文档库 最新最全的文档下载
当前位置:文档库 › 浅谈泡沫排水采气工艺的应用

浅谈泡沫排水采气工艺的应用

浅谈泡沫排水采气工艺的应用
浅谈泡沫排水采气工艺的应用

浅谈泡沫排水采气工艺的应用

摘要:许多气田面临水含量超标的困难,排水采气成为相关研究人员绕不开的一个课题。施工简单、设备易操作、排水系统见效快,是泡沫采气排水显著的优点。笔者以胜利油田东营采气队陈家庄区块气田1号、4号、5号井为例,谈一谈泡沫排水采气工艺的应用,以此说明这种工艺的特点及施工措施。

关键词:泡沫运用采气工艺排水

许多气田面临水含量超标的困难,排水采气成为相关研究人员绕不开的一个课题。施工简单、设备易操作、排水系统见效快,是泡沫采气排水显著的优点。笔者以胜利油田东营采气队陈家庄区块气田1号、4号、5号井为例,谈一谈泡沫排水采气工艺的应用,以此说明这种工艺的特点及施工措施。

一、消泡原理和起泡剂组成采气工程中的探索

根据实验数据分析发消泡剂的配伍性:能对发泡剂的起泡能力有显著影响的是凝析油,但凝析油对发泡剂的携带液体作用影响甚微;缓蚀剂与甲醇对发泡剂起泡能力和携带液体能力都有显著的影响;甲醇、缓蚀剂、凝析油本身就带有部分消泡和稳泡的能力,这种协同作用使的消泡剂消泡与抑泡的性能都大大提高。对三甘醇的影响作用比较大的是发泡剂,增高发泡剂的浓度会发现,三甘醇的发泡能力越显著,消泡剂的浓度越高,发泡能力就会越小,其对三甘醇发泡优势的作用很小。

根据上述能推断出某庄某号井发泡剂能顺应助排泡沫的条件,和生产位置的井地层水混杂后,不会在井下压力、井下温度时导致堵塞。发泡剂使用的浓度在百分之零点零五至零点一最适宜。另外某庄某号井发泡剂能在硫化氢气体中、盐水中具有起到缓冲腐蚀的能力,能降低盐水与硫化氢气体对钢铁的腐蚀作用,为延长管串的使用寿命,采取井下保护措施,能使缓蚀率下降百分之四十。且发泡剂与甲醇混合(甲醇体积浓度小于百分之二十)使用时,基本不会影响发泡剂的作用。

二、探索加注消泡剂工艺

根据胜利油田东营采气队陈家庄区块气田流程工艺的现状和泡沫排水试验取得的知识,制造用于盛纳配置完成的发泡剂与消泡剂溶液的一立方米罐两个,由于胜利油田东营采气队陈家庄区块气田为预防在高压集气下产生的水合物堵塞注入采气管线防冻剂(甲醇),必须在每个块气天井边放置一台柱塞泵、一条注醇线路(同采气管线并存),确保其每小时三十二升注入量,加注发泡剂并使其在该工程中充分使用。

1.改良消泡剂的注入口

排水采气工艺技术现状及新进展样本

排水采气工艺技术现状及新进展 防水治水方法综述 当前国内外治水措施归纳起来有三大类: 控气排水、水井排水和堵水。控气排水是经过控制气井产量, 即抬高井底回压来减小水侵压差入而减缓了水侵。其实质是控气控水, 现场有时也称为”控水采气”。排水采气则是利用水井主动采水来消耗水体能量, 经过减小气和水的压差控制水侵, 从而保护气井稳定生产。堵水则是经过注水泥桥寒或高分于堵水剂堵塞水侵通道, 以达到控制水侵的目的。 三种措施虽方式不同, 但基本原理都是尽可能降低或消除水侵压差、释放水体能量域增加水相流动阻力。控气排水主要是以气井为实施对象, 着眼点是气; 水井排水则以水为实施对象, 着眼点是水。堵水以体现气水压差的介质条件为实施对象, 着眼点是渗滤通道。控气排水是一种现场常见的方法。在出水初期水侵原因不明时常常采用股资省.便于操作.但不利于提高气藏采速和开采规模; 水井排水的实施对象巳转至水, 工艺要求相对较高俱有更积极、更主动的意义; 堵水常常受技术条件限制, 当前实际应用很少。不论哪种措施, 其目的都是为了提高采收率, 都应针对不同的水侵机理、方式, 依据经济效盖来选择和确定。 一、现状综述 中国的气藏大多属于封闭性的弹性水驱气藏, 在开发中都不同程度地产地层水。由于地层水的干扰, 使气田在采出程度还不高的情况下就提前进入递减阶段, 甚至造成气井水淹停产, 影响气田最终采收率, 因此如何提高有水气藏的采收率, 是国内外长期以来所致力研究和解决的重要课题之一。中国经过十几年的实践和发展, 以四川气田为代表, 已形成了一定生产能力、比较成熟的下列工艺技术。 当前排水采气工艺技术评价

用高压气源气举排水采气

用高压气源气举排水采气 摘要地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。 关键词井筒;高压气源;气举 随着文23气田开发进入中后期,地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。怎样才能及时把井筒液体排出去?这里介绍一种用高压气源气举排液的方法。文69-1-2-3井、东块文108井、文108-2井、文108-5井、文23-17井都用此办法让其停产后顺利复活。 气举排水采气——利用天然气的压能来排除井内的液体,从而把天然气采出地面的采气方法。 按排水装置原理不同分为: 气举阀排水 柱塞间歇排水 1 气举阀的气举排水 1.1 条件:1)高压气源;2)油管管柱上不安装气举阀;3)高压气的压力与液柱的高度相匹配。 1.2 原理:无气举阀的气举排水采气是利用高压气源从套管(油管)注入高压气,让井筒积液经过喇叭口,从油管(油套环空)排出,从而达到排液复产目的。 1.3 操作: (1)尽量选择压力高、产量高的井作为高压气源井给积液井注气。 (2)在井口设置放喷罐,连接好相应的放喷流程,可套注油放、油注套放,或二者均可(但井口三种流程互不相同)。 (3)开始注气时,可把注气压力调到最高值,注气约10-30分钟,井口出液。这种要把注气压力和注气量逐步调低,使注气压力和注气量与井口排液达到

SYT 6525-2002 泡沫排水采气推荐作法

泡沫排水采气推荐作法 (SY/T6525-2002) 1、范围:本标准规定了泡沫排水采气的作法,适用于井底积水气井泡沫排水采气。 2、选井原则: 因井筒积水导致气井气量下降; 具有自喷能力,井底油管鞋处气流速度不小于0.1m/s; 预测产水量不大于100m3/d 3、起泡剂的选择 1)根据施工井管柱状况、生产情况、井底温度、流体性质(总矿化度、氯离子含量、钙离 子含量、镁离子含量、凝析油含量、硫化氢含量)等,初选与之适应的起泡剂类型。 2)按SY/T6465的规定进行起泡剂的配伍实验,检查有无沉淀产生。 3)取施工井液样做起泡剂的配伍实验,检查有无沉淀产生。 4)对同一口施工井根据性能实验和配伍实验结果初选两种或多种起泡剂,在保证气井工作 制度不变的情况下,进行现场实验。根据实验效果,进行技术经济论证,确定使用起泡剂的型号。 4、消泡剂的选择 1)根据施工井流体性质与所选起泡剂的性能,初选几种消泡剂。 2)按相应产品标准对消泡剂进行性能检测。 3)在同一施工井对初选消泡剂做消泡现场试验,选择消泡充分、稳定性好、经济适用的消泡剂。 5、资料录取 在工艺实施过程中,准确记录起泡剂和消泡剂的型号、加注时间、加注方式、加注量及浓度、每日加注次数、清水加注量、注入前后井口压力、产气量、产水量等资料。施工记录表格式参见附录B。其他资料的录取按SY/T6176-1995中第四章的规定执行。 6、生产管理 1)施工后做出施工总结,提出改进意见。 2)准确、完整的录取每次加注的有关资料。 3)根据气井生产情况优选起泡剂及消泡剂最佳加注量、加注浓度和加注周期。 4)泡沫排水采气正常后,每半年至一年测一次井底流压。 5)根据气井动态变化及时调整加注制度,调整的内容包括: 起泡剂、消泡剂型号; 加注量、加注浓度、加注周期; 加注方式。 7、健康、安全和环境管理 1)加注管汇的压力等级应高于气井的最高关井压力。 2)含硫泡沫排水采气井的阀门、管件、管线及其它设备的选用和制造按SY/T 0599。 3)含硫泡沫排水采气井的安全生产按SY 5225-1994。

排水采气工艺技术

排水采气工艺技术

故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。 该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。泡排的投入采出比在1:30以上,经济效益十分显著。 3 柱塞气举排水采气技术 柱塞气举是一种用于气井见水初期的排水采气工艺。它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。 该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。 该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。 柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。 4 气举排水采气技术 气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。气举可分为连续气举和

再论泡沫排水采气

论泡沫排水采气 摘要:泡沫排水采气工艺是一种最为主要的排水采气方法。排水采气是水驱气田生产中常见的采气工艺。有许多方法可以排除气井中的积液,包括优选管柱、泡沫排水、柱塞气举、有杆泵、电潜泵、水力活塞泵、水力射流泵等。文章主要介绍了泡沫排水采气,它在气田排水采气工艺中占有十分重要的地位。 关键词:泡沫排水起泡剂开采地层水 引言:泡沫排水采气工艺是针对产水气田而开发的一项重要的助采工艺,主要在气田开发的后期,多数气井因产水,没有完全的及时带出,导致气井积液而减产、停产。泡沫排水方法的最大的优点是由于液体分布在泡沫膜中,具有更大的表面积,减少了气体滑脱效应并能够形成低密度的气液混合物。在低产气井中,泡沫能够很有效地将液体举升到地面,否则积液严重,会造成较高的压力损失。 1、泡沫排水采气原理 泡沫排水采气将表面活性剂注入井底,借助于天然气流的搅拌,与井底积液充分接触后,产生大量较稳定的低密度含水泡沫,泡沫随着气流将井底积液携带到地面,从而达到排水采气的目的。 泡沫排水的机理包括泡沫效应、分散效应、减租效应和洗涤效应等。下面主要对泡沫效应和分散效应做介绍。 泡沫效应 起泡剂注入后,液柱将变为泡沫柱,形成稳定的充气泡沫,臌泡高度增加,水的滑脱损失减少,使流动更平稳和均匀,从而降低井底回压。泡沫效应主要在气泡流和段塞流等低流速下出现。 分散效应 分散效应一般在环雾流的高流速状态出现。分散效应能促使流态转变,降低临界携液流速。例如,处于段塞流的气井,加入一定的起泡剂后,表面张力下降水相分散,段塞流将转变成环雾流。 2、起泡剂的性能及作用 起泡剂的性能(一)可降低水的表面张力(二)起泡性能好,使水和气形成水包气的乳状液(三)能溶解于地层水(四)泡沫携液量大,气泡壁形成的水

排水采气工艺技术及其发展趋势

国内外排水采气工艺技术及其发展趋势 一、国内排水采气技术 1、泡沫排水采气工艺 泡沫排水采气工艺是将表面活性剂注入井内,与气水混合产生泡沫,减少气水两相垂直管流动的滑脱损失,增加带水量,起到助排的作用。由于没有人工给垂直管举升补充能量,该工艺用于尚有一定自喷能力的井。 泡沫排水采气机理 a.泡沫效应

在气层水中添加一定量的起泡剂,就能使油管中气水两相管流流动状态发生显著变化。气水两相介质在流动过程中高度泡沫化,密度显著降低,从而减少了管流的压力损失和携带积液所需要的气流速度。 b.分散效应 气水同产井中,存在液滴分散在气流中的现象,这种分散能力取决于气流对液相的搅动、冲击程度。搅动愈激烈,分散程度愈高,液滴愈小,就愈易被气流带至地面。气流对液相的分散作用是一个克服表面张力作功的过程,分散得越小,作的功就越多。起泡剂的分散效应:起泡剂是一种表面活性剂,可以使液相表面张力大幅度下降,达到同一分散程度所作的功将大大减小。 c.减阻效应 减阻的概念起源于“在流体中加少量添加剂,流体可输性增加”。减阻剂是一些不溶的固体纤维、可溶的长链高分子聚合物及缔合胶体。减阻剂能不同程度地降低气水混合物管流流动阻力,提高液相的可输性。 d.洗涤效应 起泡剂通常也是洗涤剂,它对井筒附近地层孔隙和井壁的清洗,包含着酸化、吸附、润湿、乳化、渗透等作用,特别是大量泡沫的生成,有利于不溶性污垢包裹在泡沫中被带出井口,这将解除堵塞,疏通孔道,改善气井的生产能力。 1.1)起泡剂的组成及消泡原理 起泡剂由表面活性剂、稳定剂、防腐剂、缓蚀剂等复配而成。其主要成分是表面活性剂,一般含量为30%~40%。 表面活性剂是一种线性分子,由两种不同基团组成,一种是亲水基团,与水分子的作用力强,另一种是亲油基团,与水分子不易接近。当表面活性剂溶于水中后,根据相似相溶原理,亲水基团倾向于留在水中,而亲油基团倾向于分子在液体表面上整齐地取向排列形成吸附层,此时溶液表面张力大幅降低,当有气体进入表面活性剂溶液时,亲水基团定向排列在液膜内,亲油基团则定向排列在液膜内外两面,靠分子作用力形成稳定的泡沫。 1.2)起泡剂的注入方式 起泡剂一般从油套环空注入,水呈泡沫段塞状态从油管与气一同排出后,在地面进行分离。注起泡剂的方式有便携式投药筒、泡沫排水专用车、井场平衡罐及电动柱塞计量泵等多种,需根据井场条件选择。 1.3)性能要求

泡沫排水采气工艺技术探究

泡沫排水采气工艺技术探究 摘要:天然气开采不同于石油开采,经常在井壁和井底出现积液过多的情况,阻碍采气工作,造成气井减产或过早停产。而排液采气技术可以较好地解决这一问题,本文通过对排液采气工艺技术适应的气井条件进行分析,进而对排液采气工艺技术的特点、原理和操作流程等进行了探究。 关键词:地质要素排液采气技术探究 近年来,我国天然气的开采和使用量不断加大,对于采气工艺技术的要求也越来越高。为了提高天然气产量,实现气井的高产稳产,需要对采气工艺技术进行探究和分析。气井开采后在井内容易出现积液现象,影响气井的产量和寿命,而排液采气是解决这一问题的技术保障,所以,需要对出现积液的气井进行排液开采。本文将通过对排液采气工艺技术的分析,对采气工艺技术进行探究。 一、排液采气技术及适应的气田地质特征 我国适合采用排液采气工艺技术的气田,一般都具有封闭性弱和弹性水驱的特征。需要具备封闭性,是因为较强的封闭性和定容性等特征可以使气井排液采气更加利于操作。另外,适合排液采气技术的气田需要具备气井自身产水有限的条件。气井内部的液滴在分布上受到裂缝的影响,一般都是沉积在气井内部裂缝系统的内部封闭区间内。在气井内壁沿着裂缝流动的积液,可以通过气井内部的自然能量和人工升举等技术进行排液,而气井的井底积液,因为气井内部的地层水在井底区域内聚集,非常便于通过人工升举和机抽排水等技术进行排液采气。 我国的天然气资源相对而言采气难度较高,现在已经开发的气田,基本上都是低孔低渗的弱弹性水驱气田,不利于高效采气。特别是气井进入中后期开发阶段,这种类型的气井非常容易受到内部积液的影响而提前停产或大幅度减产,即使是正常类型的气井,进入中后期后也会受到内部积液的影响。为了应对内部积液对气井开采寿命和产量的这种消极影响,需要通过采取技术手段保证气井积液的产生和气体的流出相互协调,这样就可以实现将气井内部井壁或井底的积液排除井口,提高气井的采气量和采收率,并延长气井的开采寿命。从这个意义上说,排液采气技术是挖掘含水气井生产潜力,提高采收率和延长开发时间的的重要技术手段,现在我国已经发展比较成熟的排液排水采气技术包括泡沫排水、机抽排水、优选管柱排水排液、柱塞升举排水和螺杆泵排水等。近年来,随着单项的排液采气技术的成熟和完善,逐步开始探索复合型的排液采气技术,综合利用不同技术的优势,实现最佳的天然气开采目标,其中气举泡沫排水和机抽、喷射复合排水采气工艺技术是较为常用的复合型排液采气技术。综合而言,泡沫排水排液采气工艺技术的应用是比较广泛的。 二、泡沫排水采气工艺技术相关属性分析 泡沫排水采气技术是通过向气井内部注入某种能够遇水起泡的表面活性剂,

低压产气井排水采气工艺技术

龙源期刊网 https://www.wendangku.net/doc/4915237441.html, 低压产气井排水采气工艺技术 作者:仇小爽 来源:《中国化工贸易·下旬刊》2018年第09期 摘要:在低压产井项目开展中,排水采气工艺技术应用效果质量高低直接对整体项目建 设的质量有着重要影响,因 此,结合实际对低压产气井排水采气工艺技术进行分析,探究其操作要点,希望研究讨论可以给同类工程提供一些参考。 关键词:低压产气井;排水;采气工艺;技术 气田开采时,天然气的开采施工通常都是通过气层自身所具备的能量,最终达到自喷生产的目标。伴随着开采的持续进行,就会存在有低压的问题。如果天然气产量持续下降,也就无法将更大量的液体带入到地面上,从而导致井下积液的问题的存在,如果这种情况没有得到有效的控制,就会造成气田生产的停滞,需要立即将液体排出,从而可以实现生产的有序进行。因此,在实践中需要应用排水采气艺术,彻底的解决井下积液的问题,提高产量。 1 概述 低压低产的天然气生产中,如果不能及时的解决和处理积液的问题,就会导致产量无法保证,油气田的开采也就无法顺利进行。因此,在对于低压低产的油气田进行开采的过程中,必须要应用先进的排水采气工艺技术来达到开采的需要。低压低产气井在开采的过程中,虽然开采是持续进行的,但是产量却非常低,而有些油井的开采是间歇进行的,产量更是无法保证。针对这种情况,需要采取有效的措施来提升排水采气的效果,从而可以提高产量,满足开采工作的需要。 2 低压低产气井排水采气工艺技术 2.1 泡沫排水采气工艺技术 通过应用泡沫技术可以及时将油气田井内的积液技术的排出,从而可以有效的促进开采的顺利进行,还能够提高产量。在开采过程中,通过设备向井内注入起泡剂,从而将该材料与井内的积液有效的混合,然后产生大量的泡沫,这些泡沫因为密度比较低,在井筒内上升的过程中,滑脱损失会比较小,从而可以大大提升了气体的产量,还能够满足开采工作中排气的需要。 在应用泡沫排水技术的过程中,要根据工程的需要选择最佳的起泡剂,同时还应该严格控制注入的量,满足设计的需要,如果泡沫剂的过多就会导致材料的浪费严重;如果加入量过少也就无法达到应有的要求。在加入起泡剂的过程中,要使用注醇泵将材料注入到醇管线内,从

机抽泡排采气技术改进与实践探讨

机抽泡排采气技术改进与实践探讨 摘要:排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。气田进入高采出程度后,在同一口井采用两种或两种以上的排水措施维持产气量就属于复合排水采气技术。泡排技术是用于自喷采气井上的排液采气井技术。通过把以前主要用于自喷采气井的泡排技术应用于机抽排液采气井上,可以降低油套环空液柱在井底产生的流压,提高气井的产能。 关键词:泡排;自喷井;机抽井;采气 前言 排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。目前国内外比较常用的排水采气工艺主要有优选管柱排水采气、泡沫排水采气、柱塞气举排水采气、气举排水采气、机抽油排水采气、电潜泵排水采气和射流泵排水采气工艺,这些工艺的选择主要取决于气藏的地质特征、产水气井的生产状态和经济投入的考虑。其中:泡排采气工艺是针对自喷能力不足,气流速度低于临界流速的气井采取的有效排水采气方法。随着地层能量的降低和积液加剧,气举、泡排等排液采气工艺技术已经不能维持气井自喷生产,机抽排液成为油田气井排液采气的主要手段。但机抽排液采气受泵深和泵效限制,仍有一部分井筒积液排除,造成了生产压差降低,近井水锁效应,严重影响气井产能。把以前主要用于自喷采气井的泡排技术应用于机抽排液采气井上,可以降低油套环空液柱在井底产生的流压,提高气井的产能。 1 机抽排液采气存在问题 油田天然气开发存在地层能量的不足,井筒积液严重的问题。随着地层能量的降低和积液加剧,气举、泡排等排液采气工艺技术已经不能维持气井自喷生产,机抽排液成为油田气井排液采气的主要手段。但机抽排液采气受泵深和泵效限制,排液效果不够理想:即使使用∮32mm泵下入深度也不超过2400米。又由于受气体影响,泵效较低,沉没度保持相当高的水平,动液面到油层中深保持一定积液,增加了井底流压,降低了生产压差。同时,由于近井带地层压力下降,而井筒积液在井筒回压加上井壁地层微孔隙中形成的指向地层中凹向气相的弯液面毛管压力的作用下,以缓慢的反向渗吸方式渗入地层,从而造成近井地层堵塞,即“水锁”效应。水锁现象使得近井地带含水饱和度急剧增加,导致气相相对渗透率降低,阻碍油气的通过。 2 机抽泡排技术改进 针对这一问题,把以前主要用于自喷采上的泡排技术应用于机抽排液采气井上,在药剂选择、泡排周期、施工工艺等方面研究、试验,总结出一套有效的机抽泡排技术,并在油田实施中取得了很好的经济和社会效益。通过从油套环空注

泡沫排水采气相关理论

一、以气井最小携液流速理论:天然气气藏多是有水气藏,气井产水会在自喷管柱中 形成水气两相流动,增加了气井的能量损失,造成气速和井底压力的下降,使天然气没有足够的能量将水带出井筒,就会使采气速度和一次开采的采收率大大降低,甚至把气井压死。避免气井积液发生的关键是保证有足够的天然气速度将水或凝析液携带到地面。因此,准确确定气井的临界携液流速或流量,提前预测气井积液,对于延长无水采气期,提高气藏采收率有重要指导意义。 气井最小携液流速是气井生产过程中气流能携带液体的最小流速,也称临界流速。 对于一个给定尺寸的液滴,气体流速必须大于携带液滴的最小流速,气井才能连续排液。因此当最小携液流速大于或等于实际流速时,气流能连续将迚入井筒的液体排出井口,反乊,井筒将会产生积液,这是确定气井排水采气的重要依据。 二、本次介绍常用的几种预测积液的临界携液流量模型:Duggan模型,Turner模型,Coleman模型,Nosseir模型,李闵模型,杨川东模型。Duggan模型基于统计数据得到了气井临界流量表达式,后五种模型以液滴模型为基础,以井口或井底条件为参考点,推导出了临界流量公式。 1、Duggan模型 模型早期的气井生产幵没有一个明确判断气井积液的依据,气井井底积液不但影响气井生产,同时影响气井数据计量的准确性。气藏生产迫切需要判断气井是否积液的依据。1961年,Duggan经过对现场大量的数据整理,提出了最小气体流速的概念。Duggan认为,气井最小气体流速是保证气井无积液生产的最低流速。经过统计分析,Duggan指出,1.524m/s的井口流速是气井生产的最低流速,小于这个生产速度,气井就会出现积液。 2、Turner携液模型 在Duggan临界流速思想的指导下,Turner在1969年提出了液滴模型,认为液滴模型可以准确地预测积液的形成。Turner假设液滴在高速气流携带下是球形液滴,通过对球形液滴的受力分析导出了气井携液的临界流速公式。对球形液滴迚行分析,它受到自身向下的重力和气流向上的推力。如下图: 气流对液滴向上的推力F(2-1)

含水气井泡沫排水采气工艺设计

收稿日期:2004-02-19 作者简介:王大勋(1956-),男,重庆人,讲师,从事石油工程教学工作。 含水气井泡沫排水采气工艺设计 王大勋 徐春碧 刘玉娟 石永新 400042重庆,重庆石油高专石油工程系 摘 要:泡沫排水采气是开发积水气田的一项重要的增产措施。文章介绍了泡沫排水采气工艺的原理和设计方法,并通过对辽河油田欢喜岭09井进行泡沫排水采气工艺设计的实践,提出了需要注意的有关问题。关键词:天然气开采;助采工艺;泡沫排水;泡沫剂;工艺设计 在气田开发后期,多数气井因积水而导致减产、停产。如何排水就成了气田面临的大问题。常见的排水采气方法有优选管柱、气举、泡沫排水等。泡沫排水具有施工容易、收效快、成本低、不影响日常生产等优点,成为产水气田开发的有效增产措施。当然,这种技术仍然需要在实践程中不断完善。笔者曾对辽河油田欢喜岭09井进行泡沫排水采气工艺设计。下面结合设计的实际情况,介绍泡沫排水采气工艺的原理和设计方法及需要注意的有关问题。 1 泡沫排水采气机理 泡沫排水采气的基本原理,是从井口向井底注入某种能够遇水起泡的表面活性剂(起泡剂),井底积水与起泡剂接触以后,借助天然气流的搅动,生成大量低密度含水泡沫,随气流从井底携带到地面。泡沫助采剂主要是通过泡沫效应、分散效应、减阻效应和洗涤效应来实现助采的。 表1 C T5-2和U T -1对比表 CT 5-2 U T - 1 类 型复合型表面活性剂以植物皂为主剂的活性剂外 观棕褐色粘稠液红棕色粘稠液气 味微氨味 无异味 密 度 1.042g/m 3 1.05g/m 3 溶解性 任一比例溶于水 任一比例溶于水 p H 值 7~86 抗油指标<30%10%~30%矿化水指标<120g/l <120g/l 凝固点-21℃ -10℃包 装25kg/桶,100kg/桶 25kg/桶 价 格 ~1.8万元/t ~1.0万元/t 2 泡沫剂的选择 泡排所需泡沫剂应具有起泡能力强、泡沫携液量大、泡沫稳定性适中等性能。在气井泡沫排水中采用的起泡剂, 有离子型、非离子型、两性表面活性剂和高分子聚合物表面活性剂。用于排水的化学药剂,包括:起泡剂、分散剂、缓蚀剂、减阻剂、酸洗剂及井口相应的消泡剂。目前现场用得最多的是C T5-2和U T -1,其性能对比 ,见表1。 泡沫剂的性能 、发泡能力、携液量、使用浓度和条件等都直接影响排水采气工艺的效果。因此,通过实验,研究了泡沫剂的适用性。 采用常用的3种评价方法:搅拌法、气流法和倾注法来评价C T5-2和U T -1的稳定性和带水能力。 按照搅拌法所得实验数据,可得出浓度与发泡量的关系曲线,如图1所示。 图1 浓度与发泡量的关系曲线 图2 浓度与半衰期的关系曲线 由图1可知:两种泡沫剂中,C T5-2的发泡能力比U T -1 强,浓度越大,其发泡能力越强。由图2可知:浓度在比较小的时侯,C T5-2的半衰期较U T -1的要短,但随着浓度增加, C T5-2的半衰期在增大。C T5-2的稳定性比U T -1的强,而且 随着浓度的增大,稳定性也在增强。 按照气流法测得的数据显示,U T -1和C T5-2相比,前者 ?42?重庆石油高等专科学校学报 2004年第6卷

排水采气工艺技术

排水采气工艺技术 由于在气井中常有烃类凝析液或地层水流入井底。当气井产量高、井底气液速度大而井中流体的数量相对较少时,水将完全被气流携带至地面,否则,井筒中将出现积液。积液的存在将增大对气层的回压,并限制其生产能力,有时甚至会将气层完全压死以致关井。排除气井井筒及井底附近地层积液过多或产水,并使气井恢复正常生产的措施,称为排水采气。排水采气工艺可分为:机械法和物理化学法。机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺,物理化学法即泡沫排水采气法及化学堵水等方法。这些工艺的选择取决于气藏的地质特征、产水气井的生产状态和经济投入的考虑。 1 优选管柱排水采气技术 在气水井生产中后期,随着气井产气量和排水量的显著下降,气液两相间的滑脱损失就取代摩阻损失,上升为影响提高气井最终采收率的主要矛盾。这时气井往往因举液速度太低,不能将地层水即使排出地面而水淹。优选管柱排水采气工艺就是在有水气井开采到中后期,重新调整自喷管柱,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式排水采气方法。优选管柱排水采气工艺,其理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,除优选与地层流动条件相匹配的油管柱外,无须另外特殊设备和动力装置,是充分利用气井自身能量实现连续排水生产,以延长气井带水自喷期的一项开采工艺技术。 该技术适用于开采中后期具有一定能量的间喷井、弱喷井,能延长气水井的自喷期,适用于井深<3000m,产水量<100 m3/d。对采用油管公称直径≤60mm 进行小油管排水采气的工艺井,最大排水量50m3/d,油管强度制约油管下深。工艺实施后需要配合诱喷工艺使施工井恢复生产。 2 泡沫排水采气技术 泡沫排水采气技术是通过地面设备向井内注入泡沫助采剂,降低井内积液的表、界面张力,使其呈低表面张力和高表面粘度的状态,利用井内自生气体或注入外部气源(天然气或液氮)产生泡沫。由于气体与液体的密度相差很大,故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。

柱塞气举排水采气工艺技术的应用

柱塞气举排水采气工艺技术的应用 摘要:根据苏里格“三低”气田的现状,通过柱塞气举现场试验情况,分析柱塞工艺的适用性,开展试验效果评价,为低产低效气井探索一种与之相适应的排水采气工艺方法。 关键词:苏里格气田柱塞气举排水采气 一、应用背景 苏里格气田是低产、低压、低丰度、非均质性强的复杂气田。2008年之前投产的气井压力和产能都普遍较低,不能满足生产过程中的气井携液要求,导致部分气井井底产生积液,严重影响了气井连续稳定生产。因此,研究一套适合低产、低效气田开发的排水采气工艺技术成为苏里格气田发掘气井产能、长期稳产的有力保障。 二、柱塞气举工艺原理 1.柱塞气举工艺组成 柱塞气举装置的组成主要包括(1)防喷管:主要功能为放喷、缓冲,必要时可以捕捉柱塞;(2)地面控制装置:主要由时间--周期控制器和气动阀组成;气动阀按控制器定时发出的指令开关;(3)井底座落器:限位,并缓冲柱塞下行碰撞冲击;(4)柱塞:关键装置,充当天然气与液体间的机械界面。 2.柱塞气举工艺原理 柱塞气举装置的正常工作由时间周期控制器控制气动阀的开关来完成。当气动阀关闭时,柱塞自行下落,柱塞下落至井下座落器时,油管中液面不断上升并超出柱塞高度。当气动阀打开时,气体迅速进入油管,与地层流入井底的气一起推动柱塞及其上液体升向井口,直到把柱塞上部的液体举升至地面,待气井生产一定时间需要恢复地层压力时,气动阀自动关闭,柱塞下落,开始下一次工作循环。 三、柱塞气举现场应用及效果评价 1. 选井原则 根据试验取得的经验,柱塞工艺的适用条件如下: 1.1气井自身具有一定的产能,自喷生产井; 1.2日产水量小于5m3/d;

排水采气工艺技术

排水采气工艺技术 排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。 自五十年代美国首次将抽油机用于中小水量气井排水以来,到目前国外已发展了优选管柱、机抽、泡排、气举、柱塞举升、电潜泵、射流泵、气体射流泵和螺杆泵等多套成熟的单井排水采气工艺技术。近年来,在这些应用已较为成熟的工艺技术方面的发展主要是新装备的配套研制。国外还研究应用一些新的排水采气技术,如同心毛细管技术、天然气连续循环技术、井下气液分离同井回注技术、井下排水采气工艺、带压缩机的排水采气技术。 我国排水采气工艺以四川、西南油气田分公司为代表完善配套了泡排、气举、机抽、优选管柱、电潜泵、射流泵等六套排水采气工艺技术,并在此基础上研究应用了气举/泡排、机抽/喷射复合排水采气工艺。 1.泡沫排水采气工艺技术 药剂由单一品种的起泡剂发展到了适合一般气井的8001—8003、含硫气井的84—S,凝析气井800(b)发泡剂,以及泡棒、酸棒和滑棒等固体发泡剂。该工艺排液能力达100m3/d,井深可达3500m左右。 在泡沫排水采气工艺中国外还应用了同心毛细管加药工艺,它是针对低压气井积液、油气井防蜡等实际生产问题而研制出的一种新型工具,通常用316型不锈钢不锈钢制成,盘绕在一个同心毛细管滚筒上。整套装置包括一个同心毛细管滚筒、一台吊车和一套不压井装置。在同心毛细管底部装一套井下注入/单向阀组件。化学发泡剂通过同心毛细管注入后经过单向阀被注入到井底。 这种同心毛细管柱可以在同一口井中重复多次使用,也可以起出用于别的气井,具有经济、安全和高效的特点,其最大下入深度可达7315m。 2.优选管柱排水采气工艺技术

电潜泵排水采气工艺技术措施

能源环保与安全 应用下入井下的潜油多级离心泵装置,将气井的积液抽汲到地面上来,降低积液对气体产生的不利影响。电潜泵排水采气生产中,控制最佳的积液的排量,大幅度降低井底的回压,促使气体顺利入井,因此提高了气井的生产能力。 一、排水采气技术措施概述 气井生产过程中,由于井下积液的存在,严重影响到气井的生产能力,严重的情况甚至迫使气井停产。为了恢复气井的正常生产状况,采取最佳的排水采气的技术措施,是非常必要的。 气井生产中的各种排水采气技术措施的应用,降低井下积液对气井带来的不利影响,恢复气井的正常生产状态,为获得最佳的产气量,提供保证措施。气举排水采气技术措施、泡沫排水采气技术措施、抽油机排水采气技术措施、电潜泵排水采气技术措施的应用,解决气井井下积液的技术难点问题,促进气井高效生产,为气田生产提供帮助。 2电潜泵排水采气工艺技术措施 电潜泵排水采气技术措施的应用,选择电动潜油离心泵设备,依据电动机的驱动,提高多级离心泵的抽汲能力,将气井井下的积液开采到地面上来,降低井底的回压,为气流入井提供便利的条件。 1.电潜泵装置的优越性。利用电潜泵装置进行排水采气,由于电动潜油离心泵的安装深度及排量的特点,使用于压力低,产水量高的气井的排水采气生产。与气举排水采气方式对比,产生更小的井底回压,有利于提高排水采气的生产效率。 结合可调式的变频机组的应用,降低了电能的消耗,相应地降低了气井排水采气的生产成本。在低速下频繁启动潜油电泵机组,符合气井排水采气的需要,具有灵活的特性,发挥电潜泵的优越性,提高排水采气的效果。 电潜泵井下的温度变送器和压力变送器的安装和维护比较容易,能够实现排水采气工艺的自动控制和管理,提高采气生产的自动化程度,降低人为因素带来的不利影响。而且电动潜油离心泵排水采气方式的应用,不受井斜角的限制,具有非常广泛的应用价值。 2.电潜泵排水采气工艺的应用。结合气井积液的实际,设计最佳的电潜泵井下管柱系统,结合高压电能的输入, 带动井下的电动机高速旋转,将电能转 换为机械能,带动井下的多级离心泵运 行,抽汲井下的液体,解决气井积液的 问题。 主要的生产装备均在井下管柱系统 中,井下的潜油电动机、多级离心泵系 统,成为电潜泵排水采气的关键部件, 维护保养的难度大。井下的温度的影 响,需要选择和应用高强度的电动机系 统,同时对传输电能的电缆的要求比较 高。 为了提高电潜泵排水采气的经济 性,加强对电潜泵机组的管理,提高设 备的安全运行效率。降低设备的损耗, 尽可能延长各种部件的使用寿命,才能 保证气井排水采气的正常进行,获得最 佳的天然气产能,满足气田生产的技术 要求。 3.电潜泵排水采集技术的关键措 施。气井的排水采气技术措施,必须将 井下的气体和液体实施分离处理,才能 保证电潜泵具有较大的抽汲能力,将井 下的积液抽汲到地面上来,排出积液对 气井生产带来的不良影响。井筒中的离 心式分离技术的应用以及变频控制技术 的实现,保证了电潜泵排水采气效率的 提高。 利用地面的变频器自动控制井下的 潜油电动机和多级离心泵的运行状态, 井下的积液通过旋转式的气体分离器, 将气体分离至油套管的环形空间,避免 大量的气体进入到多级离心泵导致泵效 过低,影响到排液的效果。经过特种的 气井排液管线,使井下的积液进入到出 水管线,进一步分离处理后,降低对气 井产物的影响。井下产出的天然气经过 分离处理后,进入到集气管线,为用户 提供可靠的天然气供应。 应用离心式的气体分离器,将气井 中的气体和液体进行分离,避免大量的 气体进入到多级离心泵,而影响到潜油 电泵机组的高效运行,无法达到最佳的 排水采气的状态。安装在潜油多级离心 泵的下端,将进入到离心泵的气体分离 除去。当气液两相进入到分离器的入口 后,促使分离器产生离心力,由于气液 产生的离心力不同,通过分离器的出口 排出液体,进入到潜油电泵中,依靠泵 的增压作用,而将气井的井下积液举升 到地面上来。而气体经过油套管的环形 空间上升,经过井口采气树的收集,成 为气井产量的一部分,被回收利用。 变频控制技术能够有效地控制潜 油多级离心泵的启动和停止,保护潜油 电动多级离心泵的保护装置,避免由于 电能的供给问题,而影响到井下设备的 安全运行,增加修井作业施工的频次, 相应地增加电动潜油离心泵机组的故障 率,降低气井排水采气的效率。对井下 的电动机的过载保护,延时保护技术的 应用,保证井下电动机的安全运行。同 时选择和应用高强度的电缆,将地面的 高压电力输送给井下的电动机,才能促 使电动机运行,将动力传递给井下的多 级离心泵,抽汲井液,实施排水采气的 功能,达到排水采气的技术标准。通过 变频调速技术措施的应用,扩大电潜泵 机组的排液范围,降低电动系统的启动 应力,保证电动机的安全运行。实现无 级调速,降低泵机组的电能消耗。合理 控制机组的运行方式,使其达到最佳的 排水采气的效果。 三、结论 通过对电潜泵排水采气工艺技术 措施的研究,结合电动潜油离心泵的应 用,提高气井排水采气的效果,为达到 气井的开采价值,提供可靠的保证措 施。结合气田生产的实际状况,对电动 潜油离心泵排水采气的技术措施进行优 化,设计合理的排水采气的生产运行参 数,结合变频调速技术的应用,降低电 能的消耗,相应减少气井排水采气的资 金投入,降低电潜泵机组的维修成本, 提高气井排水采气生产的效率。 参考文献: [1]李仕昆. 电潜泵排水采气技术研究及应用[J]. 云 南煤炭, 2014(2):63-65. [2]李生德. 探析深井电潜泵排水采气工艺技术 研究及应用[J]. 工程技术(全文版), 2017(2):00264- 00264. [3]熊杰, 王学强, 孙新云, et al. 深井电潜泵排水采 气工艺技术研究及应用[J]. 钻采工艺, 2012(4):60- 61. [4]刘鑫. 致密砂岩气藏富水区开发技术对策研究 [D]. 成都理工大学, 2012. [5]郭守振, 刘唯贤, 孙景丽, et al. 致密砂岩气藏开 发后期综合监测技术应用研究[J]. 内蒙古石油化 工, 2017(09):102-103. 电潜泵排水采气工艺技术措施 翟宗宝 吴有明 杨文忠 谢建国 塔西南博大油气开发部 【摘 要】电潜泵排水采气的工艺属于人工举升的技术措施,解决气井的积液问题,恢复气井的正常运行状态,为开采出更多的天然气资源,提供最佳的技术支持。优化电潜泵的运行参数,提高排水采气的效率,尽可能降低电潜泵的运营成本,不断提高气田生产的经济效益。 【关键词】电潜泵;排水采气;工艺技术;措施 81

气举排水采气分析-简要

关于气举排水采气井施工现状分析 2019年7月

目录 一.定义 (1) 二.原理与过程简介 (1) 三.工艺流程简介 (3) 四.实例分析与建议 (3)

一.定义 气举排水采气是依靠外来高压气源或压缩机,向井筒内注入高压气体与产层产出流体在井筒中混合,降低井筒内流体的密度及其静水压力,从而降低井底流压,使产层流体流入井筒并被举至地面的一种排水采气方式。 气举过程示意图 二.原理与过程简介 当气井水锁停产时,油套管内的液面在同一位置。当高压气体进入油套环空后,环空内的液面被挤压下降,如不考虑液体被挤入地层,油套环空内的液体则全部进入油管,油管内的液面上升,在此过程中压缩机的压力不断升高。当油套环空内的液面下降到油管管鞋时,压缩机压力达到最大,称启动压力。注入气体进入油管与油管内的液体

混合,液面不断上升,直至喷出地面,在开始喷出之前,井底压力大于或等于地层压力,喷出之后由于油套环空仍继续进气,油管内液体继续喷出,使混有天然气液体密度进一步降低,井底压力相应降低,压缩机压力也随之下降,当井底压力低于地层压力是,地层流体就流入井内。由于地层出液使油管内混气液体密度稍有增加,因而压缩机压力又有所上升,经过一段时间后趋于稳定,达到稳定生产状态,此时压缩机压力称为工作压力。所以压缩机停止作业时液面进行短暂恢复,液面重新升高。压缩机重新启动后,必须将这段时间内恢复的液体重新排出去,所以导致多次开机排除井底固有的积液有限,恢复生产的层位和产能有限,特别对于水平井的水平段积液的排除更是有限。并且过于频繁重复的停开机作业,反复的使压缩机达到最大压力,这势必会加大压缩机的损耗及能耗,增加作业成本,缩短压缩机的正常使用寿命。 水平井身结构示意图直井身结构示意图

相关文档