( )-5=5 ( )-9=1 ( )-3=0 ( )-3=5 ( )-5=1 ( )-1=8 ( )-2=7 ( )-4=3 ( )-2=7 ( )-6=4 ( )-0=10 ( )-3=6 ( )-6=1 ( )-5=4 ( )-7=0 ( )-1=8 ( )+5=10 ( )+4=7 ( )-3=3 ( )-6=2 9-( )=2

3+( )=10 6-( )=1 ( )-7=3 ( )+2=5 0+( )=4 ( )-0=6 10-( )=8 4+( )=9 7-( )=6 ( )-3=0 ( )+7=8 5-( )=2 ( )-5=5 ( )+6=9 1+( )=8 7-( )=7 6+( )=10 ( )+2=8 ( )-3=4 3+( )=4 9-( )=0 ( )+6=7 4+( )=8 ( )-9=1 ( )-3=5 ( )+1=4 ( )-7=4 ( )+8=10 9-( )=4 ( )-5=1 4+( )=10 ( )+5=5 ( )-2=5 10-( )=2 ( )-6=4 ( )-4=2 7-( )=2 10-( )=1 ( )+3=8 5+( )=7 ( )+3=9 2+( )=9 ( )-7=2 ( )-3=0 6-( )=2 3-( )=2 10-( )=4 ( )-1=8 10+( )=10 ( )+7=8 5+( )=9 ( )+5=7 10-( )=3 ( )-2=7 9-( )=5 ( )+3=3 4+( )=10 ( )-9=1 ( )-3=4 8-( )=2 10-( )=5 ( )-7=2 5+( )=8 ( )+2=7 ( )-6=1 ( )+1=7 4+( )=4 ( )-0=10 9-( )=1 ( )+4=6 ( )+5=10 ( )-6=4 4+( )=6 10-( )=3 9-( )=8 4+( )=5 ( )+5=6 ( )-4=2 8-( )=2 ( )+6=6 ( )-4=3 6+( )=7 6-( )=3 ( )+3=9

完整word版,10以内加减法带括号计算专题训练

5 -()=3 4+()=7 4+( )=9 2+()=7 9 -()=2 9 -()=2 ()+2=10 ()- 4=6 6 -()=2 5+()=7 9 -()=4 5+()=10 ()+4=8 ()- 4=4 ( )+6=8 ( )- 5=2 10 -( )=7 2+()=7 8 -()=5 2+( )=9 ()+6=9 ()- 6=3 ( )- 2=8 7+( )=10 ()- 2=6 ()+4=10 ( )+4=8 9 -()=2 ( )+6=8 8 -()=5 5+()=10 ()- 5=2 ()- 4=4 4+()=9 6 -()=2 ()+4=10 5+( )=7 ()- 4=6 ( )- 6=3 4+()=7 ( )+6=9 2+()=7 7+( )=10 9 -()=4 10 -( )=7 ()- 2=8 5 -( )=3 ()+2=10 ()- 2=6 2+( )=9 ( )- 3=1 ()+5=7 3+()=6 10 -( )=3 10 -()=6 7 -( )=3 4+()=7 ()- 5=0 ()+7=10 ( )- 5=5 8 -()=3 8+()=10 10 -( )=2 4+()=9 4+( )=8 9 -( )=7 ()+2=4 ()- 2=6 ()+5=8 6+()=9 9 -()=3 ()+4=6 9 -( )=4 2+()=5 2+()=8 10 -()=8 ()- 6=3 ()+5=8 ()- 5=4 ()+2=7 3+()=8 10 -()=7 4+( )=7 4+( )=8 ()- 7=3 ()+3=7 ()+6=8 10 -( )=4 9 -( )=6 5+()=8 9 -( )=7 ()- 5=5 5+( )=7 ()- 4=6 ()+3=8 9 -()=5 ()+4=8 9 -()=3 10 -( )=6 ( )+7=10 9 -( )=4 2+( )=9 ()- 8=2 5+( )=9 ()+8=1 0 ()- 2=8

10以内加减混合或带括号口算试题

10 以内加减混合口算(1) 姓名(日期:( ) )月()日 对()题 星期() 时间: 1+3+5= 5+0+2= 2+4+2= 0+9+1= 3+3-5= 4+9-7= 1+8-5= 0+8+2= 4+4-2= 1+0+8= 7+3-4= 2+4-3= 3+5+1= 0+2+7= 7+2-6= 4+2-5= 4+3+2= 4+4-2= 2+4-5= 2+3-4= 2+8-6= 7+3+1= 4+4+2= 5+1-3= 7+2-2= 3+0-2= 2+6-4= 7+1-7= 3+1+5= 5+4-8= 1+0+4= 1+6-2= 5+5-3= 2+4-3= 6+2-4= 3+4+2= 4+5-10= 4+2-1= 8+1-7= 2+5-3= 5+3-1= 4+4-4= 9+1-9= 3+5-4= 4+4-7= 8+2-7= 4+2+4= 2+8-5= 3+7-5= 4+4+2= 1+9-5= 7+3-6= 9+0-4= 7+1-4= 3+1-2= 2+4-3= 9+0-5= 3+4+2= 1+0+7= 3+0+7= 3+1+6= 8+2-3= 2+3-2= 2+3+2= 6+4-5= 0+7-2= 1+9-6= 2+8-9= 5+3-4= 2+6-3= 2+8-3= 5+1+3= 3+2-1= 3+4+3= 4+0+5= 5+4-3= 1+7+2= 4+4-3= 6+1+3= 0+9-8= 3+6-3= 2+4+3= 0+4+5= 8+2-4= 2+5-3= 3+4-4= 9+0+1= 2+7+1= 2+7-4= 9+1-5= 2+0+5= 5+0-3= 0+1+5= 8+2-6= 7+2-7= 2+6-4= 3+7-6= 1+0+7= 4+4-7= 8+2-9=

10分钟教你如何学会号脉

10分钟教你如何学会号脉 脉象的产生与心脏的波动,心气的盛衰,脉道的通利和气血的盈亏直接相关。所以,心、脉是形成脉象的主要脏器。气血是形成脉象的物质基础。下面,我们且看看专家们是如何对此做解释的吧。 同时,血液循行脉道之中,流布全身,运行不息,除心脏的主导作用外,还必须有各脏器的协调配合:肺朝百脉,肺气敷布,血液方能布散;脾统血,为气血生化之源,血液靠脾气的充养和统摄得以运行;肝藏血,主疏泄以调节血量;肾藏精,精能生血,又能化气,肾气为各脏腑组织功能活动的原动力。故能反映全身脏腑、气血、阴阳的综合信息。当脏腑、气血发生病变后,必然从脉搏上表现出来,呈现病理脉象,成为诊断疾病的重要依据。 1、大小: 管察气:大气旺,小气虚。 2、快慢: 管察精:快精虚,慢精足。 3、硬软: 管察火:硬火多,软火少。 4、浮沉: 管表里:[亦可说阴阳]浮表症,沉里症。

5、匀乱: 管察安危:匀则生命及心脏平安,乱则生命及心脏危险。 号脉方法详解: 早期的切脉方法比较复杂,要切按头颈、手、足等多处部位的脉动。以后逐渐简化为只切按手腕部的脉搏,称为“寸口”诊法。在这短短寸许长的脉动部位上,古代医家做足了文章。他们将腕横纹向上约一寸长的这段脉动分成了三“寸、关、尺”三部。 左右手的寸、关、尺部位分属不同的脏腑,认为可以反映相应脏腑的病变。其中右寸反映肺的情况,右关反映脾胃,右尺反映肾(命门);左寸反映心,左关反映肝,左尺反映肾与膀胱。 仔细观察,大家可以发现:远端的寸部对应的是人体最上部的心、肺(上焦,呼吸与循环系统);中间的关部,对应肝、脾胃(中焦,消化系统);近端的尺部对应肾、膀胱(下焦,泌尿生殖系统)。如此,小小的“寸口”,却俨然成为人体五脏六腑的全息窗口。 仅此还不够,在切脉的时候,还要用三种不同的指力去按压脉搏,轻轻用力按在皮肤上为“浮取”;中等度用力按至肌肉为“中取”;重用力按至筋骨为“沉取”。寸、关、尺三部,每一部有浮、中、沉三候,合称为“三部九候”。不同手法取到的脉,临床意义不同。通常,脉浮于外者,病位浅,沉于里者病位深。

10以内带括号加减法

十以内带括号加法 欧阳学文 时间姓名分数题数76道 例题:6+()=2 做法:62= 5+()=7 4+()=6 1+()=3 2+()=7 3+()=5 3+()=6 3+()=7 3+()=8 7+()=10 8+()=8 8+()=9 8+()=10 3+()=9 3+()=10 4+()=4 4+()=5 6+()=10 7+()=7 7+()=8 7+()=9 2+()=8 2+()=9 2+()=10 3+()=4 6+()=6 5+()=8 1+()=2 1+()=3 2+()=4 2+()=5 2+()=6 2+()=7 4+()=6 4+()=7 4+()=8 4+()=9 6+()=6 6+()=7 6+()=8 6+()=9 9+()=9 9+()=10 1+()=2 1+()=3 4+()=10 5+()=5 5+()=6 5+()=7 3+()=3 2+()=2 1+()=1 3+()=4 2+()=5 3+()=6 5+()=9 4+()=5

2+()=8 2+()=9 2+()=10 3+()=4 6+()=6 5+()=8 1+()=2 1+()=3 2+()=4 2+()=5 2+()=6 2+()=7 4+()=6 4+()=7 4+()=8 4+()=9 6+()=6 6+()=7 6+()=8 6+()=9 十以内带括号加法 时间姓名分数题数76道 例题:6+()=2 做法:62= 5+()=7 4+()=6 1+()=3 2+()=7 3+()=5 3+()=6 3+()=7 3+()=8 7+()=10 8+()=8 8+()=9 8+()=10 3+()=9 3+()=10 4+()=4 4+()=5 6+()=10 7+()=7 7+()=8 7+()=9 2+()=8 2+()=9 2+()=10 3+()=4 6+()=6 5+()=8 1+()=2 1+()=3 2+()=4 2+()=5 2+()=6 2+()=7 4+()=6 4+()=7 4+()=8 4+()=9 6+()=6 6+()=7 6+()=8 6+()=9

10分钟学会用生肖推算岁数

10分钟学会用生肖推算岁数 第一步:记住各生肖的序号 鼠→牛→虎→兔→龙→蛇→马→羊→猴→鸡→狗→猪 1→2→3→4→5→6→7→8→9→10→11→12 生肖序号记忆方法: 鼠头鼠脑,鼠是1 牛二, 牛是2 三虎 哥,虎 是3 兔死 (4)狗 烹,兔 是4 龙飞凤 舞(5), 龙是5 蛇溜 (6)得 快,蛇 是6 马的头 像7, 马是7 暖羊羊 的羊角 像8, 羊是8 猴子爱 喝酒 (9), 猴是9 鸡屎 (10), 鸡是 10 11月 11日是 单身狗 的节 日,狗 是11 猪跑得 最慢, 落在最 后,猪 是12 (上面运用的是联想\联系记忆法,在把两个毫无关系的事物捆绑在一起时非常有效,可以通过造句、联想名词或事物等方法实现) 第二步:记住今年属猪的人的岁数,记作A。 如果不知道,可以这样算出:自己的生肖序号加上自己的岁数,就是属猪的人今年的岁数。比如自己属羊(8),今年24岁,则属猪的人是24+8=32岁,当然也可以是32-12=20岁,也可以是32+12=44岁。我们只要记住其中一个就可以一直受用了。 第三步:A减去对方的生肖序号,就得到对方的岁数。 根据第二步我们不妨令A=32,则如果有个人属虎(3),那么他是32-3=29岁,当然也可以加上或减去若干个12,如果对方是小孩,则他是29-24=5岁,如果对方是中年人,则他是29+12=41岁或者41+12=53岁。非常简单。

知道对方的生肖如何求出对方的岁数? 公式:对方的岁数等于=今年一个属猪的人的岁数- 对方的生肖序号±12的倍数 比如,今年一个属猪的人的岁数为32,知道一个小孩属虎(虎的序号为3),则这个小孩的岁数是32 - 3 -12*2 =5岁。(注意要加上或减去若干个12来得到精确的岁数) 公式中有两个问题: 1.生肖的序号怎么记? 我们看下面: 鼠→牛→虎→兔→龙→蛇→马→羊→猴→鸡→狗→猪 1→2→3→4→5→6→7→8→9→10→11→12 生肖序号记忆方法: 鼠头鼠脑,鼠是1 牛二, 牛是2 三虎 哥,虎 是3 兔死 (4)狗 烹,兔 是4 龙飞凤 舞(5), 龙是5 蛇溜 (6)得 快,蛇 是6 马的头 像7, 马是7 暖羊羊 的羊角 像横放 的8, 羊是8 猴子爱 喝酒 (9), 猴是9 鸡屎 (10), 鸡是 10 11月 11日是 单身狗 的节 日,狗 是11 猪跑得 最慢, 落在最 后,猪 是12 2.今年属猪的人的岁数怎么求? 如果不知道,可以这样算出:自己的生肖序号加上自己的岁数,就是属猪的人今年的岁数。比如自己属羊(8),今年24岁,则属猪的人是24+8=32岁,当然也可以是32-12=20岁,也可以是32+12=44岁。我们只要记住其中一个就可以了。

10以内口算题(共15套)已排版

9-5= 9-3= 4+1= 2+6= 8+1= 5+5= 5+2= 2+7= 2-1= 9-3= 3+4= 8-5= 4-3= 8-2= 1+1= 9-4= 3+6= 3+5= 9-1= 6-1= 6+2= 5+4= 1+6= 7-2= 5+1= 9+1= 5-4= 7+3= 1+2= 6+3= 8-1= 9-2= 1+4= 3-1= 3+7= 8-6= 6-2= 7-1= 7-3= 8-4= 1+3= 2+8= 5+3= 9-8= 2+8= 6-5= 8+2= 5-3= 5-2= 2+3= 3+3= 4+4= 4+6= 7+1= 1+2= 6-4= 6-3= 8-7= 7-4= 3+3= 7-5= 1+8= 9-3= 3+2= 6-5= 4-3= 3+4= 5+5= 9-4= 7+2= 7-6= 9-1= 3+6= 4-1= 7-6= 2+1= 2+5= 4+3= 4+5= 8-5= 8-2= 1+4= 9-5= 5+2= 2+1= 4-2= 3-2= 8-3= 5+1= 6-4= 2+4= 6+1= 1+3= 7-2= 9-6= 2+8= 5+4= 3+1= 9-8= 6-1=

9-7= 8+1= 1+6= 8-4= 7-5= 4+1= 9+1= 3+3= 5-1= 5-2= 8-6= 7-3= 6-1= 5-2= 4+5= 7+1= 2+7= 4+4= 8+2= 7+1= 4+6= 5+5= 7-5= 6-3= 4+1= 7-6= 1+7= 5+3= 6-5= 4+4= 7-1= 4+5= 2+1= 3+4= 1+9= 9-1= 1+9= 4-1= 4+3= 9+1= 8-5= 7+2= 7+3= 3+5= 5-3= 5-3= 3+2= 8-6= 1+1= 5-4= 8-3= 2+4= 1+2= 6+3= 1+3= 8-2= 3-2= 2+5= 1+3= 6+4= 9-4= 7-2= 5-2= 1+8= 8-1= 4+4= 2+2= 9-6= 6+4= 9-6= 1+2= 6+3= 8-1= 3-1= 9-6= 9-3= 8-2= 4-3= 2-1= 9-3= 5+2= 3+4= 1+4= 9-4= 3-2= 3+6= 1+8= 2+1= 4+4= 3+2= 2+5= 4-2= 9-1= 9-3= 4-1= 8-2= 4-3= 2-1= 5+2= 2+3=

解一元一次方程(去括号)教案

3.3解一元一次方程(去括号) 一.教学目标: (1)会应用去括号、移项、合并同类项、系数化为1的方法解一元一次方程. (2)经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚 每步变形的依据。 二.教学重难点: (1)用去括号解一元一次方程。 (2)括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数与括号 内多项式相乘,乘数应乘遍括号内的各项。 三.教学工具:多媒体 四.教学过程 (一)复习: 1 一元一次方程的解法我们学了哪几步? 移项→合并同类项→系数化为1 2、移项,合并同类项,系数为化1,要注意什么? ①移项要变号。②合并同类项时,只是把同类项的系数相加作为所得项的 系数,字母部分不变。 ③系数化为1,要方程两边同时除以未知数前面的系数。 练习:解方程9-3x=-5x+5 (二)讲授新课: 问题某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度? 分析:若设上半年每月平均用电x度,则下半年每月平均用电(x-2000)度上半年共用电6x 度,下半年共用电6(x-2000)度 因为,全年共用了15万度电, 所以,可列方程6x+ 6(x-2000)=150000 如果去括号,就能简化方程的形式。 6x+6(x-2000)=150000 ↓去括号 6x+6x-12000=150000 ↓移项 6x+6x=150000+12000 ↓合并同类项 12x=162000 ↓系数化为1 x=13500 答:这个工厂去年上半年每月平均用电13500度。 总结,去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉,括号里 各项都不变符号。 (2)括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

一年级10以内加减混合500题

3-2=2+0=5-4=5+3=1+0=2+7=1+8=7+0=4+2=6+1=6+0=3-1=9-5=3+7=1+6=3+3=2+1=4+2=8-4=8-3=4-0=10-1=6+0= 1+0= 3+3= 2+1= 1+8= 6-5= 6+2= 2+8= 10-6= 8+2= 3+1= 6+2= 0+2= 4-2= 2+0= 8+2= 1+1= 10-6= 5-2= 8-7= 8-2= 7-6= 0+2= 9-7= 0+6= 5-4= 4+2= 2+2= 10-3= 10-9= 10-0= 5+2= 4-3= 10-1= 7-0= 10-1= 9+1= 0+5= 3+2= 3+5= 4+4= 6+4= 7-0= 10-1= 7-1= 8-2= 4+6= 0-0= 4+4= 10-3= 0+7= 10-2= 4-1= 6-3= 2-2= 2+0= 1+0= 10-7= 3-2= 1+2= 0+10= 9-6= 1+7= 6+3= 0+0= 6+0= 3-2= 4-3= 8-2= 7-0= 7+0= 7+3= 3-1= 10-5= 10-4= 1+2= 10-9= 0+3= 0+6= 1+0= 2+0= 6-3= 7-5= 9-0= 5+5= 9-6= 4+2= 3-1=

3+1=3-0=0+6=0+3=0+5=0+3=1+4=0-0=5+3=9-6=4+4=0+9=1+5=8+1=9-9=1+8=9-9=3+4=6+3=0+3=9-6=2-1= 0+9= 4+6= 5+1= 0+9= 4+5= 9-7= 5+1= 9-1= 7+3= 1+5= 7+1= 7-0= 10-5= 9-2= 1+4= 0+10= 6+3= 10-2= 1+1= 7-1= 2+4= 2-1= 9-1= 4+2= 7+0= 10+0= 5-0= 2+0= 0+0= 6-3= 0+0= 5+0= 2+2= 6-0= 3-1= 0+2= 7-4= 4+5= 8+0= 5+0= 10-2= 5-1= 4+4= 7-2= 9-8= 3-2= 4+4= 0+6= 2+3= 10-9= 10+0= 9-7= 10+0= 0+2= 0+2= 6-2= 10-1= 2-1= 6+4= 2+1= 7-5= 6+1= 8-5= 0+10= 5+1= 2+2= 8+0= 1+4= 9-8= 2-2= 8-5= 10-2= 7+1= 5-2= 10-6= 6+4= 4-3= 10-6= 5-1= 4-3= 10-3= 0+9= 0+3=

【推荐】新手10分钟学会重装系统

新手重装系统教程 重装系统不求人,本教程适合新手学习,10分钟即可学会重装系统,从此您不用再抱着电脑东奔西跑,一次学习,终生受用! 整个过程只需三步,无需光盘无需优盘,只需根据下面步骤操作即可!第一步:下载系统 首先,通过以下地址下载含安装工具的专用系统。 1、百度网盘一:https://www.wendangku.net/doc/4a13860898.html,/s/19XCT1 百度网盘二:https://www.wendangku.net/doc/4a13860898.html,/s/1zOOMj 2、请根据需要下载系统,我们以XP系统为例,双击Wind owsXP 3、选择相应的XP系统,点击下载。

4、无论用什么方式下载,建议保存在D盘上(重要)。 5、请等待系统下载完成… 第二步:安装系统 1、下载完成后右键选择“解压到当前文件夹”。 2、打开解压出来的文件夹WINGHO。

3、首先打开说明仔细阅读,然后再打开GHOST安装器。 4、这步是重点,请根据下图做好选择。 注意:在执行重装系统之前,请您退出杀毒软件,取出光驱里的光盘及USB口的优盘等设备并仔细阅读全文再执行操作! 注:执行就是将D盘WINGHO文件夹中的WinXP映像还原到C盘。

重点注意:电脑安装系统会清空您C盘所有数据,包括桌面、收藏夹、及我的文档,安装前请备份好您的重要资料! 5、按上图设置好之后点击《执行》,电脑将重启并进入安装,接下来的所有步骤电脑将全自动完成,无需人工操作。 6、电脑重启后电脑自动进入第一阶段安装,当进度条到100%完成后,电脑将再次重启。(此过程约2-5分钟) 7、电脑再次重启后自动进入第二阶段安装,如下图(实际安装界面可能略有区别),此过程约4-9分钟,我们只要等待系统自动完成,直到安装完成进入桌面。

10分钟教你学会简单的起卦断卦

10分钟教你学会简单的起卦、断卦! 以巳年七月辰日辰时问卦为例,如果不懂的可以查出当日农历。以当天的年、月、日、时起卦。巳为6数,七为7数,辰为5数。以年+月+日为上卦,以年+月+日+时为下卦,取天轻地重之意。 上卦之和为18,下卦之和为23,卦以8除,18除以8余2,2为兑卦,23除以8余7,7为艮卦。所以上卦为兑卦,下卦为艮卦,得本卦为泽山咸,变卦是雷山小过,互卦是天风姤。 本卦代表事物的开始,互卦代表事物的中间状态,变卦代表事物的结果,你看古人就是通过这些简单的卦象来理解事物。本卦与变卦之间没有发生变化的卦为体卦,由图可知上卦为用,下卦为体卦。体就是代表本体,用是代表作用。在结卦的时候,体代表自己,代表问事人,代表静止的。用就是你问的这件事。本卦为体生用,互卦为用克体,变卦为用克体。体生用的意思就是:为办这件事劳心、劳财、劳力、劳神。用克体的意思就是你去办这件事没有办成,反而对自己构成了伤害,这就是用克体,不吉利的意思。用生体,这件事容易成,对你有帮助,吉利的意思。这种可以通过八卦、易象来分析事物发生、发展、终结的规律的预测就是八卦象数,八卦象数的起源是古人仰观天象,俯察地理,远

取诸物,近取诸身,然后吉凶易见。谈到八卦象数,古人有一种易学思维方式就是简易、变易和不易。如果你想通易理、通术数,首先要从简易入手,取象要直观的入象,就是你打卦的时候看到第一眼的东西,要简易的去取象,然后变易呢,是要看它的生克,中间环节的运作流程和流向,一些事物都在变易中,得到了变易就是不易的道理。用简易的思维方式,看变易的事物,最后得出变易就是不易的、永恒的一种规则。三易是培养大家如何断卦,看事物。有了这种思维模式,你就有做事的方向。三易这种思维方式是每一位易学工作者都必须要训练掌握的一种成型的思维方式。卦又分为先天卦和后天卦之说。以数得卦叫先天卦,先卦后数叫后天卦,易经是一切事物发展的规律,宇宙是先有数后有八卦的。比如说有人报数是3、6,三是离卦,六是坎卦,加上时就可以取变卦。直接就可以通过卦相生克读出事物所反应出的信息流向,而不需要去查卦辞和爻辞。比如说看到一个老人,老人定位为乾,乾为一数。他坐到了正西方,西是兑,兑是二数,像刚才一样得出卦来,这叫后天卦,以卦得数为后天卦。后天卦除了五行生克外,还要去查一查卦辞和爻辞是怎么解释的,以辅助断卦的结果。这就叫后天卦。这种简单的起卦、结卦、断卦方式就叫梅花易数,由邵康节所创,是周易预测术中的数学,入手简单。相传邵康节在观赏梅花时,看见树上有二雀相争,心血来潮便起卦推算,推知第二

【教学设计】 用去括号法解一元一次方程

用去括号法解一元一次方程 【知识与技能】 1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简洁明了,省时省力. 2.掌握去括号解方程的方法. 【过程与方法】 培养学生分析问题、解决问题的能力. 【情感态度】 通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心. 【教学重点】 在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想. 【教学难点】 弄清列方程解应用题的思想方法;用去括号解一元一次方程. 一、情境导入,初步认识 问题1我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编得又快又对. 学生思考,根据自己对一元一次方程的理解程度自由编题. 问题2解方程5(x-2)=8 解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘. 问题3某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000kW·h(千瓦·时),全年用电15万kW·h,这个工厂去年上半年每月平均用电是多少?(教材第93页问题1) 【教学说明】给学生充分的交流空间,在学习过程中体会“取长补短”的含义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力. 二、思考探究,获取新知 【教学说明】上面栏目一中的问题3为教材中的问题,教师先提出上面的问题,让学生产生疑问,然后提出下面几个问题,对其进行分析和探究,以归纳出最后的结论. 设问1:设上半年每月平均用电xkW·h,则下半年每月平均用电____kW·h;上半年共用电_____kW·h,下半年共用电______kW·h.

相关文档
相关文档 最新文档