9-高数期末试题及答案1

高数期末考试

一、单项选择题 (本大题有4小题, 每小题4分, 共16分)

1. )(

0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.

2. )时( ,则当,设133)(11)(3→-=+-=x x x x x

x βα.

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;

(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无

穷小.

3. 若

()()()0

2x

F x t x f t dt

=-?,其中()f x 在区间上(1,1)-二阶可导且

'>()0f x ,则( ).

(A )函数()F x 必在0x =处取得极大值;

(B )函数()F x 必在0x =处取得极小值;

(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.

)

(

)( , )(2)( )(1

=+=?x f dt t f x x f x f 则是连续函数,且设

(A )2

2x (B )2

2

2x

+(C )1x - (D )2x +.

二、填空题(本大题有4小题,每小题4分,共16分)

5. =

+→x

x x sin 2

)

31(l i m .

6.

,)(cos 的一个原函数是已知

x f x

x

=?

?x x

x

x f d cos )(则

.

7.

lim (cos cos cos )→∞-+++=

2

2

2

21n n n n n n ππ

π

π .

8.

=

-+?

2

12

12

211

arcsin -

dx x

x x .

三、解答题(本大题有5小题,每小题8分,共40分)

9. 设函数=()y y x 由方程

sin()1x y

e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17

7

x x x x ?+-求

11. .

 求,, 设?--???

??≤<-≤=1 32

)(1020)(dx x f x x x x xe x f x

12. 设函数)(x f 连续,=?1

0()()g x f xt dt

,且→=0

()

lim

x f x A x ,A 为常数. 求

'()g x 并讨论'()g x 在=0x 处的连续性.

13. 求微分方程2ln xy y x x '+=满足

=-

1

(1)9y 的解.

四、 解答题(本大题有2小题,每小题10分,共20分)

14. (1).已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一

点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.

(2).求由抛物线342-+-=x x y 及其在)3,0(-,)0,3(处的切线所围成的平面 图形的面积。

六、证明题(本大题有2小题,每小题4分,共8分)

15. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,

1

()()≥??q

f x d x q f x dx

.

16. 设函数)(x f 在[]π,0上连续,且0

)(0

=?

π

x d x f ,0

cos )(0

=?

π

dx x x f .

证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提

示:设

?=

x

dx

x f x F 0

)()()

解答

一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C

二、填空题(本大题有4小题,每小题4分,共16分)

5. 6

e . 6.c x x +2

)cos (21 .7. 2π. 8.

3π.

三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导

(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x y

e y xy y x e x xy +++'=-+

0,0x y ==,(0)1y '=-

10. 解:7

67u x x dx du ==

1(1)112

()7(1)71u du du

u u u u -==-++??原式 1

(ln ||2ln |1|)7u u c =-++ 7712

ln ||ln |1|77x x C =-++

11. 解:1

1

233

()2x

f x dx xe dx x x dx

---=+-?

??

123

()1(1)x xd e x dx

--=-+--??

00

2

32

cos (1sin )x x xe e d x πθθθ----??=--+-=???

 

321

4e π

=

--

12. 解:由(0)0f =,知(0)0g =。

===

??1

()()()x

xt u

f u du

g x f xt dt x

(0)x ≠

02

()()()(0)

x

xf x f u du

g x x x

-'=

≠?

2

0()()A

(0)lim

lim

22x x x f u du

f x

g x x →→'===?

02

()()lim ()lim

22x

x x xf x f u du

A A

g x A x

→→-'==-

=

?,'()g x 在=0x 处连续。

13. 解:2

ln dy y x

dx x +=

2

2

(ln )

dx dx

x x y e e xdx C -??=+?

2

11

ln 39x x x Cx -=

-+

1

(1),09y C =-=,

11ln 39y x x x

=- 四、 解答题(本大题10分)

14. (1).解:由已知且0

2d x

y y x y

'=+?,

将此方程关于x 求导得y y y '+=''2

特征方程:022

=--r r 解出特征根:.2,121=-=r r

其通解为 x

x e C e C y 221+=-

代入初始条件y y ()()001='=,得

31

,3221==

C C

故所求曲线方程为:x

x e e y 23132+=-

(2).解:先求得两条切线为 34-=x y 和 62+-=x y ,两切线交点为

???

??3,23 ……3分

??+-++-++-+-=2

30

3

2

322

)3462()3434(dx x x x dx x x x A …

………6分

499333

3

2

32

3230

3=???

? ??+-+=

x x x x 。 …

………8分

六、证明题(本大题有2小题,每小题4分,共12分)

15. 证明:1

()()q

f x d x q f x dx -??1

()(()())

q

q

q

f x d x q f x d x f x dx =-+???

1

(1)()()q q

q f x d x q f x dx

=--??

1212[0,][,1]

()()

12(1)()(1)()

0q q f f q q f q q f ξξξξξξ∈∈≥=

---≥

故有:

1

()()≥??q

f x d x q f x dx

证毕。

16.

证:构造辅助函数:π

≤≤=?x dt t f x F x

0,)()(0。其满足在],0[π上连续,在)

,0(π上可导。)()(x f x F =',且0)()0(==πF F 由题设,有

????+===π

π

π

π0

)(sin cos )()(cos cos )(0|dx

x F x x x F x xdF xdx x f ,

有?=π

00

sin )(xdx x F ,由积分中值定理,存在),0(πξ∈,使0s i n

)(=ξξF 即0)(=ξF

综上可知),0(,0)()()0(πξπξ∈===F F F .在区间],[,],0[πξξ上分别应用罗尔定理,知存在

),0(1ξξ∈和),(2πξξ∈,使0)(1='ξF 及0)(2='ξF ,即0)()(21==ξξf f .

相关推荐
相关主题
热门推荐