文档库 最新最全的文档下载
当前位置:文档库 › 流体力学在土木工程中的应用

流体力学在土木工程中的应用

流体力学在土木工程中的应用
流体力学在土木工程中的应用

流体力学在土木工程中的应用

摘要:流体力学是研究流体的机械运动规律及其应用的科学,是力学的分支学科。随着社会的发展,流体力学被广泛的应用在各种领域。

尤其是在土木工程领域有着非常重要的地位。例如,在建筑工程和桥梁工程中,研究解决风对高耸建筑物的荷载作用和风振问题,要以流体力学为理论基础;进行基坑排水、地基抗渗稳定处理、桥渡设计都有赖于水力分析和计算……可以说,流体力学已成为土木工程各领域共同的专业理论基础。流体力学不仅解决单项土木工程的水和气问题,更能帮助工程技术人员进一步认识土木工程与大气和水环境的关系。

关键字:流体力学土木工程

流体力学是一门研究流体机械运动规律及其应用的科学,是力学的分支学科。

主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,在生活、环保、科学技术及工程中具有重要的应用价值。与土木工程更是有密切的联系。

一、流体力学的发展简史

1、流体力学出现

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止

流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

2、流体力学逐渐发展

17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫姆霍兹对于涡旋运动作了不少研究……在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。

这种理论当然阐明不了流体中粘性的效应。

3、流体力学的理论基础

19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,

建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。

4、流体力学的一次重大进展

20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。

机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。

机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。

5、流体力学成熟

以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。

这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学

这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。

20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。

从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。

二、流体力学在土木工程中的应用

流体力学广泛应用于土木工程的各个领域,可以说流体力学已经成为土木工程各领域共同的专业理论基础。

1、结构风工程。

在建筑工程和桥梁工程中,研究解决风对高耸建筑物的荷载作用和风振问题需要运用流体力学的知识来解决。风,是一种典型的流体,现在的高层建筑越来越多,超高层建筑也是备受瞩目。而高耸的建筑物都要做风洞试验,研究风对建筑的作用。

2、基坑、地基问题。

土木工程中进行基坑排水、地基抗渗稳定处理、桥渡设计都有赖于水力分析和计算。地基是建筑中非常重要的一环,处理好它的抗渗问题至关重要。与水有关的计算也要依靠流体力学的知识。

3、给排水系统的设计。

从事给水排水系统的设计和运行控制,以及控热、通风与空调设计和设备选用离不开流体力学。

流体力学不仅用于解决单项土木工程的水和气的问题,更能帮助工程技术人员进一步认识土木工程与大气和水环境的关系。大气和水环境对建筑物和构筑物的作用是长期的、多方面的,其中台风、洪水通过直接摧毁房屋、桥梁、堤坝,造成巨大的自然灾害;另一方面,兴建大型厂矿、公路、铁路、桥梁、隧道、江

海堤防和水坝等,都会对大气和水环境造成不利影响,导致生态环境恶化,甚至加重自然灾害,这方面国内外已有惨痛的教训。只有处理好土木工程与大气和水环境的关系,作到保护环境,减轻灾害,才能实现国民经济可持续发展。

三、总结

从阿基米德到现在的两千多年,特别是20世纪以来,流体力学已经发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用,尤其是与土木工程有着十分密切的联系。

今后,人们一方面将根据工程技术方面的需要进行流体力学应用性研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。

流体的很多性质尚待发现和应用,作为一名土木工程专业的学生,将来在实际工作中队流体力学的应用还有很多,对流体力学的发展,武装和充实自己。将来在结构设计和施工的时候才能够更加完善。

流体力学

福州大学土木工程学院本科实验教学示范中心 学生实验报告 流体力学实验 题目: 实验项目1:毕托管测速实验 实验项目2:管路沿程阻力系数测定实验 实验项目3:管路局部阻力系数测定实验 实验项目4:流体静力学实验 实验一毕托管测速实验 一、实验目的要求: 1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。

2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。 3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。 二、实验成果及要求 实验装置台号 20040268 表1 记录计算表 校正系数c= 1.002 ,k= 44.36 cm 0.5/s 三、实验分析与讨论 1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否? 答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差。 误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响 量测精度。 检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压 管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。 2.毕托管的压头差Δh 和管嘴上、下游水位差ΔH 之间的大小关系怎样?为什么? 答:由于 且 即 这两个差值分别和动能及势能有关。在势能转换为动能的

过程中,由于粘性力的存在而有能量损失,所以压头差较小。 ?'说明了什么? 3.所测的流速系数 答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有 称作管嘴流速系数。 若相对点流速而言,由管嘴出流的某流线的能量方程,可得 式中:为流管在某一流段上的损失系数;为点流速系数。 本实验在管嘴淹没出流的轴心处测得=0.990,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

生活中的流体力学

流体力学: 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起 来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3 世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。 17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 发展 17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间 的距离成反比(即牛顿粘性定律)。 之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间

的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。 从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。 理论基础 将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。 由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

工程流体力学_思考题__1~4章

向期末进发!!! 第一章绪论 1、什么叫流体?流体与固体的区别? 流体是指可以流动的物质,包括气体和液体。 与固体相比,流体分子间引力较小,分子运动剧烈,分子排列松散,这就决定了流体不能保持一定的形状,具有较大流动性。 2、流体中气体和液体的主要区别有哪些? (1)气体有很大的压缩性,而液体的压缩性非常小; (2)容器内的气体将充满整个容器,而液体则有可能存在自由液面。 3、什么是连续介质假设?引入的意义是什么? 流体充满着一个空间时是不留任何空隙的,即把流体看作是自由介质。 意义:不必研究大量分子的瞬间运动状态,而只要描述流体宏观状态物理量,如密度、质量等。 4、何谓流体的压缩性和膨胀性?如何度量? 压缩性:温度不变的条件下,流体体积随压力变化而变化的性质。用体积压缩系数βp表示,单位Pa-1。 膨胀性:压力不变的条件下,流体体积随温度变化而变化的性质。用体积膨胀系数βt表示,单位K-1。 5、何谓流体的粘性,如何度量粘性大小,与温度关系? 流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。用粘度μ来表示,单位N·S/m2或Pa·S。 液体粘度随温度的升高而减小,气体粘度随温度升高而增大。 6、作用在流体上的力怎样分类,如何表示? (1)质量力:采用单位流体质量所受到的质量力f表示; (2)表面力:常用单位面积上的表面力Pn表示,单位Pa。 7、什么情况下粘性应力为零? (1)静止流体(2)理想流体 第二章流体静力学 1、流体静压力有哪些特性?怎样证明? (1)静压力沿作用面内法线方向,即垂直指向作用面。 证明:○1流体静止时只有法向力没有切向力,静压力只能沿法线方向; ○2流体不能承受拉力,只能承受压力; 所以,静压力唯一可能的方向就是内法线方向。 (2)静止流体中任何一点上各个方向静压力大小相等,与作用方向无关。 证明:

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

【完整版】:力学在土木工程中的应用

力学在土木工程中的应用 1:力学基本内容: 力学是用数学方法研究机械运动的学科。“力学”一词译自英语mechanics源于希腊语一机械,因为机械运动是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支. 力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等. 2:土木是力学应用最早的工程领域之一. 2.1土木工程专业本科教学中涉及到的力学内容

包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科. 理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法. 材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能. 弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构) 在外力作用下的应力、应变和位移. 土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法. 2.2土木工程专业之力学可分为两大类,即“结构力学类”和“弹性力学类”. “弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类”(包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

《工程流体力学》综合复习资料全

《工程流体力学》综合复习资料 一、 单项选择 1、实际流体的最基本特征是流体具有 。 A 、粘滞性 B 、流动性 C 、可压缩性 D 、延展性 2、 理想流体是一种 的流体。 A 、不考虑重量 B 、 静止不运动 C 、运动时没有摩擦力 3、作用在流体的力有两大类,一类是质量力,另一类是 。 A 、表面力 B 、万有引力 C 、分子引力 D 、粘性力 4、静力学基本方程的表达式 。 A 、常数=p B 、 常数=+γ p z C 、 常数=+ +g 2u γp z 2 5、若流体某点静压强为at p 7.0=绝,则其 。 A 、 at p 3.0=表 B 、Pa p 4 108.93.0??-=表 C 、 O mH p 27=水 真 γ D 、 mmHg p 7603.0?=汞 真 γ 6、液体总是从 大处向这个量小处流动。 A 、位置水头 B 、压力 C 、机械能 D 、动能 7、高为h 的敞口容器装满水,作用在侧面单位宽度平壁面上的 静水总压力为 。 A 、2 h γ B 、 2 2 1h γ C 、22h γ D 、h γ 8、理想不可压缩流体在水平圆管中流动,在过流断面1和2截面()21d d >上 流动参数关系为 。 A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< 9、并联管路的并联段的总水头损失等于 。 A 、各管的水头损失之和 B 、较长管的水头损失

土木工程中的流体力学

土木工程中的流体力学 班级:土木1102班 姓名:徐英振 学号:1102090226

土木工程中的流体力学 流体力学的课程我们大三才开始接触,之前只是知道理论力学、材料力学、结构力学,对于流体力学一无所知,这一学期听过了康老师精彩的讲课后,我对流体力学有了新的认识!流体力学是研究流体平衡和流体的机械运动规律及其在工程实际中应用的一门学科。流体力学研究的对象是流体,包括液体和气体。 流体力学广泛应用于土木工程的各个领域。例如,在建筑工程和桥梁工程中,我们要利用流体力学解决台风、洪水破坏房屋、桥梁、堤坝的问题;利用流体力学研究解决风对高耸建筑物的荷载作用和风振问题;对基坑排水、地基抗渗稳定处理、解决基坑塌方问题,更要以流体力学为理论基础。可以说,流体力学已成为土木工程各领域共同的专业理论基础。 一、流体力学在道路桥梁中的应用 在中国古代的典籍中,就有相传4000多年以前大禹治水,“疏壅导滞”使滔滔洪水各归于河的记载。先秦时期在四川岷江中游建都江堰。隋朝修浚并贯通南北的大运河,“自是天下利于转输”,“运漕商旅,往来不绝”。又如隋大业年间,工匠李春在交河上建赵州桥,这座石拱桥的跨径37.4米,拱背上还有4个小拱,既减轻了主拱的负载,又可泄洪,迄今为止1380 年依然完好。历史上,这些伟大的工程,皆因“顺应水性”,才能跨江河逾千年而不毁。这些工程都与流体力学息息相关! 道路路桥工程是关乎民生,国防建设的重大工程,它的安全性可靠性更是重中之重。由于路桥的造价很高,且修建需要一定的时间,因此大多数的路桥设计使用年限很长。在这么长的时间里,路桥经受水流的长时间的侵蚀作用,要保持极高的结构强度与结构健康性。这样就要在设计时对这些侵蚀的来源有准确的了解定性,此时流体力学的知识就显得尤为重要。 这些重要工程在施工、使用和维护当中最普遍的是遇到水流的影响。对于公路,铺设时的选址与路基稳定性都会受到水的影响,施工与使用过程中对于集聚的水及时排除以消除对路面影响,此外还要考虑路边渗水问题等等。这些客观存在的问题都会对公路的建设保养产生很大影响。对于桥来说,由于其建筑环境的特殊性,流水影响就是它的主要问题,水流的持续性对桥墩来说是持续性破坏,这是不可避免的,尤其是对于多雨地区,突发性的大水对桥墩的稳定更是严峻的

生活中有趣现象的物理化学原理

生活中有趣现象的物理化学原理 烧不坏的手帕 用品:手帕、100毫升烧杯、酒精灯、竹夹子。 酒精。 原理:酒精遇火燃烧,放出热量,使酒精和水大量挥发,带走部分热量。左右摇晃手帕时可散去大量热。这样火焰的温度被降低,不能达到手帕的着火点。 操作:在烧杯中倒入20毫升酒精和10毫升水,充分摇匀,将手帕放入溶液中浸透。用竹夹子夹出手帕,轻轻地把酒精挤掉,然后放在燃着的酒精灯上点燃。手帕着火后,火焰很大。这时要左右摇晃手帕,直到熄灭。火熄灭后,手帕完好无损。 用品:手帕、玻棒、酒精灯。 合掌生烟 仪器及药品 聚乙烯或聚氯乙稀透明片,玻璃棒,胶水少许;浓氨水,浓盐酸 实验步骤 (1)用胶水将塑料小片分别贴于两手手心,并请另一人分别用玻璃棒蘸取浓氨水和浓盐酸抹在塑料片上(有一点即可,勿使流动)。 (2)两手微握,各在一方,不要靠拢。 (3)合掌时先要做成捧物状,然后再慢慢打开一条缝,使生成的白烟慢慢冒出。 原理 氨和氯化氢可直接化合生成氯化铵而形成白烟:NH3+HCl=NH4Cl 注意事项 (1)药品要轻拿轻放小心取用,抹于塑料片上的酸、碱要少而匀。 (2)实验后立即洗手。 本次推荐实验名字:制作发光番茄 视频地址:https://www.wendangku.net/doc/4514713861.html,/v_show/id_XNzI4MjE4NA==.html 视频说明:首先取一盒火柴,(因为火柴头内含有磷)用刀子将火柴头刮下,然后混入漂白剂,充分震荡并且静置之后,取上层清液,注入到番茄内部(从各个方向注入,均匀为主)然后再取双氧水,注入番茄,关灯后可以看见番茄发光了。 此实验会出现的问题是火柴头中含磷量不高或者不纯。本人经查找,得知所用的为不安全火柴,即一种火柴头涂有硫磺,再覆以白磷、树胶、铅丹火二氧化锰的混合物。因为白磷燃点过低,现在已被其他安全火柴(主要为红磷和硫)取代。因此作此实验,建议用纯度中等的白磷进行。同时应注意安全,以防白磷自燃。 3、喷雾作画 实验原理

工程流体力学(刘向军编)部分习题答案

1-3在温度不变的条件下,体积为5m3的某液体,压强从0.98×105Pa 增加到4.9×105Pa,体积减小了1.0×10?3m3,求其体积弹性模量。解: K=?V ?p ?V =?5× 4.9?0.98×105 ?1.0×103 =1.965×109Pa 1-7加热炉烟道入口处烟气的温度t1=900℃,烟气经烟道及其中设置的换热器后,至烟道出口温度下降为t2=500℃,若烟气在0℃时的密度ρ0=1.28kg m3,求烟道入口与烟道出口处烟气的密度。 解: ρ入= ρ0 1+at1 = 1.28 1+1 273 ×900 =0.298kg m3 ρ出= ρ0 1+at2 = 1.28 1+1 273 ×500 =0.452kg m3 1-9如图所示,液面上有一面积为1200m2的平板以0.5m s的速度做水平运动,平板下液面分两层,动力黏度和厚度分别为η1=0.142Pa?s, 1=1.0mm,η2=0.235Pa?s, 2=1.4mm,求作用在平板上的内摩擦力。 解: τ=τ1=τ2 即 η1du1 dy1 =η2 du2 dy2 η1u?u′ 1 =η2 u′?0 2 解得:

u′=0.23m s F=ηA du dy =ηA u?u′ 1 =1.042×1200×10?4×0.5?0.23 1.0×10?3 =4.6N 1-12如图所示,气缸直径D1=16cm,活塞直径D2=15.95cm,高H=15cm,质量m=0.97kg,若活塞以匀速0.05m s在气缸内下降,试求油的动力黏度为多少? 解: F=G=τA τ=G A = mg A = 0.97×10 15×10?4×15.95×3.14 =129.06 η=τdy du = 129.06×16?15.96 2 ×10?2 0.05 =0.645Pa·s 2-2已知单位质量流体所受的质量力为f x=zy,f y=axz,f z=bxy,试问在该质量力作用下流体能否平衡。 解: f x dx+f y dy+f z dz =1 ρ ep ex dx+ ep ey dy+ ep ez dz = p ρ 设?π=abxyz e?π ex =abyz=f x=yz e?π ey =abxz=f y=bxz e?π ez =abxy=f z=axy

土木工程流体力学实验报告谜底

实验一 管路沿程阻力系数测定实验 1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果? 现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O—O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设 ,,由能量方程可得 21v v =∑=0j h ? ?? ? ??+-???? ?? +=-γγ221121p Z p Z h f 1 112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-= γ γ 1 12226.126.12H h h H p +?+?+-=γ ∴()()1 22211216.126.12h h H Z H Z h f ?+?++-+=-) (6.1221h h ?+?=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。 2.据实测m 值判别本实验的流动型态和流区。 ~曲线的斜率m=1.0~1.8,即与成正比,表明流动为层流 f h l g v lg f h 8.10.1-v (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。 卷连接管口处理高中资电保护进行整核对定值试卷破坏范围,或者对某

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2% 误差时,可产 生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

流体动力学及工程应用

1、定常流和非定常流的判别? 2、为何提出“平均流速”的概念? 3、举例说明连续性方程的应用。 3.4 流体微元的运动分析 一、流体微元运动的三种形式 1.平移运动 x 、y 方向的速度不变,经过dt 时间后,ABCD 平移到A ‘B ’C ‘D ’位置,微元形状不变。 2.直线变形运动 流体微元沿x (流动)方向变形。 3.旋转运动与剪切变形运动 流体微元沿x 方向和y 方向均有变形,且流体微元

除了产生剪切变形外,还绕z 轴旋转。 实际流体微元运动常是上述三种或两种(如没有转动)基本形式组合在一起的运动。 二、作用在流体微元上的力 有表面力(压力)、质量力、惯性力、粘性力(剪切力) 龙卷风 水涡旋 3.5 理想流体的运动微分方程及伯努利积分 一、理想流体的运动微分方程(15分钟) 讨论理想流体受力及运动之间的动力学关系,即根据牛顿第二定律,建立理想流体的动力学方程。 如图所示,从运动的理想流体中取一以C (x 、y 、z )点为中心的微元六面体1-2-3-4,作用于其上的力有质量力和表面力,分析方法同连续性方程的建立,只是这是一个运动的流体质点。 根据牛顿第二定律,作用在微元六面体上的合外力在某坐标轴方向投影的代数和等于此流体微元质量乘以其在同轴方向的分加速度。 在x 轴方向 x x ma F =∑ 图 微元六面体流体质点 可得1122x x p p dF p dx dydz p dydz ma x x ??? ?? ?+- -+= ? ???? ?? ? 因为 dt du a dt u d a x x = =, ,dt du a dt du a z z y y ==, 所以流体微元沿x 方向的运动方程为 x x du p f dxdydz dxdydz dxdydz x dt ρρ?- =? 整理后得

生活中的流体力学

生活中的流体力学 你倒啤酒时通常做什么?为什么洗衣机总是翻口袋?为什么高尔夫球会有麻点?本文将论证流体力学、流体力学等的一些简单应用,如流体力学、流体力学等。剩下的不多了。倒啤酒时,泡沫是从瓶子里冒出来的。啤酒倒进了杯子。那个热辣的男人举起酒瓶,把啤酒柱冲到了玻璃杯的底部。它总是充满泡沫。气泡消失后,杯子里几乎没有啤酒了。是什么导致了这么多泡沫?洗衣机总是把口袋翻过来。平时用洗衣机洗衣服的人都有这样一个体会,洗衣机洗完衣服后,衣服口袋经常翻过来。如果口袋里有硬币、钥匙或其他东西,也会被取出。怎么了?为了解释这两种现象,我们必须从流体力学的基本原理,即伯努利定律入手。其规律是:在恒定的流场中,流体颗粒在流线上的速度与此时的压力呈负相关。一般来说,速度越高,压力越低。具体而言,沿着流线,流体颗粒的速度为V,密度为ρ,此时的压力为p。它们之间的关系如下: 1倒啤酒时起泡:啤酒水柱冲向杯底,造成水流不均。伯努利定律知道,每个点的压力不同,较大部分的分压变小,这导致二氧化碳的溶解度降低。也就是说,如果你想让啤酒在

不起泡的情况下充满杯子,就应该在倒酒过程中尽量降低啤酒杯内液体的相对速度,使灌装过程尽可能准静态。熟练的服务员尽可能地倾斜杯子,让啤酒沿着墙壁慢慢地流到杯底,然后慢慢地将杯子的角度调整到竖直的位置,这样就可以在不产生太多啤酒的情况下装满啤酒泡沫。从而减少了啤酒从一只手伸进杯口的动能,从而减少了啤酒杯的滴入。另一方面,通过倾斜杯子,啤酒柱对杯子的正面冲击可以转化为斜碰撞,从而减少啤酒接触瞬间的动量变化。另外,在倾斜过程中,啤酒滑动到杯底的距离增加。在这个过程中,靠近玻璃壁的边界粘性层会对啤酒产生阻力,这也会降低啤酒到达玻璃底部的速度。因此,基本上尽可能满足准静态要求。人们幽默地把倒啤酒的技巧归纳为三个谐音:“弯门斜(邪道)、杯壁(卑鄙)淫秽、斜(恶)变回正常。2现在,让我们来看看洗后的情况。洗衣机旋转时,口袋附近的流体速度较高,而口袋底部的流体速度较低。这是因为裤兜的底部是在裤子的桶里,而夹克口袋的底部是包裹在衣服里的,那里的液体比衣服慢得多。根据伯努利定律,口袋底部的压力大于口袋口附近的压力。这个压差将把水从袋底排到袋口。高尔夫是世界上最古老的流行球类运动,有五六百年的历史。它最早在英国流行是在公元前,事实上,高尔夫球起源于中

土木工程流体力学实验报告实验分析-与讨论答案

管路沿程阻力系数测定实验 1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果? 现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =, ∑=0j h ,由能量方程可得 ??? ? ??+-???? ?? +=-γγ221121p Z p Z h f 1112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-= γ γ 11222 6.126.12H h h H p +?+?+-= γ ∴ ()()122211216.126.12h h H Z H Z h f ?+?++-+=- )(6.1221h h ?+?= 这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。 2.据实测m 值判别本实验的流动型态和流区。 f h l g ~v lg 曲线的斜率m=1.0~1.8,即f h 与8.10.1-v 成正比,表明流动为层流 (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2%误差时,可产生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

流体力学小论文

流体力学导论的小论文 生 活 中 伯 努 利 方 程 的 应 用

生活中伯努利方程的应用 一、现象描述: 生活中有关流体力学方面有趣的事情,还是比较多的,尤其是伯努利方程的应用。如果留心的话,我们会经常发现:在宿舍阳台处的门外有风的前提下,宿舍里的门(在不锁的前提下)会随着阳台处的门的打开,而自动打开,至于什么原因造成此现象,我们可以从流体力学角度思考。 此图描绘的就是上面所阐述的情况(由于在word里不太好画,所以采取了手绘和手机拍摄的操作),左边表示的均是宿舍阳台处的门,右边均是宿舍外出的门。图中上面的两个门的情况是,“阳台门”是处于锁着的状态(阳台外有空气流动),“外出门”是处于关着的状态,但没锁;下面的两个门描述的情况是,当“阳台门”打开时,“外出门”会自动打开。 二、现象中所蕴含的流体力学问题: 这里面所蕴含的流体力学问题,就是伯努利方程的应用,假设流体是无粘不可压缩的理想流体,由“外出门”的内侧到外侧间建立的伯努利方程式如下:

22001122u p u p gz gz ρρ ++=++ 其中,0u :空气流动的速度,0p :大气压,ρ:流体密度 1u : “外出门”外的速度,且10u = ,1p :“外出门”外的压强 且两个门皆处于同一水平线上,所以伯努利方程简化为 20012u p p ρρ += 从式子中,可看出201002u p p ρ-= >,即10p p >,所以“外出门”可以自动打开。 具体的图表示如下: 三、这一问题的解决方案: 1. 可以在门缝处贴上“贴垫”,如下图所示:

据了解,这个方法确实不错,我试验过,如果做得好的话,即使人拉,也要费些力气。 2. 给门安装上弹簧,借助弹簧的力,抵消掉10p p p =- 的作用,使门不至于在 风的作用下,总是自动打开。 四、小结: 生活中有趣的事情不仅仅是这些儿,还有很多,只要你善于观察,流体力学 将会布满于整个世界。试问,流体力学上哪一个伟大的发明和重要理论的产生,不是起源于现实生活中呢?如果牛顿碰不到苹果掉下这一情况,或是苹果不是掉在牛顿头上,那么今天很有可能就没有“万有引力”之说。 通过写这篇小论文,我还是很有收获的,至少学会了要多注意观察身边的事物,多留心生活中有趣的现象,以及应根据现象,认真思考其中所蕴含的原理所在,进而增长和巩固知识。

西南交通大学土木工程考研试题工程流体力学模拟题及答案

西南交通大学200 -200 学年第( )学期考试试卷 课程代码 0137400 课程名称 工程流体力学A 考试时间 120 分钟 题号 一 二 三 四 五 总成绩 得分 阅卷教师签字: 一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中 只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.交通土建工程施工中的新拌建筑砂浆属于( ) A、牛顿流体 B、非牛顿流体 C、理想流体 D、无黏流体 2.牛顿内摩擦定律y u d d μ τ=中的y u d d 为运动流体的( ) A、拉伸变形 B、压缩变形 C、剪切变形 D、剪切变形速率 3.平衡流体的等压面方程为( ) A、0=--z y x f f f B、0=++z y x f f f C、 D、0d d d =--z f y f x f z y x 0d d d =++z f y f x f z y x 4.金属测压计的读数为( ) A、绝对压强 B、相对压强p 'p C、真空压强 D、当地大气压 v p a p 5.水力最优梯形断面渠道的水力半径=R ( ) A、 B、 C、 D、 4/h 3/h 2/h h 6.圆柱形外管嘴的正常工作条件是( ) A、 B、m 9,)4~3(0>=H d l m 9,)4~3(0<=H d l C、 D、m 9,)4~3(0>>H d l m 9,)4~3(0<

力学在土木工程中的应用

力学在土木工程中的应用 1:力学基本内容: 力学就是用数学方法研究机械运动的学科。“力学”一词译自英语mechanics源于希腊语一机械,因为机械运动就是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。 力学就是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又就是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学与工程学的结合促使工程力学各个分支的形成与发展. 力学按研究对象可划分为固体力学、流体力学与一般力学三个分支.固体力学与流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学. 属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等; 流体力学由早期的水力学与水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支. 力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等. 2:土木就是力学应用最早的工程领域之一. 2、1土木工程专业本科教学中涉及到的力学内容

包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科. 理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的就是刚体,就是各门力学的基础.其她力学研究的 均为变形体(本科要求线性弹性体),研究力系的简化与平衡,点与刚体运动学 与复合运动以及质点动力学的一般理论与方法. 材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件 的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算. 结构力学:在理论力学与材料力学基础上进一步研究分析计算杆件结构体系的基本原理与方法,了解各类结构受力性能. 弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构)在外力作用下的应力、应变与位移. 土力学:研究地基应力、变形、挡土墙与土坡等稳定计算原理与计算方法. 岩石力学:研究岩石地基、边坡与地下工程等的稳定性分析方法及其基本设计方法. 2、2土木工程专业之力学可分为两大类,即“结构力学类”与“弹性力学类”. “弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想与理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学与岩石力学.“结构力学类”(包括理论、材料学与结构力学)则具有更强烈的工程特征,其简化的模型就是质点或杆件,在力学体系建立之前就给出了诸如

相关文档
相关文档 最新文档