文档库 最新最全的文档下载
当前位置:文档库 › 机械强度

机械强度

机械强度
机械强度

1一旋转轴直径d=80mm,受径向力F=2kN,跨距L=2m。F力作用在二支点中间,试计算a点的最大最小弯曲应力σmax、σmin、应力幅σa、平均应力σm和循环特性系数r,并画出其变应力图。

2某优质碳素结构钢零件,其σs=280MPa,σB=560MPa,σ-1=250MPa,工作应力σmax=155MPa,σmin=30MPa,零件的有效应力集中系数Kσ=1.65,尺寸系数εσ=0.81,表面状态系数β=0.95,等效系数ψσ=0.30。如取许用安全系数[S]=1.5,试校核该零件的强度是否足够(为安全起见一般计算屈服强度和疲劳强度两种安全系数)。

,,最小应力σmin,平均3某零件的工作应力变化如图所示,求最大应力σ

max

应力σm,应力幅σa,循环特性r。

4热交换器中有一两端固定的钢管,线膨胀系数α=?-11106

℃-1,弹性模量E =?21.10 MPa 5,钢的屈服极限σS 230MPa =,计算当在最低温度为20℃,最高温度为160℃范围内变化时,热伸长受到约束的管的热应力σc 是否超过σS 值?

5某灰铸铁的σB MPa =260,该材料的疲劳极限与静强度的近似关系式为:σσ-=1045.B ,试画该材料的简化极限应力图。

6某零件受稳定交变弯曲应力作用,最大工作应力σmax =180MPa ,最小工作应力σm i n =150MPa ,屈服极限σS 240MPa =,对称循环疲劳极限σ-=1180MPa ,脉动循环疲劳极限σ0=240MPa ,略去危险截面处应力集中系数等综合影响系数()K σD 的影响,试求:

(1)等效系数ψσ值

(2)安全系数S 值

7已知材料σ-=1260MPa ,σ0=360MPa ,K σσεβ=25

.,σa 50MPa =,

σm 40MPa =,r =常数,用图解法及计算法求安全系数S 。

注:简化疲劳极限线图采用折线图法

8某钢制零件,其σB 560MPa =,σS 280MPa =,σ-=1250MPa ,σ0=385MPa 。工作变应力σmax =155MPa ,σmin =30MPa ,零件的有效应力集

中系数K σ=165

.,绝对尺寸系数εσ=08.,表面状态系数β=095.。要求许用安全系数[]S =15

.,r =常数,校核该零件的强度是否足够。 提示:解此题时,可略去画疲劳极限应力图,因此在不能判断何种失效方式情况下,要求分别验算疲劳强度安全系数及静强度安全系数是否满足要求。

9用压板夹持加工零件,要求夹持力F =12000N ,压板材料的许用弯曲应力为[]σb MPa =50。

1).分析螺栓装在什么位置压板强度最弱?

2).按最不利条件定压板厚度h 。

10某零件材料σS MPa =240,σ-=1180MPa ,ψσ=02.,K σ=15.,用作

图法判别:

1).当r =0时,可能发生何种失效?

2).当r =+0.6时,可能发生何种失效?

11已知气缸工作压力在0~0.5 MPa 之间变化,气缸内直径D 2=800 mm ,缸

盖螺栓为M16,螺栓数目z =28个,螺栓相对刚度系数c c c 11208+=.,联接的剩余

预紧力''=F F 15.(F 为螺栓工作载荷),螺纹小径d 1=13.835 mm ,螺栓的许用极

限应力图已知。

1).试在给出的许用极限应力图上标出工作应力点C ;

2).在该图上标出相应C 点的极限应力点'C ;

3).按应力幅强度条件,由作图法求出安全系数S σ。

12某钢制零件,已知其许用极限应力图,且工作应力的循环特性r =0268.。

1)试求当安全系数为1.5情况下的最大工作应力σmax 大小;2)过载时可能失效形式。()σS =480MPa

13一批滚动轴承,抽查40个,当循环次数为106次时,发现7个已发生点蚀失效,试问N =106时的可靠度R t 为多少?失效概率P (即F t )为多少?

14一个由40Cr 制成的零件,其力学性能如下:屈服极限σS MPa =550,对称循环疲劳极限σ-=1320MPa ,脉动循环疲劳极限σ0540=MPa ,已知最大工作应力σmax =185MPa ,最小工作应力σmin =-75MPa ,r =常数,综合影响系数()K σD =2,试绘制该零件的许用极限应力图(折线图),并用作图法计算它的安全系数,指出该零件可能发生的破坏形式。

15图示为直动滚子从动件盘形凸轮。已知从动件与凸轮在A 处接触,从动件作用力F =10 kN ,A 点处压力角α=?28,曲率半径R =60mm ,滚子半径r T mm =10,宽度b T mm =16,凸轮宽度B =15 mm ,两者材料均为合金钢,E E 122110==?.5MPa ,许用接触应力[]σH MPa =2000,试校核凸轮在接触点A 处的接触疲劳强度(摩擦忽略不计)。 注:σρH n =?0418

.F E b

16某零件的材料σ

B

MPa

=1000,σ

S

MPa

=800,σ

-

=

1

400MPa,

ψ

σ

=025

.,

试画出其简化极限应力图;当工作应力σmax=300MPa,σ

min

=-100MPa,试在该图上标出此点K,并说明是否在安全区。

17钢制零件在非稳定对称循环弯曲应力下工作,材料的疲劳强度极限

σ

-=

1400MPa,在σ

1

600

=MPa时工作循环次数N

1

5

10

=,试用疲劳损伤累积

假说,估计再受σ2450

=MPa时,到疲劳破坏前还可能继续工作多少循环次数。

注:材料的应力循环基数为107;疲劳曲线方程的指数m=9。

18直径为d的实心圆截面的轴和另一空心圆截面轴(内径'd,外径D,内外径之比为α='d D

/),两轴的材料长度L和所受扭矩T均相同。

1)试导出在两轴重量相等条件下,空心轴与实心轴的极惯性矩比值

I I 空

P

P

=

+

-

1

1

2

2

α

α

2)试求在此两轴的重量相等情况下,且α=08.时的扭矩刚度比值。

19某零件受对称循环变应力,其材料在N07

10

=次时,σ

-

=

1

300MPa,疲

劳曲线方程的指数m=9。若零件的实际工作情况为:在σ1600

=MPa下工作

N

1

4

10

=次,在σ

2

400

=MPa下工作N

2

4

410

=?,试问若又在σ

3

350

=MPa下

工作,允许工作多少次数?

20某零件钢材的σ-=

1240MPa,σ

S

MPa

=450,ψσ=02.,危险断面的综

合影响系数().

k

σD

=20。试求:

1)画出该零件的许用极限应力图(要求按比例画出);

2)画出应力循环特性r=06.的射线;

3)若安全系数Sσ=2,求出循环特性r=06.时该零件允许的最大工作应力σ

max。

21试比较下面两种应力情况,哪一种对材料(碳钢)的破坏作用大?(碳

钢的疲劳极限σ-=

1350MPa,循环基数N

7

10

=,疲劳曲线指数m=6。)

22某机器重W =132381N ,支承在两个槽钢上(见题图)。若机器的转动部分没有很好的平衡,则振动的垂直力估计可能为机器重量的20%~40%,材料的力学性能为σB MPa =400,σS =2207.MPa ,σ-=1193MPa ,σ0344=MPa 。

1).绘制极限应力图。

2).若采用两个18a 号槽钢,每个槽钢的抗弯截面系数x =14143.cm ,在极

限应力图上标出工作应力点C ,极限应力点'C 。

3).若[S ]=2.0,试分析支配设计的是静态失效还是疲劳失效的可能性。

23某钢制零件已知材料的极限应力图,其σ-=1256MPa ,σ0456=MPa ,

σσS B =06.,σB MPa =800,该零件的有效应力集中系数K σ=141

.,尺寸系数εσ=091.,表面状态系数β=1,寿命系数k N =12.,工作应力的循环特性r =-0268.。

1).试用作图法求当安全系数为1.5情况下的最大工作应力σmax 值;

2).该零件过载时的可能破坏形式;

3).绘出工作应力σ-t 图(图上标出σmin ,σmax ,σa ,σm )。

24图示偏心夹具夹持加工零件,要求夹紧力F =1000N ,用压板2压紧,压板用铸铁制造,压板许用应力:弯曲[]σb MPa =100,挤压

[]σp MPa =120,杆1用Q275钢制造,许用应力拉伸[]σ'=100MPa ,挤压[]σp MPa '=150,剪切[]τ'=60MPa ,试确定杆1的尺寸d ,D ,δ及压板厚度h 。

25有一材料σS MPa =360,σ-=1220MPa ,在σm N C =式中m =9,

N 0710=,问当N =?时,疲劳强度σσrN ≥S ,此时会出现什么现象?是否可按此应力设计。

26某轴作单向回转,只受扭矩作用,该轴材料为中碳钢,τ-=1230MPa ,τS MPa =390,等效系数ψτ=005.,某危险截面处直径d =50mm ,该处的过盈配合的综合影响系数().K K ττττεβD =

=307,圆角造成的K τ=165.,βτ=073.,ετ=070.,轴转速n =955r /min ,要求轴设计的安全系数[].S τ=20。

1).试求该轴能传递的最大功率P =?

2).在σσm a -极限应力图上表示出传递最大功率时工作应力点M 及极限应力点'M 。

27已知某钢材的力学性能为σS MPa =1000,σ-=1500MPa ,σ0800=MPa 。

1).试绘制简化极限应力图;

2).由该材料制成的零件承受非对称循环应力作用,其循环特性r =03

.,工作应力σmax =800MPa ,有效应力集中系数K σ=149.,绝对尺寸系数εσ=083.,

表面状态系数β=1,按简单加载情况在图中标出工作应力点及其极限应力点;

3).判断该零件的强度是否满足要求

28某自动生产线中,工件重W =10N ,以速度v =0.18m /s ,水平冲击在一缓冲弹簧上(见图),已知弹簧的平均直径D 232=mm ,弹簧丝直径d =4mm ,

有效圈数n =5,材料的许用切应力[]τ=360MPa ,切变模量G =?8104MPa ,试

校核该弹簧在冲击作用下的强度。

注:圆柱螺旋压缩弹簧的有关计算公式:

a)变形量

λ=8234FD n Gd b)最大切应力:τmax =k FD d 1238π

c)曲度系数:k C C C 111141440615=

--+.,式中C 1——旋绕比

29图示某震击造型机,要求经冲击后,防止活塞咬死,需要满足缸壁上端挤压强度条件,即σσp p ≤[],已知:缸外半径r 2135=mm ,内半径r 1100=mm ,缸长803mm ,活塞工作台及载荷重F =8000N ,活塞跳动高度h =70mm ,缸体

材料为铸钢ZG270–500,

E =?210103MPa ,许用挤压应力[]σP MPa =80。

1)校核缸上部:r r 23135==mm 时,即无凸缘情况下的挤压强度(提示:冲击动载系数:k h

y d =++112,y ——静变形量)

2)如r 3135=mm 不满足挤压强度,求缸上部凸缘满足σσp p ≤[]半径时的

r 3=?

3)为改善耐冲击性能,提出一种提高冲击强度的措施。

30某零件材料σ-=1440MPa ,σ0710=MPa ,σS =930MPa ,该零件计算

剖面上的应力幅σa MPa =130,综合影响系数().K σD =15,试问当σm =常数和

σmin =常数时,两种工况下安全系数各多少(只计算应力幅安全系数S σa )?

31某回转圆盘,角速度ω=-151s ,转动惯量J =?0.01kg m 2,受静转矩

T =?150N m 作用,转轴材料为45钢,直径d =40mm ,该轴扭转变形段长度l =300mm ,切变模量G =794.GPa ,试求:

1.该工况下作用于该轴的动载系数k d =? 提示:k J T d =ω?,其中?——扭转角,?=Tl GI p

2.在动载作用下轴的计算转矩T d=?扭转变形?d=?

水泥混凝土强度的检测方法

水泥混凝土强度的检测方法 1、水泥砼抗压强度 测定砼抗压强度是评定砼品质的主要指标。目前,砼抗压强度试件以边长为150mm的正立方体为标准试件,砼强度以该试件标准养护到28天,按规定方法 测得的强度为准。 当砼抗压强度采用非标准试件时,其集料粒径要求及抗压强度尺寸换算系数如下: 集料粒径要求及抗压强度换算系数 集料最大粒径 试件尺寸(mm)尺寸换算系数 (mm) 30 100×100×100 0.95 40 150×150×150 1.00 60 200×200×200 1.05

砼立方体试件抗压强度计算:R=P/A 其中:R—砼抗压强度(MPa)P—极限荷载(N)A—受压面积(mm2)注:①以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。②结果计算至0.1MPa。③非标准试件的 抗压强度应乘以尺寸换算系数。 2、砼抗折(抗弯拉)强度 测定砼抗(抗弯拉)极限强度,是为了提供水泥砼路面设计参数,检查水泥砼路面施工品质和确定抗折弹性模量试验加荷标准。 水泥砼抗折强度是以150mm×150mm×550mm的梁形试件,在标准养护条件下,达到规定龄期后,在净跨450mm,双支点荷载作用下的弯拉破坏,并按规定的计算方法得到的强度值。 砼抗折强度计算:Rb=PL/bha 其中:Rb—抗折强度(MPa);P—极限荷载(N);L—支座间距(L=450mm);b—试件宽度(mm);h—试件高度(mm)。 注:①如断面位于加荷点外侧,则该试件之结果无效;如两根试件无效,则该组结果作废。断面位置在试件断块短边一侧的底面中轴线上量得。②以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。③结果计算至0.01MPa。④采用100mm×100mm×400mm非标准试件时,所取得的抗折强度值应乘以尺寸换算系数0.85。

大直径空心轴转子结构设计及机械强度计算.

2005.No.1 大直径空心轴转子结构设计及机械强度计算 大直径空心轴转子结构设计及机械强度计算 陈明镜谢宝昌上海交通大学 摘要:针对大直径高转矩电机制造难度大且造价高的问题,本文介绍了用于钢铁厂轧机的大型电机 空心轴转子结构设计和机械强度计算。与同功率实心轴转子相比较,结果显示空心轴具有明显的优越 性。 关键词:电机大型空心轴机械强度计算结构设计 1.前言 随着电机的单机容量及整机尺寸越来越大,但受电机制造工艺及装备的影响,较多地采用双电枢或双电机串联传动方式。这种结构方式由于存在电磁及负荷不平衡乃至不同步,且联接结构复杂、轴系较长、占地面积大、使用维护工作量增加,因而总体投资及后续费用与单电机相比也不经济合理。因此迫切需要直接传动的低速大直径、短铁心结构电动机,避免大直径高速电机加齿轮箱减速的方案,以减少电机的传动损耗和占地面积,还可以减少整个设备的成本和维护费用,提高运转的可靠性。 对大直径、大转矩的电动机来说,电机制造难 度、造价的增加主要还在于转子轴及转子支架。因 为转轴要锻造、轴径要粗,还要有充分的冷却,转子铁心压装要求高,加工困难。因此如何改进电机的结构,特别是改进电机转子、转子轴的结构已成为电机行

业的一大课题。上海电机厂于二十世纪六十年代末就对转子空心轴的结构在大型直流电机上的应用进行攻关研究,最近为国内钢铁厂热轧工程轧机 生产的大型直流电机(ZD315/134,4100kW)上采用 了国内外罕见的空心轴结构,获得了较为良好的制 造和使用效果。本文就此结合直流电机空心轴转子 制造实例对空心轴结构和机械强度设计计算进行探讨。 2.电机的基本技术参数 为了便于比较给出了两种型号大型直流电机 ZD315/134和ZD315/142的基本技术参数,其中括号中的数据为型号ZD315/142的参数;转子轴空心轴(实心轴)结构(如图1和2所示),额定功率 4100kw(5750kW),额定电压750V(1000V);基速 40r/min,基速及以下恒转矩调压调速,2.5倍额定电流过载,2.75倍额定电流切断;高速80r/min,基速至高速恒功率弱磁调速,1.8倍额定电流过载,2倍额定电流切断;他励300V(100V),绝缘等级为F级绝缘和B级温升考核,s1工作制连续运行;总重量133300kg(211000kg),转子单件重量61220kg(89600kg),转子直径口3150mm,转子铁心长度 1340mm(1420mm),转子总长度6785mm(7400mm)。 中空轴部分 图1电机转子轴的空心轴结构

电力变压器线圈结构分析及机械强度的问题探讨

电力变压器线圈结构分析及机械强度的问题探讨 电力变压器线圈结构种类比较多,主要分为低压线圈、高压线圈和调压线圈三种,它们在保障变压器使用安全的过程中扮演着重要的角色。电力变压器线圈质量对于变压器的运行安全性影响比较大,在变压器线圈机械强度检查活动中,技术人员应该检查线圈使之处于绕紧缠绕牢固的状态,并且对线圈的机械强度进行检验,确保其能够经久耐磨,并在用电高峰期时线圈结构处的电压处于较高状态下线圈不会出现失稳现象。文章从电力变压器线圈结构安全保障的角度进行分析,提出几点有利于提升电力变压器运行安全性的可行性措施。 标签:变压器;线圈结构;机械强度;电力系统 电力变压器的线圈结构应该采用紧密缠绕的方式进行设计,并且不同结构的线圈采用不同的绕组方式。变压器不同绕组的线圈其径向力和轴向力之间应该满足一定的数值要求,达到径向力和轴向力的对应平衡。并且,为了确保电力变压器线圈结构的使用安全,技术人员应该对线圈结构的机械强度进行精准控制。从输入时间及压紧应力进行分析,技术人员应该认真做好短路电流的计算工作,根据电力变压器线圈短路电流的大小计算线圈的弹性系数。重点对变压器线圈的阻尼因数进行认真计算,防止线圈在电流过大的情况下出现不规则。计算上下铁圈结构夹件力的大小,保证其符合一定机械强度下的耐磨性能所需。 1 电力变压器线圈结构分析 1.1 电力变压器调压线圈结构设计 在变压器调压线圈设计方式中,一般有两种层式结构类型,主要分为单匝模型设计方法和双饼模型两种。 双饼模型设计活动中,技术人员应该考虑阻性参数对于铁芯结构的影响,一般来说,支路铁心电感应具有较强的阻抗矩阵效果,如果铁芯结构的设计不够合理,支路空气电感应效果不强。在变压器的集合结构参数线圈的结构和形式设计活动中,技术人员还应该考虑到阻性参数对于变压器线圈结构的具体影响。将焦耳损耗和电解质损耗降低到最低水平。技术人员应该注意处理好铁芯半径与绕组内外半径之间的参数对应关系,总线匝数和饼间垫块数以及垫块宽度,都是影响电力变压器强度的关键参数。浸油绝缘材料相对介电常数应该控制为油、绝缘纸、垫块2.2/2.6/4.5的比例为宜。其油道高度控制在4.6mm-9.9mm之间。 1.2 变压器线圈匝数和内外径问题 采用合适的线圈结构设计方式,有利于保证变压器线盒内部导向体处于绝缘状态。其中,低压线圈的额定电压为10.5kV时,变压器线圈匝数为131圈为宜。其高度不应该低于1.08米,线圈内径应该控制在小于0.28米的水平,并且确保外径不大于0.344米。

齿轮的参数代号图解计算方法

传动 形式 齿轮形状主要特点 两轴平行的齿轮传动直齿圆柱齿 轮传动 1、两轮轴线互相平行。 2、齿轮的齿长方向与齿轮轴线 互相平行。 3、两轮传动方向相反。 4、此种传动形式英勇最广泛。 直齿圆柱齿 轮传动 1、两轮轴线互相平行。 2、齿轮的齿长方向与齿轮轴线 互相平行。 3、两轮传动方向相反; 斜齿圆柱齿 轮传动 1、轮齿齿长方向线与齿轮轴线 倾斜一个角度。 2、与直齿圆柱齿轮传动相比, 同时啮合的齿数增多,传动平 稳,传动的扭矩也比较大。 3、运转时存在轴向力。 4、加工制造比直齿圆柱齿轮传 动麻烦。 斜齿圆柱齿 轮传动 非圆齿轮传 动 1、目前常见的非圆齿轮有椭圆 形、扇形。 2、当主动轮等速转动时从动轮 可以实现有规则的不等速转动。 3、此种传动多见于自动化机构。

人字齿轮传 动1、具有斜齿圆柱齿轮的优点,同时运转时不产生轴向力。2、适用于传递功率大,需作正反向运转的机构中。 3、加工制造比斜齿圆柱齿轮麻烦。 传动 形式 齿轮形状主要特点 两轴相交的齿轮传动交叉轴斜齿 轮传动 1、两轮轴线不再同一平面上, 或者任意交错,或者垂直交错。 2、两轮的螺旋角可以相等,也 可以不相等。 3、两轮的螺旋方向可以相同, 也可以不相同。 蜗杆传动 1、蜗杆轴线与蜗轮轴线成垂直 交错。 2、可以实现大的传动比,传动 平稳,噪声小,有自锁。 3、传动效率较低,蜗杆线速度 受一定限制。 直齿锥齿轮 传动 1、两轮轴线相交于锥顶点,轴 交角α有三种,α〉90°,α =90°(正交),α〈90°。 2、轮齿齿线的延长线通过锥点。

斜齿锥齿轮传动 1、轮齿齿线呈斜向,或者说,齿线的延长线不通过锥点,而是 与某一圆相切。 2、两轮螺旋角相等,螺旋方向相反。 弧齿锥齿轮传动 1、轮齿齿线呈弧形。 2、两轮螺旋角相等,螺旋方向 相反。 3、与直齿锥齿轮传动相比,同 时参加啮合的齿数增多,传动平稳,传动的扭矩较大。 齿轮几何要素的名称、代号 齿顶圆:通过圆柱齿轮轮齿顶部的圆称为齿顶圆,其直径用 d a 表示。 齿根圆:通过圆柱齿轮齿根部的圆称为齿根圆,直径用 d f 表示。 齿顶高:齿顶圆 d a 与分度圆d 之间的径向距离称为齿顶高,用 h a 来表示。 齿根高:齿根圆 d f 与分度圆 d 之间的径向距离称为齿根高,用 h f 表示。 齿顶高与齿根高之和称为齿高,以h 表示,即齿顶圆与齿根圆之间的径向距离。以上所述的几何要素均与模数 m 、齿数z 有关。 齿形角:两齿轮圆心连线的节点P处,齿廓曲线的公法线(齿廓的受力方向)与两节圆的内公切线(节点P 处的瞬时运动方向)所夹的锐角,称为分度圆齿形角,以α表示,我国采用的齿形角一般为20°。 传动比:符号i ,传动比i 为主动齿轮的转速n 1(r/min )与从动齿轮的转速n 2(r/min )之比,或从动齿轮的齿数与主动齿轮的齿数之比。 即i= n 1/n 2 = z 2/z 1

安全滑触线的选型以及机械强度

安全滑触线的选型以及机械强度 安全滑触线在进行购买的过程中需要注意的地方比较多,在进行选择的过程中需要进行多方面的进行选择,比如需要考虑其设备所需要采用其电流的大小或者是产品的工作环境以及安全滑触线的加工材质等因素,因为这些因素对产品的使用寿命有这非常大的影响。 滑触线的选型是比较重要的,所以大家在进行选择的时候千万要进行慎重考虑,首先我们需要进行确定的就是产品在运行的过程中所需要的电流以及相线数,这个数值主要就是根据其电机总功率来计算的。拓腾滑触线在进行加工的过程中会采用其铝型材,其主要的原因就是因为铝材料的纯度比较高,在使用的过程中具有比较好的耐腐蚀的性能,主要是因为这样的材质在空气中会出现氧化的作用,所以其铝的表面会产生一层比较薄的致密自然氧化膜。 铝型材的金属氧化膜生成的比较快,且非常多且厚,这样就可以非常有效的阻止了其空气中的有害气体以及水分的进一步的腐蚀,达到了比较好的保护作用,铝型材的机械强度比较高,但是耐腐蚀的性能比较低。 虽然滑触线在进行加工的过程中采用铝型材,但是要是使用其纯铝虽然产品的耐腐蚀性能好,但是产品的机械强度比较差,所以非常容易出现变形的情况,在这样的程度上可以非常有效的制约了铝的应用,所以人们会在铝中添加适量的铜以及镁等金属物质,这样就制成了不同种类的铝合金。

拓腾滑线在进行使用的过程中是属于一种容易消耗的产品,在行驶的过程中其距离可以影响设备的维护周期,产品的外壳的质量要非常适用于产品的环境以及温度,集电器的性能主要就是轮子的使用寿命 滑触线的价格存在差异 滑触线一般情况下都是使用在一些移动设备上的,所以不同的企业对产品的质量以及标准都是不同的,在进行加工的时候其要求的材质也会变得不一样,材料差异的主要原因是因为不同的材质其采购的原材料的价格不一样,一般情况下材质比较好,其使用的寿命也会比较长,其价格就会比较高。上海拓腾电气公司选用优质源材料,产品出口海外多个国家地区,获得客户一致好评。

材料压缩试验(抗压强度检测)

材料压缩试验 压缩试验是测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。 试样破坏时的最大压缩载荷除以试样的横截面积,称为压缩强度极限或抗压强度。 压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。 与拉伸试验相似,通过压缩试验可以作出压缩曲线。图中为灰铸铁和退火钢的压缩曲线。曲线中纵坐标P为压缩载荷,横坐标Δh为试样承受载荷时的压缩量。如将两坐标值分别除以试样的原截面积和原高度,即可转换成压缩时的应力-应变曲线。图中Pp为比例极限载荷,P0.2为条件屈服极限载荷,P b为破坏载荷。在压缩试验中,试样端面存在较大的摩擦力,影响试验结果。试样越短影响越大,为减少摩擦力的影响,一般规定试样的长度与直径的比为1~3,同时降低试样的表面粗糙度,涂以润滑油脂或垫上一层薄的聚四氟乙烯等材料。 国家标准: 压缩试验: GB/T7314-2005《金属材料室温压缩试验方法》 抗压强度: CECS278-2010剪压法检测混凝土抗压强度技术规程 CJ/T445-2014给水用抗冲抗压双轴取向聚氯乙烯(PVC-0)管材及连接件 DG/TJ08-2020-2007结构混凝土抗压强度检测技术规程-回弹法、超声回弹综合法、钻芯法(附条文说明) DG/TJ08-507-2003高强混凝土抗压强度非破损检测技术规程(附条文说明)

GB/T10424-2002烧结金属摩擦材料抗压强度的测定 GB/T10516-2012硝酸磷肥颗粒平均抗压碎力的测定 GB/T11106-1989金属粉末用圆柱形压坯的压缩测定压坯强度的方法 GB/T11837-2009混凝土管用混凝土抗压强度试验方法 GB/T12587-2003橡胶或塑料涂覆织物抗压裂性的测定 GB/T13465.3-2002不透性石墨材料抗压强度试验方法 GB/T14041.3-2010液压滤芯第3部分:抗压溃(破裂)特性检验方法 GB/T14201-1993铁矿球团抗压强度测定方法 GB/T14208.3-2009纺织玻璃纤维增强塑料无捻粗纱增强树脂棒机械性能的测定第3部分:压缩强度的测定 GB/T1454-2005夹层结构侧压性能试验方法 GB/T15560-1995流体输送用塑料管材液压瞬时爆破和耐压试验方法 GB/T15777-1995木材顺纹抗压弹性模量测定方法 GB/T1935-2009木材顺纹抗压强度试验方法 GB/T1936.1-2009木材抗弯强度试验方法 GB/T1938-2009木材顺纹抗拉强度试验方法 GB/T1939-2009木材横纹抗压试验方法 GB/T1942-2009木材抗劈力试验方法 GB/T1943-2009木材横纹抗压弹性模量测定方法 GB/T19496-2004钻芯检测离心高强混凝土抗压强度试验方法 GB/T1964-1996多孔陶瓷压缩强度试验方法 GB/T22307-2008密封垫片高温抗压强度试验方法

机械强度1

1一旋转轴直径d =80mm ,受径向力F =2kN ,跨距L =2m 。F 力作用在 ,试校核该零件的强度是否足够(为安全起见一般计算屈服强度和疲劳强度两种安全系数)。 3某零件的工作应力变化如图所示,求最大应力σ,,最小应力σ,平均 ℃,最高温度为160℃范围内变化时,热伸长受到约束的管的热应力σc 是否超过σS 值? 5某灰铸铁的σB MPa =260,该材料的疲劳极限与静强度的近似关系式为:σσ-=1045.B ,试画该材料的简化极限应力图。

6某零件受稳定交变弯曲应力作用,最大工作应力σmax =180MPa ,最小工作应力σm i n =150MPa ,屈服极限σS 240MPa =,对称循环疲劳极限σ-=1180MPa ,脉动循环疲劳极限σ0=240MPa ,略去危险截面处应力集中系数等综合影响系数()K σD 的影响,试求: (1)等效系数ψσ值 (2)安全系数S 值 7已知材料σ-=1260MPa ,σ0=360MPa ,K σ σεβ=25.,σa 50MPa =, σm 40MPa =,r =常数,用图解法及计算法求安全系数S 。 注:简化疲劳极限线图采用折线图法 8某钢制零件,其σB 560MPa =,σS 280MPa =,σ-=1250MPa ,σ0=385MPa 。工作变应力σmax =155MPa ,σmin =30MPa ,零件的有效应力集 中系数K σ=165 .,绝对尺寸系数εσ=08.,表面状态系数β=095.。要求许用安全系数[]S =15 .,r =常数,校核该零件的强度是否足够。 提示:解此题时,可略去画疲劳极限应力图,因此在不能判断何种失效方式情况下,要求分别验算疲劳强度安全系数及静强度安全系数是否满足要求。 9用压板夹持加工零件,要求夹持力F =12000N ,压板材料的许用弯曲应力为[]σb MPa =50。 1).分析螺栓装在什么位置压板强度最弱? 2).按最不利条件定压板厚度h 。

齿轮各参数计算公式

模数齿轮计算公式: 名称代号计算公式 模数m m=p/π=d/z=da/(z+2) (d为分度圆直径,z为齿数)齿距p p=πm=πd/z 齿数z z=d/m=πd/p 分度圆直径 d d=mz=da-2m 齿顶圆直径da da=m(z+2)=d+2m=p(z+2)/π 齿根圆直径df df=d-2.5m=m(z-2.5)=da-2h=da-4.5m 齿顶高ha ha=m=p/π 齿根高hf hf=1.25m 齿高h h=2.25m 齿厚s s=p/2=πm/2 中心距 a a=(z1+z2)m/2=(d1+d2)/2 跨测齿数k k=z/9+0.5 公法线长度w w=m[2.9521(k-0.5)+0.014z]

13-1 什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b=40 mm,试求此渐开线压力角=20°处的半径r和曲率半径ρ的大小。 13-3 有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径d a=106.40 mm,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少? 13-4 两个标准直齿圆柱齿轮,已测得齿数z l=22、z2=98,小齿轮齿顶圆直径d al=240 mm,大齿轮全齿高h=22.5 mm,试判断这两个齿轮能否正确啮合传动? 13-5 有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z1=19、z2=81,模数m=5 mm,压力角 =20°。若将其安装成a′=250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C 是多少? 13-6 已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数z1=21、z2=66,模数m=3.5 mm,压力角=20°,正常齿。试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。 13-7 已知一标准渐开线直齿圆柱齿轮,其齿顶圆直径d al=77.5 mm,齿数z1=29。现要求设计一个大齿轮与其相啮合,传动的安装中心距a=145 mm,试计算这对齿轮的主要参数及大齿轮的主要尺寸。 13-8 某标准直齿圆柱齿轮,已知齿距p=12.566 mm,齿数z=25,正常齿制。求该齿轮的分度圆直径、齿顶圆直径、齿根圆直径、基圆直径、齿高以及齿厚。 13-9 当用滚刀或齿条插刀加工标准齿轮时,其不产生根切的最少齿数怎样确定?当被加工标准齿轮的压力角 =20°、齿顶高因数h a*=0.8时,不产生根切的最少齿数为多少? 13-10 变位齿轮的模数、压力角、分度圆直径、齿数、基圆直径与标准齿轮是否一样? 13-11 设计用于螺旋输送机的减速器中的一对直齿圆柱齿轮。已知传递的功率P=10 kW,小齿轮由电动机驱动,其转速n l=960 r/min,n2=240 r/min。单向传动,载荷比较平稳。 13-12 单级直齿圆柱齿轮减速器中,两齿轮的齿数z1=35、z2=97,模数m=3 mm,压力=20°,齿宽b l=110 mm、b2=105 mm,转速n1=720 r/min,单向传动,载荷中等冲击。减速器由电动机驱动。两齿轮均用45钢,小齿轮调质处理,齿面硬度为220-250HBS,大齿轮正火处理,齿面硬度180~200 HBS。试确定这对齿轮允许传递的功率。 13-13 已知一对正常齿标准斜齿圆柱齿轮的模数m=3 mm,齿数z1=23、z2=76,分度圆螺旋角β=8°6′34″。试求其中心距、端面压力角、当量齿数、分度圆直径、齿顶圆直径和齿根圆直径。 13-14 图示为斜齿圆柱齿轮减速器 1)已知主动轮1的螺旋角旋向及转向,为了使轮2和轮3的中间轴的轴向力最小,试确定轮2、3、4的螺旋角旋向和各轮产生的轴向力方向。 2)已知m n2=3 mm,z2=57,β2=18°,m n3=4mm,z3=20,β3应为多少时,才能使中间轴上两齿轮产生的轴向

水泥机械强度的测定

水泥机械强度的测定 一. 目的意义 水泥的强度在使用中具有重要的意义。水泥强度是指水泥试体在单位面积上锁承受的外力,它是水泥的主要性能指标。水泥石混凝土的重要胶结材料,水泥强度时水泥胶结能力的体现,是混凝土强度的主要来源。检验水泥各龄期迁都,可以确定其强度等级,根据水泥强度等级又可以设计水泥混凝土的标号。是你强度检验主要是抗折强度与抗压强度的检验。 本实验目的: ① 学习水泥胶砂强度的测试方法,以确定水泥强度等级; ② 分析影响水泥胶砂强度测试结果的各种因素。 二. 实验原理 1、 抗折强度 材料的抗折强度一般采用简支梁法进行测定。对于均质弹性体,将其试样放在两支点上,然后再两支点间的试样上施加集中载荷时,试样将变形或断裂(图1)。由材料力学简支梁的受力分析可得抗折强度的计算公式: 2 2236 22bh PL bh L P W M R f =? == (1) 式中R f —抗折强度,MPa M —在破坏何种P 处产生的最大弯矩 W —截面矩量,断面为矩形时W=bh 2/6 P —作用于试体的破坏荷重,N L —抗折夹具两支承圆柱的中心距离,mm b —试样宽度,mm h —试样高度,mm 在水泥胶砂试体抗折强度测试中,两支承圆柱的中心距离L=100mm ;试样宽度b=40mm ;试样高度h=40mm 。将这些值代入(1)得

32 1034.223-?== P bh PL R f 应当注意的是,水泥胶砂试体是由晶体、 交替、未完全水化的颗粒、游离水和气孔等组成的不均质结构体。而且在硬化过程的不同龄期,试体内晶体、胶体、未完全水化的颗粒等所占的比率不同,导致试体的强度也不相同。因此,水泥胶砂试体不是均质弹性体,而是“弹-粘-塑性体”,用式(1)计算出的强度不完全 代表水泥胶砂试体的真实抗折强度值,但这种近似值已能满足工程测试的要求。 材料的抗折强度一般采用电动抗折试验机进行测定,其测力原理如图2所示。在这种情况下,力矩M 与各量的关系为: M 1=PL 1 M 2=SL 2 M 3=SA M 4=QB 平衡状态时: M 1=M 2 即1 2 L L S P = M 3=M 4 即A Q B S = 所以 B A Q L L P ??= 12 由于仪器设定为:力臂L 1=1长度单位,A=1长度单位,L 2=5长度单位,B=10(长度单位),所以: Q Q B A Q L L P 501 110512=??=??= Q Q P R f 117.0105034.21034.233=??=?=-- (2) 2、抗压强度

抗压强度计算2015讲解

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

熊猫型保偏光纤机械强度分析的理论和方法研究.

熊猫型保偏光纤机械强度分析的理论和方法研究 英文题名 Analytical Theory and Method Study of Mechanical Strength of PANDA Polarization Model Optical Fiber 关键词保偏光纤; 机械强度; 耐疲劳因子; 英文关键词 polarization maintaining optical fiber; mechanical strength; anti-fatigue factor; 中文摘要光纤作为新一代的通信介质已经得到广泛的应用。光纤除了仅仅是作为通信介质应用外,还广泛地应用在各种光学器件中,同时也衍生出了各种不同类型的光纤。偏振保持光纤以优良的偏振特性,在各种偏振光学器件中得到了很大的应用,其中熊猫型保偏光纤在光纤陀螺中应用最为广泛。光纤陀螺是新一代导弹、航天器的导航器件,在军事方面的应用价值是非常巨大的,大有替代机械陀螺、激光陀螺的趋势。本文介绍了光纤的发展历程以及目前所应用的光纤种类,并且介绍了脆性材料的断裂知识以及光纤机械强度的基本理论知识,提出了前人对光纤机械强度性能的研究过程和方法。同时本文还介绍了国家标准中对普通单模光纤机械强度的分析方法,介绍了光纤张力筛选的原理和耐疲劳因子的测量方法。通过对普通单模光纤和熊猫型保偏光纤的比较,介绍了两种摘要 3-4 ABSTRACT 4 第一章绪论 7-14 1.1 引言 7-11 1.1.1 光通信发展的历史 7 1.1.2 光纤的特点和分类 7-11 1.2 目的和意义11-12 1.3 国内外研究现状 12 1.4 主要工作及论文结构 12-14 第二章光纤机械强度的基本知识 14-25 2.1 光纤机械强度的现状14 2.2 光纤强度基础知识的简介 14-16 2.3 光纤机械强度的分析方法 16-22 2.3.1 光纤强度的分析方法 16- 19 2.3.2 光纤强度的筛选方法 19-21 2.3.3 光纤机械强度的试验方法 21-22 2.4 光纤机械强度的分析实例 22- 24 2.5 小结 24-25 第三章光纤机械强度的试验方法 25- 39 3.1 张力筛选实验 25-28 3.1.1 恒定应力筛选试验 25 3.1.2 恒定轴向应变筛选试验 25- 26 3.1.3 恒定弯曲应变筛选试验 26-28 3.2 光纤的应力腐蚀参数的测量 28-38 3.2.1 用轴向张力法测量光纤动态疲劳参数 28-31 3.2.2 用两点弯曲法测量光纤的动态疲劳参数 31-34 3.2.3 用轴向张力法测量光纤静态疲劳参数 34-35 3.2.4 用两点弯曲法测量光纤静态疲劳参数 35- 37 3.2.5 用均匀弯曲法测量光纤静态疲劳参数 37- 38 3.3 小结 38-39 第四章熊猫型保偏光纤 39-51 4.1 保偏光纤同普通单模光纤的区别 40-41 4.2 熊猫型保偏光纤 41- 43 4.3 熊猫型保偏光纤的制作工艺简介 43-48 4.3.1 单模母棒和应力棒的制作 44-45 4.3.2 单模棒的加套 45- 46 4.3.3 单模棒和应力棒的加工和组装 46- 47 4.3.4 光纤拉丝 47-48 4.4 制作工艺的比较和影响 48-50 4.5 小结 50-51 第五章熊猫型保偏光纤机械强度分析的方法 51-65 5.1 熊猫型保偏光纤强度分析方法的选取 51 5.2 保偏光纤机械强度的试验 51-59 5.2.1 保偏光纤机械强度的样品和试验的设备 51-53 5.2.2 保偏光纤机械强度的试验过程53-54 5.2.3 保偏光纤机械强度试验数据及数据分析 54-

齿轮各参数计算公式

名称代号计算公式 模数m m=p/π=d/z=da/(z+2) (d为分度圆直径,z为齿数) 齿距p p=πm=πd/z 齿数z z=d/m=πd/p 分度圆直径 d d=mz=da-2m 齿顶圆直径da da=m(z+2)=d+2m=p(z+2)/π 齿根圆直径df df==m=da-2h= 齿顶高ha ha=m=p/π 齿根高hf hf= 齿高h h= 齿厚s s=p/2=πm/2 中心距 a a=(z1+z2)m/2=(d1+d2)/2 跨测齿数k k=z/9+ 公法线长度w w=m[+] 13-1 什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b=40 mm,试求此渐开线压力角=20°处的半径r和曲率半径ρ的大小。 13-3 有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径d a= mm,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少? 13-4 两个标准直齿圆柱齿轮,已测得齿数z l=22、z2=98,小齿轮齿顶圆直径d al=240 mm,大齿轮全齿高h = mm,试判断这两个齿轮能否正确啮合传动? 13-5 有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z1=19、z2=81,模数m=5 mm,压力角 =20°。若将其安装成a′=250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C 是多少? 13-6 已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数z1=21、z2=66,模数m= mm,压力角=20°,正常齿。试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。

机械强度

1一旋转轴直径d=80mm,受径向力F=2kN,跨距L=2m。F力作用在二支点中间,试计算a点的最大最小弯曲应力σmax、σmin、应力幅σa、平均应力σm和循环特性系数r,并画出其变应力图。 2某优质碳素结构钢零件,其σs=280MPa,σB=560MPa,σ-1=250MPa,工作应力σmax=155MPa,σmin=30MPa,零件的有效应力集中系数Kσ=1.65,尺寸系数εσ=0.81,表面状态系数β=0.95,等效系数ψσ=0.30。如取许用安全系数[S]=1.5,试校核该零件的强度是否足够(为安全起见一般计算屈服强度和疲劳强度两种安全系数)。 ,,最小应力σmin,平均3某零件的工作应力变化如图所示,求最大应力σ max 应力σm,应力幅σa,循环特性r。

4热交换器中有一两端固定的钢管,线膨胀系数α=?-11106 ℃-1,弹性模量E =?21.10 MPa 5,钢的屈服极限σS 230MPa =,计算当在最低温度为20℃,最高温度为160℃范围内变化时,热伸长受到约束的管的热应力σc 是否超过σS 值? 5某灰铸铁的σB MPa =260,该材料的疲劳极限与静强度的近似关系式为:σσ-=1045.B ,试画该材料的简化极限应力图。 6某零件受稳定交变弯曲应力作用,最大工作应力σmax =180MPa ,最小工作应力σm i n =150MPa ,屈服极限σS 240MPa =,对称循环疲劳极限σ-=1180MPa ,脉动循环疲劳极限σ0=240MPa ,略去危险截面处应力集中系数等综合影响系数()K σD 的影响,试求: (1)等效系数ψσ值 (2)安全系数S 值 7已知材料σ-=1260MPa ,σ0=360MPa ,K σσεβ=25 .,σa 50MPa =, σm 40MPa =,r =常数,用图解法及计算法求安全系数S 。 注:简化疲劳极限线图采用折线图法

机械工程的可靠性优化设计分析

龙源期刊网 https://www.wendangku.net/doc/4f14313549.html, 机械工程的可靠性优化设计分析 作者:刘峰王庆鑫赵秉祝 来源:《装饰装修天地》2020年第01期 摘; ; 要:随着我国经济技术的快速发展,人们对机械工程提出了更高的要求,机械工程产品应用广泛,对产品可靠性有较高要求,需要从多角度出发,对产品可靠性进行优化设计。首先对机械工程产品可靠性设计现状进行分析,探讨机械工程产品可靠性设计存在的不足。在此基础上,研究机械工程产品可靠性优化设计要点,提出几点具体的优化方法,以期促进其产品质量水平的提升。 关键词:机械工程;产品可靠性;优化设计 1; 引言 我国机械工程制造业发展较快,产品质量水平不断提升,已经进入良性发展期。但是在机械工程产品设计中,由于未能处理好产品功能扩展与可靠性要求的关系,导致产品可靠性存在不足,容易对产品使用安全造成一定影响。针对这种问题,应在提升产品可靠性设计重视度的基础上,采取有效的优化措施,为产品可靠性提供保障。 2; 机械工程可靠性优化的现状 我国机械工程制造业发展的起步较晚,在上世纪80年代时,才在产品可靠性设计方面取得一定突破。随着国内机械工程产品可靠性研究组织机构的相继成立,加快了我国产品可靠性设计的标准化进程,对于推动机械工程制造业发展做出了重要贡献。但客观而言,我国机械工程产品可靠性研究仍落后与西方发达国家,现有研究成果也偏重于理论,在实际生产领域的应用较少。从机械工程实践情况来看,由于缺少产品可靠性的优化设计经验,难以根据机械工程产品的实际用途、功能性能特点,对产品可靠性作出有效优化。或因产品可靠性优化设计周期较长,影响了实际工程进程。再加上成本等方面的客观限制条件,导致部分产品可靠性不足,容易影响机械工程产品的运行安全性和稳定性。针对这种状况,必须提高对机械工程产品可靠性设计的重视,同时应明确机械工程产品可靠性设计优化应贯穿于工程实践的全过程中,与产品制造、安装、使用及维修紧密结合起来,不断积累经验,提高机械工程产品可靠性设计水平。 3; 机械工程的可靠性优化设计原理 3.1; 机械可靠性定量设计方法

混凝土试件抗压强度结果影响因素分析

混凝土试件抗压强度结果影响因素分析 论文发表 写作指导 资料参考 发表时间:2011-03-05 来源:中国鸣网作者:宋国兴 摘要:对廊涿高速公路跨京广铁路、107国道大桥钻孔灌注桩C30混凝土和现浇箱梁C55混凝土两个不同施工阶段的28天混凝土试件抗压强度情况的根源进行统计与分析,阐述施工、养护条件等因素对混凝土试件抗压强度结果的影响及防治措施。 关键词:混凝土试件强度影响因素分析 一、前言 统计表明,水泥混凝土已成为当代用量最多的人造材料。因其原料易得,成本低廉,施工方便,耐久性好,在当前桥梁和工业民用建筑中得到广泛应用。但又因硬化后的水泥混凝土结构的不可重塑性,一旦混凝土强度不能满足设计要求,返工处理将浪费很大的人力、物力,并造出不良的社会影响。水泥混凝土结构在施工完成后的实体强度很难直接得到,工程中通常采用混凝土立方体试件标准养护28天的抗压强度来予以反映,但由于施工、制件、养护、试验操作等诸多因素的影响,在实际施工过程中同强度等级、同配比、同施工条件下的不同批次混凝土试件的强度却往往偏差很大,甚至还有很多同一组混凝土试件不同个体之间的强度偏差也超过规范的要求,强度达不到设计要求的情况也偶有发生。 二、混凝土试件28天抗压强度结果统计汇总 廊涿高速跨京广铁路、107国道大桥工程前期钻孔灌注桩混凝土均使用了商品混凝土,后期箱梁采用了自拌混凝土。对本工程某一时间段的24棵灌注桩总计72组和15片预制箱梁共计60组混凝土试件28天的抗压强度进行统计。 三、原因分析 统计结果表明,处于工程初期施工的灌注桩,由于对现场施工、混凝土拌合站以及试验室等管理还不太规范,虽然混凝土设计强度并不高,但是均方差和变异系数却都很大,极差甚

斜齿圆柱齿轮的参数及几何尺寸计算(精)

斜齿圆柱齿轮的参数及几何尺寸计算(转载) 狂人不狂收录于2007-04-18 阅读数:1093 收藏数:2公众公开原文来源 我也要收藏以文找文如何对文章标记,添加批注? 9.9.2◆斜齿圆柱齿轮的参数及几何尺寸计算◆ 斜齿轮的轮齿为螺旋形,在垂直于齿轮轴线的端面(下标以t表示)和垂直于齿廓螺旋面的法面(下标以n表示)上有不同的参数。斜齿轮的端面是标准的渐开线,但从斜齿轮的加工和受力角度看,斜齿轮的法面参数应为标准值。 1.螺旋角β 右图所示为斜齿轮分度圆柱面展开图,螺旋线展 开成一直线,该直线与轴线的夹角β称为斜齿轮 在分度圆柱上的螺旋角,简称斜齿轮的螺旋角。 tanβ=πd/ps 对于基圆柱同理可得其螺旋角βb 为 : 所以有: ...(9-9-01) 通常用分度圆上的螺旋角β斜进行几何尺寸的 计算。螺旋角β越大,轮齿就越倾斜,传动的平 稳性也越好,但轴向力也越大。通常在设计时取。 对于人子齿轮,其轴向力可以抵消,常取,但加 工较为困难,一般用于重型机械的齿轮传动中。 齿轮按其齿廓渐开螺旋面的旋向,可分为右旋和 左旋两种。如何判断左右旋呢?测试一下? 2.模数 如图所示,pt为端面齿距,而pn为法面齿距,pn = pt·cosβ,因为p=πm, πmn=πmt·cosβ,故斜齿轮法面模数与端面模数的关系为: mn=mt·cosβ。 3.压力角 因斜齿圆柱齿轮和斜齿条啮合时,它们的法面压力 角和端面压力角应分别相等,所以斜齿圆柱齿轮法 面压力角αn和端面压力角αt的关系可通过斜齿条 得到。在右图所示的斜齿条中,平面ABD在端面 上,平面ACE在法面S上,∠ACB=90°。在直角 △ABD、△ACEJ及△ABC中, 、 、 、BD=CE,所以有:... (9-9-03) >>法面压力角和端面压力角的关系<<

压力容器的机械强度可靠性设计分析

压力容器的机械强度可靠性设计分析 发表时间:2017-04-26T10:10:01.000Z 来源:《电力设备》2017年第3期作者:王悦1 王庆元2 [导读] 从实际生产情况来看,压力容器的可靠性通常能够体现出设计水平的优化和提高,为了实现这个目的那么就需要对零件及部件进行有效的计算,这样才能保证压力容器的质量。 (1.哈电集团(秦皇岛)重型装备有限公司河北秦皇岛 066206;2.河北汉光重工有限责任公司河北邯郸 056028)摘要:随着社会的发展和对压力容器使用需求的不断增多,在对压力容器的机械强度可靠性设计进行分析时发现,压力容器的壁厚会受到使用时间和受压材料的影响,而且年限的不同也会使得腐蚀裕量的取值出现一定的改变。因此,从实际生产情况来看,压力容器的可靠性通常能够体现出设计水平的优化和提高,为了实现这个目的那么就需要对零件及部件进行有效的计算,这样才能保证压力容器的质 量。 关键词:压力容器;机械强度;可靠性;设计分析 引言 我国压力容器的机械强度可靠性设计都较为随意,没有对于压力容器可靠性的明确要求,而以上的可靠性方法主要通过公式、假设等进行分析概括。压力容器的机械强度可靠性设计的主要目的是为了时压力容器的机械强度能够达到安全水平,经济水平、外界环境以及应力等都是对压力容器的机械强度可靠性设计的最终考量,因此,压力容器的机械强度可靠性设计具有极其重要的作用。 1压力容器可靠性设计的意义 压力容器可靠性是指其在特定的情况下,能够让使用功能满足用户的需求,并且在使用的过程不发生故障性质。与压力容器机械强度可靠性存在密切关联的因素有使用环境、环境温度、消费者使用需求以及应力等,压力容器机械强度的可靠性和压力容器的使用时间存在密切联系,随着压力容器使用时间的延长,压力容器机械强度的可靠性逐渐降低,也正是由于有可靠性的存在人们才对压力容器产生了使用寿命的认识。无论是电子产品还是人们日常生活用品,研究可靠性都是非常有必要的。随着国家经济水平和人们生活质量的提升,人们对压力容器的要求也越来越高,在科技发展的支持下,压力容器可靠性得到了大幅度的提升,由于可靠性在一定程度上体现了一个国家的实力水平,因此产品的可靠性研究具有非常重要的意义。 2理论基础 根据国家标准,压力容器设计应充分的考虑实际厚度和计算厚度的附加值。实际厚度的附加值是指筒体的腐蚀裕量和材料得到实际厚度误差,材料的实际厚度误差是根据材料标准中所规定的误差范围进行计算口,而筒体的腐蚀裕量则指的是压力容器中所装的物体对材料腐蚀速率的影响和对压力容器的预期使用时间的计算等。通过长期实践研究表明,我国大部分的压力容器机械强度可靠性设计,在对使用寿命进行计算的弹性失效的中径公式都是将其设为极限情况,计算并没有考虑到腐蚀裕量,所以所得出的结果与实际存在差别。 3可靠性设计的步骤 在一般情况下,压力容器的机械强度的可靠性设计主要划分成为六大主要步骤,第一步,计算压力容器的强度系数以及其可靠度;第二步,按照计算公式得出压力容器的故障概率 F=I=R;第三步,利用前一个步骤得出的故障概率计算压力容器的可靠度;第四,计算生产材料的所能承受负载的强度;第五,利用之前计算的可靠度并通过公式得出压力容器的应力均值;最后,利用各项计算结果和测量数据确定压力容器的预算厚度。 4压力容器的机械强度可靠性设计的基本方法 4.1压力容器筒体厚度的计算 在 20 世纪中叶,科研工作者对路合金强度进行有效计算时,发现了实际条件下材料的腐蚀深度分布形式。随着科学技术的发展与进步,压力容器的研究领域也得到了一定的扩展,随之有关材料腐蚀的研究成果也越来越多。所以,可以进一步计算出压力容器筒体的腐蚀裕量,同时还可以系统性地计算出容器筒体的原始厚度。按照蒙特卡罗的研究方法可以得知,如果一个压力容器筒体厚度是22 mm,那么在它使用 10 年之后。压力容器的可靠性是 0. 9 的五次方。所以说在多次试验之后可知,压力容器筒体的厚度将会与其使用年限有一定的关系。在压力容器的使用过程中,其可靠性务必要高于 0. 9 的五次方才可以。 4.2 受压材料的科学利用 选用不同的受压材料将会直接影响压力容器的机械强度,因此对于受压材料的选择至关重要。在选择受压材料时,要按照设计压力、外界环境和介质腐蚀性的实际参数来确定。除此之外介质的选择也很重要,介质易燃、易爆就会影响受压材料,所以说在压力容器中所使用的材料务必要满足工作需求及国家制定的行业标准。基于此,科学的设计结构也将会影响压力容器的可靠性。 4.3重视极限情况的存在 压力容器在使用的过程中,其筒体的厚度会产生比较大的变化,与此同时,筒体在应力的作用下,也在随之发生变化,因此,在压力容器的机械强度可靠性设计过程中,需要充分考虑筒体所盛放的介质对于筒体腐蚀速率的作用,相关科研人员需要利用公式计算压力容器在使用过程中筒体的实际厚度,与此同时,压力容器的筒体在受到应力的情况下,可靠性受到破坏的情况有两种,一种是压力容器的筒体发生了屈服失效的情况,第二种情况是压力容器的筒体产生了断裂。因此,科研人员需要分析压力容器在极限情况下发生的失效,在最大程度提升压力容器的抗压值,提高其可靠性。 结束语 总之,在压力容器的机械强度可靠性设计中,尺寸是设计需要重点参考的数据,科研人员必须根据不同压力容器的实际情况对可靠性进行设计可以将压力容器的机械强度可靠性分为设计一生产一使用一保养等步骤。机械强度的可靠性设计是一项较为复杂的过程,压力容器机械强度可靠性设计的主要目的是确保压力容器的机械强度能够符合安全要求,外界环境、应力和经济水平都是对压力容器机械强度可靠性设计的考量,所以加强压力容器机械强度的可靠性设计应当引起人们足够的重视。 参考文献 [1]胡小芳,郑小海.对压力容器的机械强度可靠性设计的探讨[J].化工管理,2015,19:162-164. [2]黄胜.对压力容器的机械强度可靠性设计的探讨[J].山东工业技术,2015,24:44.

相关文档