文档库 最新最全的文档下载
当前位置:文档库 › 线性系统响应中齐次解和特解形式的设定

线性系统响应中齐次解和特解形式的设定

线性系统响应中齐次解和特解形式的设定
线性系统响应中齐次解和特解形式的设定

线性系统响应中齐次解和特解形式的设定

描述线性时不变连续系统的激励与响应之间关系的数学模型是n 阶常系数微分方程,可写为

)()()(0)

(0t f b t y a i m

i i j n j j ∑∑=== 通过高数的学习,我们得知微分方程的全解是通解与特解的和。则线性系统响应的全解由齐次解)(t y h 与特解组成,即

Y(t) =)(t y h +)(t y p

采用经典法,我们可以通过系统的齐次微分方程的特征方程求得特征根,从而求得t n

k k e A λ∑=1形式的齐次解。再通过微分方程的右端函数求得含待定系数的特解方程式。对于齐次解和特解的形式设定,讨论如下:

(一)齐次解)(t y h

二阶系统是一个典型系统,我们可以用一个简单系统区研究与其相似的复杂系统,从而为控制系统的计算机数字仿真提供了基础,物理结构不同的元件或系统可以具有相同形式的数学模型。对于一些线性二阶常系数微分方程而言,其齐次解在对应的物理系统中有各自的物理意义,如RLC 无源网络和弹簧-质量-阻尼机械系统。当齐次解分别为两个不同实根,二重实根和复根时,分别对应过阻尼,临界阻尼和欠阻尼三种情况。再如,齐次解又称为自由响应,它的函数形式是由电路系统本身结构决定的,与外加激励无关。由此可见,研究不同情况下齐次解的形式是很有必要的。

对于高阶系统而言,特征根的形式不同导致齐次解不同

1.特征根为单实根。采用经典法可求得齐次解)(t y h =t e λ。

2.特征根为r 重实根。齐次解)(t y h =t r r r r e C t C t C t C λ)...(012211++++----,其中系数C 由边界条件唯一确定。

3.特征根为一对共轭复根βαλj ±=2,1。设递归关系

1,,0,...2211+=≠?++?+?=---r r n a H a H a H a H r r n r n n n 的特征根为共轭复根,则对应的齐次递归关系解为θρθρn B n B a A a A n n n n sin cos )()(212211+=+。由此可得,齐次解)(t y h =jD C A t D t C e at +=+θθβββj Ae ),-t cos()]sin()cos([其中或。[1]

4.特征根为r 重共轭复根。同样可由递归关系得出齐次解

)(t y h =t αθβθβθβ)]e t cos(A ...)t cos(t A )t cos(t [A 002-r 2-r 2-r 1-r 1-r 1-r ++++++。

(二)特解)(t y p

特解的形式由激励信号确定,称为强迫响应。

1.激励信号f(t)=m t 。当所有特征根均不为零时,特解

(t)p y =01-1-...P t P t P m m m m +++。

,当有r 重等于0的特征根时,特解(t)p y =r t [01-1-...P t P t P m m m m +++]。

2.激励信号f(t)=t e α。当a 不等于特征根时,特解(t)p y =P t e α,当a 等于特征根时,特解(t)p y =)P t (P 01+t e α,当a 等于r 重特征根时,特解

(t)p y =)...P t P t (P 01-r 1-r r r ++t e α。

3.激励信号f(t)=t)(sin t)(cos ββ或,特解(t)p y =t)(sin t)(cos ββQ P +,其中所有的特征根均不等于β±。

4.激励信号f(t)=m t t e αt)(cos β或m t t e αt)(sin β,特解

(t)p y =(01-1-...P t P t P m m m m +++)t e

αt)(cos β+(01-m 1-m m m ...t t Q Q Q +++)t e αt)(sin β。 5.激励信号f(t)=t m e t P λ)(,特解

dt dt dt dt e t f e e e e t y t t

t t a t a t t a t t p n n n }]...))((...[{)()()()(123121????=----????-ααααα,其中?t dt t f )(表示取f(t)的任一个原函数即可。[2]

参考文献[1] 期刊: 薛维达 陈忠 常系数线性齐次递归关系的求解 太原师范学院学报 2009 8(1) [2] 期刊: 刘凌 高阶常系数线性微分方程的一种积分形式特解 高等数学研究 2011 14(1)

matlab实验二线性系统时域响应分析

武汉工程大学实验报告 专业班号 组别01 教师 姓名同组者(个人)

2222)(n n n s s s G ωζωω++= (1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 (2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 (3)系统的特征方程式为010532234=++++s s s s ,试用二种判稳方式判别该系统的稳定性。 (4)单位负反馈系统的开环模型为 )256)(4)(2()(2++++= s s s s K s G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、 实验结果及分析 1.可以用两种方法绘制系统的阶跃响应曲线。 (1)用函数step( )绘制 MATLAB 语言程序: >> num=[ 0 0 1 3 7]; >> den=[1 4 6 4 1 ]; >>step(num,den); >> grid; >>xlabel('t/s');ylabel('c(t)');title('step response');

MATLAB运算结果: (2)用函数impulse( )绘制 MATLAB语言程序: >> num=[0 0 0 1 3 7]; >> den=[1 4 6 4 1 0]; >> impulse(num,den); >> grid; >> xlabel('t/s');ylabel('c(t)');title('step response');MATLAB运算结果:

信号与线性系统五六章自测题(标准答案)

第五、六章自测题标准答案 1. 判断题 (1) 当且仅当一个连续时间线性时不变系统的阶跃响应是绝对可积的,则该系统是稳定的。 ( × ) (2) 若h (t )是一个线性时不变系统的单位冲激响应,并且h(t)是周期的且非零,则系统是非稳定的。 ( √ ) (3) 对于一个因果稳定的系统,可以利用ωωj s s H j H ==|)()( 求系统的频率响应。 ( √ ) (4) 一个稳定的连续时间系统,其系统函数的零极点都必定在s 平面的左半平面。 ( × ) 2.填空题 (1)某二阶系统起始状态为2_)0(',1_)0(=-=r r ;初始条件为,1)0(',3)0(==++r r 则确定零输入响应待定系数的初始条件为)0(+zi r = -1 ,)0('+zi r = 2 ;而确定零状态响应待定系数的初始条件为 )0(+zs r = 4 ,)0('+zs r = -1 。 (2)2 3)(2++=-s s e s F s 的逆变换为 )(][ )1(2)1(t e e t t ε-----。 (3))()sin( )(t t t f εφα+=的拉普拉斯变换为2 22 2sin cos )(αφαα φ+? ++?=s s s s F 。 3.求图5-1中所示单边周期信号的拉氏变换。 图5-1 解: +---+- -=)2 3()()2()()(T t T t T t t t f εεεε 4.一个单位冲激响应为h (t )的因果LTI 系统有下列性质: (1)当系统的输入为t e t x 2)(=时,对所有t 值,输出t e t y 26 1)(= 。 (2)单位冲激响应h(t)满足微分方程 )()()(2) (4t b t e t h dt t dh t εε+=+-。这里b 为一个未知常数。 确定该系统的系统函数。 解:本题中用到了特征函数的概念。一个信号,若系统对该信号的响应仅是一个常数(可能是复数)乘以输入,则该信号为系统的特征函数。(请注意:上面所指的系统必须是线性时不变系统。) 因为t e t x 2)(=是因果LTI 系统的特征函数,所以t t s e e s H t y 2226 1|)()(= ?==。即

《信号与线性系统》试题与答案5

综合测试(三) 一、选择题(本题共6小题,每小题3分,共18分) 1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足() A. B. C. D. 2、序列和等于() A. 1 B. C. D. 3、连续时间信号的单边拉普拉斯变换为() A. B. C. D. 4、下列各式中正确的是() A. B. C.D.

5、单边Z变换对应的原时间序列为() A.B. C.D. 6.请指出是下面哪一种运算的结果?()A.左移6 B. 右移6 C.左移2 D. 右移2 三、描述某系统的微分方程为y”(t) + 4y’(t) + 3y(t) = f(t) 求当f(t) = 2e-2t,t≥0;y(0)=2,y’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。齐次解为 y h(t) = C1e -t + C2e -3t 当f(t) = 2e–2 t时,其特解可设为 y p(t) = Pe -2t 将其代入微分方程得 P*4*e -2t + 4(–2 Pe-2t) + 3Pe-t = 2e-2t 解得 P=2 于是特解为 y p(t) =2e-t 全解为: y(t) = y h(t) + y p(t) = C1e-t + C2e-3t + 2e-2t 其中待定常数C1,C2由初始条件确定。 y(0) = C1+C2+ 2 = 2, y’(0) = –2C1–3C2–1= –1 解得 C1 = 1.5 ,C2 = –1.5 最后得全解 y(t) = 1.5e– t – 1.5e – 3t +2 e –2 t , t≥0 三、描述某系统的微分方程为y”(t) + 5y’(t) + 6y(t) = f(t) 求当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。齐次解为 y h(t) = C1e -2t + C2e -3t

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

信号与线性系统题解 阎鸿森 第二章

信号与线性系统题解 阎鸿森 第二章 习题答案 2.1 (1) 已知连续时间信号()x t 如图P2.1(a)所示。试画出下列各信号的波形图,并加以标 注。 (a) (2)x t - (b) (1)x t - (c) (22)x t + (2) 根据图P2.1(b)所示的信号()h t ,试画出下列各信号的波形图,并加以标注。 (a) (3)h t + (b) (2)2 t h - (c) (12)h t - (3) 根据图P2.1(a)和(b)所示的()x t 和()h t ,画出下列各信号的波形图,并加以标注。 (a) ()()x t h t - (b) (1)(1)x t h t -- (c) (2)(4)2 t x h t -+ 图P2.1 解:(1) 各信号波形如下图所示:

(a) (b)(c) 1 2 (2)x t -(1)x t -(22)x t +t t t 22 22111 11210 01 -1-1 -2 -2 -3 5 (2) 各信号波形如下图所示: (a) (b)(c) 12 12 -32 (3)h t +(2)2t h -(12) h t -t t t 00 1 1 1 12468 1-2-3-4-5- (3) 各信号波形如下图所示: ()()x t h t -(1)(1)x t h t --(2)2 t x -(a) (b) (c) t t t ∴(2/2)(4)0 x t h t -+=00 111112 2222 2 1-1-4 6 2 - 2.2 已知信号(52)x t -的波形图如图P2.2所示,试画出()x t 的波形图,并加以标注。 (52) x t -t 3252 1123 图P2.2 解:波形如下图所示:

信号与线性系统习题答案西安交大版阎鸿森编-10页精选文档

第六章习题答案 1. 用定义计算下列信号的拉氏变换及其收敛域,并画出零极点图和收敛域。 (a) (),0at e u t a > (b) (),0at te u t a > (c) (),0at e u t a --> (d) [cos()]()c t u t Ω- (e) [cos()]()c t u t Ω+θ- (f) [sin()](),0at c e t u t a -Ω> (g) (),b at b a δ-和为实数 (h) 23,0 (),0 t t e t x t e t -?>?=?-,见图(a) (b) 2 1 ,Re{}() s a s a >-, 见图(a) (c) 1 ,Re{}s a s a -<-+,见图(b) (d) 22 ,Re{}c s s a s - <-+Ω, 见图(c) (e) 22 cos sin ,Re{}0c c s s s θθ -Ω>+Ω,见图(d) (f) 22 ,Re{}()c c s a a s Ω>-++Ω,见图(e) (g) 2 1|| sb a e a - ,整个s 平面 (h) 11,2Re{}332s s s +-<<-+,见图(f) (a) (b) (c) (d) (e) (f) 2. 用定义计算图P6.2所示各信号的拉氏变换式。 (a) (b) (c) (d) (e)

(f) 解: (a) (b) (c) 20111(1)T st sT sT te dt e e T s Ts ---=-+-? (d) (e) 2222221212()(1)[(1)]sT sT sT s X s e e e e s Ts s Ts ----=-+-+-- (f) s 222sin 111sin [()()]111 st sT st s te dt e t u t u t e dt e s s s π --+∞ --π -∞-=--π=-?=+++? ? 3. 对图P6.3所示的每一个零极点图,确定满足下述情况的收敛域。 (a) x(t)的傅立叶变换存在。 (b) 2()t x t e 的傅立叶变换存在 (c) ()0,0x t t => (d) ()0,5x t t =< 解:(a) x(t)的傅立叶变换存在,则j s =Ω应在()X s 的收敛域内 图(a) 1Re{}1s -<< 图(b) 3Re{}3s -<< 图(c) Re{}1s >- (b) 2()t x t e 的傅立叶变换存在,则s =-2轴一定在()x s 的收敛域内 图(a), Re{}1s <- 图(b), 3Re{}3s -<< 图(c), 3Re{}1s -<<- (c) x(t)=0,t>0,则x(t)为左边信号 图(a),Re{}1s <- 图(b),Re{}3s <- 图(c), Re{}3s <- (d) x(t)=0, t<5,则x(t)为右边信号

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

MATLAB线性系统时域响应分析实验

实验报告 实验名称 线性系统时域响应分析 一、 实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、 实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')

信号与线性系统分析-(吴大正-第四版)习题答案 (1)

下载可编辑复制 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

下载可编辑复制 (4))(sin )(t t f ε= (5))(sin )(t r t f =

下载可编辑复制 (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

下载可编辑复制 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) )2()1(3)1(2)(-+--+=t t t t f εεε

下载可编辑复制 (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

信号与线性系统分析习题答案

1 / 257 信号与线性系统课后答案 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=- t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3)) ()sin()(t t t f επ=

2 / 257 (4))(sin )(t t f ε= (5)) (sin )(t r t f =

3 / 257 (7))(2)(k t f k ε= (10)) (])1(1[)(k k f k ε-+=

4 / 257 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) ) 2()1(3)1(2)(-+--+=t t t t f εεε

5 / 257 (2) )2()1(2)()(-+--=t r t r t r t f (5) ) 2()2()(t t r t f -=ε

线性系统的时域分析与校正习题及答案

第三章 线性系统的时域分析与校正习题及答案 3-1 已知系统脉冲响应t 25.1e 0125.0)t (k -=,试求系统闭环传递函数)s (Φ。 解 [])25.1s /(0125.0)t (k L )s (+==Φ 3-2 设某高阶系统可用下列一阶微分方程)t (r )t (r )t (c )t (c T +τ=+? ? 近似描述,其中,1)T (0<τ-<。试求系统的动态性能指标s r d t ,t ,t 。 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 Ts 1 s )s (R )s (C ++τ= 1Ts T s 1s 11Ts 1s )s (C +τ--=?++τ= ∴ T /t e T T 1)t (h )t (c -τ--== T )0(h τ=,1)(h =∞,20T T )]0(h )(h [05.0τ -=-∞=? 1) 当 d t t = 时 2T T e T T 1)]0(h )(h [5.0)0(h )t (h t /t d τ += τ--=-∞+=- T /t d e 2 1 -= ; 693T .0t d = 2) 求r t (即)t (c 从1.0)(h ∞到9.0)(h ∞所需时间) 当T /t 2e T T 1)0(h )]0(h )(h [9.0)t (h -τ-- =+-∞=; 当T /t 1e T T 1)0(h )]0(h )(h [1.0)t (h -τ--=+-∞=; )T 1(.0T ln T t 2τ+τ-=, τ +τ -=)T 9(.0T ln T t 1 则 2T .29ln T t t t 12r ==-= 3) 求 s t T /t s s e T T 1)0(h )]0(h )(h [95.0)t (h -τ-- =+-∞= 3T 05.ln0T t s ==∴ 3-3 一阶系统结构如图所示。要求系统闭环增益2k =Φ,调节时间4.0t s ≤s ,试确定参数21k ,k 的值。 解 由结构图写出闭环系统传递函数 1k k s k 1k k s k s k k 1s k )s (212211211 +=+=+ =Φ

信号与线性系统第一二章习题

32下信号与线性系统第一、二章练习题 一.选择题: 1.*()t A e t ε的卷积积分为( A ) A.不存在 B.()t Ae t ε- C 。()t Ae t ε? D 。()At e t ε 2.若连续LTI 系统的初始状态不为零,当激励信号增大一倍时,其零状态响应( A ) A.增大一倍 B .保持不变 C 。增大,但不能确定增大倍数 D 。增大两倍 3.式0 (2)sin (3)t t dt δω∞--?的值是( B ) A。cos ω- B.sin ω- C.cos ω?D .sin ω 4.已知f (t )的傅里叶变换为()F j ω,则函数()()()y t f t t a δ=-的傅里叶变换()Y j ω为( B ) A。()ja F j e ωω-?B 。()ja f a e ω- C 。()ja F j e ωω?D 。()ja f a e ω 5.已知信号f(t)如题7图所示,则其傅里叶变换F (j ω)为( B ) A。1 cos 2ωτ B.2cos ωτ C。1 sin 2ωτ D.2sin ωτ 6.下列各表达式正确的是( B ) A.(t -1)δ(t )=δ(t )?B .(1—t )δ(1—t )=0 C.? ∞ ∞ -=+)()()1(t dt t t δδ D.? ∞ ∞ -=++1)1()1(dt t t δ 7.信号f (—2t +4)是下列哪种运算的结果( ) A.f (—2t )右移2 B.f (-2t)左移2 C .f (—2t )右移4 D.f (-2t)左移2 1 8.设某线性电路的单位冲激响应为h (t),f (t )为输入,则? -=t d h t f t y 0 )()()(τττ是系统 的( ) A .自由响应? B .零输入响应 C.完全响应?D .零状态响应 9.信号)(2t e t j δ'的傅里叶变换为( )

第三章 系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

信号与线性系统分析习题答案-(吴大正-第四版--高等教育出版社)

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(

(3)) ()sin()(t t t f επ= ( 4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

(11))]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统

信号与线性系统题解第四章

第四章习题答案 收集自网络 4.1 由于复指数函数是LTI 系统的特征函数,因此傅里叶分析法在连续时间LTI 系统分析 中具有重要价值。在正文已经指出:尽管某些LTI 系统可能有另外的特征函数,但复指数函数是唯一..能够成为一切..LTI 系统特征函数的信号。 在本题中,我们将验证这一结论。 (a) 对单位冲激响应()()h t t δ=的LTI 系统,指出其特征函数,并确定相应的特征值。 (b) 如果一个LTI 系统的单位冲激响应为()()h t t T δ=-,找出一个信号,该信号不具有st e 的形式,但却是该系统的特征函数,且特征值为1。再找出另外两个特征函数,它们的特征值分别为1/2和2,但不是复指数函数。 提示:可以找出满足这些要求的冲激串。 (c) 如果一个稳定的LTI 系统的冲激响应()h t 是实、偶函数,证明cos t Ω和sin t Ω实该系统的特征函数。 (d) 对冲激响应为()()h t u t =的LTI 系统,假如()t φ是它的特征函数,其特征值为λ,确定()t φ应满足的微分方程,并解出()t φ。 此题各部分的结果就验证了正文中指出的结论。 解:(a) ()()h t t δ=的LTI 系统是恒等系统,所以任何函数都是它的特征函数,其特征值 为1。 (b) ()()h t t T δ=-,∴()()x t x t T →-。如果()x t 是系统的特征函数,且特征值为 1,则应有()()x t x t T =-。满足这一要求的冲激序列为()()k x t t kT δ∞ =-∞ = -∑。 若要找出特征值为1/2或2的这种特征函数,则可得: 1 ()()()2 k k x t t kT δ∞ =-∞=-∑, 特征值为1/2。 ()2()k k x t t kT δ∞ =-∞ = -∑, 特征值为2。 (c) 1cos ()2 j t j t t e e ΩΩ-Ω= +

自动控制原理_线性系统时域响应分析报告

工程大学 实验报告 专业 班号 组别 指导教师 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。

2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0:0.1:10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')

信号与线性系统题解第三章

第三章习题答案 da 3.1 计算下列各对信号的卷积积分()()()y t x t h t =*: (a) ()() ()()t t x t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做) 。 (b) 2()()2(2)(5)()t x t u t u t u t h t e =--+-= (c) ()3()() ()1t x t e u t h t u t -==- (d) 5, 0()()()(1),0 t t t e t x t h t u t u t e e t -??? (e) []()sin ()(2)()(2)x t t u t u t h t u t π=--=-- (f) ()x t 和()h t 如图P3.1(a)所示。 (g) ()x t 和()h t 如图P3.1(b)所示。

图P3.1 解:(a) () ()0 ()()()(0)t t t t y t x t h t e e d e e d t βτατ βαβτ ττ------=*= =>? ? 当αβ≠时,()1 ()()t t e y t e u t αβββα ----= - 当αβ=时,()()t y t te u t α-= (b) 由图PS3.1(a)知, 当1t ≤时,25 2() 2() 22(2)2(5)0 2 1 ()22t t t t t y t e d e d e e e ττττ----??= -= -+? ?? ? 当13t ≤≤时,25 2() 2() 22(2)2(5)1 2 1 ()22t t t t t y t e d e d e e e ττττ-----??= -= -+? ?? ? 当36t ≤≤时,5 2() 2(5)21 1 ()2t t t y t e d e e ττ---??=-= -? ?? 当6t >时,()0y t = (c) 由图PS3.1(b)知,当1t ≤时,()0y t = 当1t >时,133(1)0 1 ()13t t y t e d e τ τ----??== -? ?? 3 (1) 1 ()1(1) 3 t y t e u t --?? ∴= --?? (d) 由图PS3.1(d)知: 当0t ≤时,1 1 ()t t t t y t e d e e ττ--= =-? 当01t <≤时,055(1) 10 14()(2)25 5 t t t t t y t e d e e d e e e τ τ τ ττ-----=+-=+ -- ? ? 当1t >时,555(1) (1) 1 11()(2)2255t t t t t t y t e e d e e e e τ τ τ------=-=-+-? (e) 如下图所示: (f) 令()11()(2)3 h t h t t δ?? =+- -???? ,则11()()()(2)3 y t x t h t x t =*- - 由图PS3.1(h)知,11 424()()()()(21)3 3 3 t t y t x t h t a b d a t b ττ-=*= +=-+?

相关文档
相关文档 最新文档