文档库 最新最全的文档下载
当前位置:文档库 › 空间向量基本定理

空间向量基本定理

空间向量基本定理
空间向量基本定理

1

装订线

庆云第一中学课堂导学案

(设计者:于长田审核者:刘晓莉)

年级高二学科数学编号x(2-1)44日期2015-12-02 班级姓名

3.1.2空间向量基本定理

一.学习目标:掌握空间向量基底的概念;了解空间向量的基本定理及其推论;了解空间向

量基本定理的证明。

二.自学指导:阅读课本P82—P84页注意下面问题。

1.共线向量定理:

2.共面向量:

3.共面向量定理:

4.空间向量分解定理:

三.知识应用

例1在平行六面体ABCD—A

1

B

1

C

1

D

1

中,= ,=,

1

AA=,P是CA1的中点,M是CD1

的中点,N是C

1

D

1

的中点,点Q在CA

1

上,且CQ:QA

1

=4:1,

用基底{a、b、c}表示以下向量:

(1),(2),(3)

练习:1.已知平行六面体ABCD—A

1

B

1

C

1

D

1

,设,= ,=,

1

AA=用基底{}

,,

a b c

表示

如下向量:(1)

111

,,,

AC AB A D DC

(2)AG

(G是侧面CC1D1D的中心)

2.已知空间四边形OABC中,M,N分别是对边OA,BC的中点,点G在MN上,且MG=2GN.设OA=,a

,

OB b

=

,

OC c

=

试用基底{}

,,

a b c

表示OG

例2.已知向量a=

1

e-2

2

e+3

3

e,b=2

1

e+

2

e,c=6

1

e-2

2

e+6

3

e,

判断a+b与c能否共面或共线?c-3b与b-2a能否共面或共线?

3 . 已知2,

a i j k

=-+

32,

b i j k

=-++

-37

c i j

=+

证明这三个向量共面。

4.已知三个向量a ,b ,c 不共面,并且p a b c =+- ,235q a b c =-- ,71822r a b c =-++

,向

量p ,q ,r

是否共面?

例 3.已知矩形ABCD,P 为平面ABCD 外一点,且P A ⊥平面ABCD,M,N 分别为PC,PD 上的点,且

PM=2MC,PN=ND 求满足MN=x AB yAD zAP ++

的实数x,y,z 的值。

5 已知平行六面体ABCD —A 1B 1C 1D 1

(1)化简11223

AA BC AB ++

并在图上标出其结果。(2)设M 是底面ABCD 的中心,N 是侧面

BCC 1B 1对角线BC 1上的3

4

分点,设1MN AB AD AA αβλ=++ 试求,,αβλ的值。

练习巩固:

1.“a =x b ”是“向量a 、b 共线”的

( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既非充分也非必要条件

2.满足下列条件,能说明空间不重合的A 、B 、C 三点共线的是

( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC →

D .|AB →|=|BC →|

3.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是

A .a

B .b

C .a +2b

D .a +2c

4.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →

=7a -2b ,则一定共线的三点是 (

)

A .A 、

B 、D

B .A 、B 、

C C .B 、C 、D

D .A 、C 、D 5.在下列等式中,使点M 与点A ,B ,C 一定共面的是

( )

A.OM →=25OA →-15OB →-15OC →

B.OM →=15OA →+13OB →+12OC →

C.MA →+MB →+MC →=0

D.OM →+OA →+OB →+OC →

=0

6.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC →

确定的一点P 与A ,

B ,

C 三点共面,则λ=________.

7.在以下3个命题中,真命题的个数是________.

①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面.

②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线.

③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. 8.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →

=2e 1-e 2,若A ,B ,D 三点共线,试求实数k 的值.

9.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =2

3

DD 1.

(1)证明:A 、E 、C 1、F 四点共面; (2)若EF →=xAB →+yAD →+zAA 1→

,求x +y +z .

装 订 线

庆云第一中学课堂导学案

(设计者:于长田 审核者:刘晓莉)

年级 高二 学科 数学 编号 x (2-1)43日期 2015-12-1 班级 姓名

一.学习目标:

(1) 理解空间向量概念,掌握空间向量的几何表示法和字母表示法 (2) 会用图形说明空间向量加法、减法、数乘向量及它们的运算律

(3) 能运用空间向量的运算意义及运算律解决简单的立体几何中的问题。 二.自学指导:(类比平面向量的概念推广空间向量的概念),阅读课本P79—P81页内容,并注意下面问题: 1.向量的有关概念

(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .

(3) 零向量: 的向量,记作 ;规定:零向量与任意向量共线。

(4) 向量a

的长度或模: 记作 (5) 向量的基线: .

(6)共线向量或平行向量: ,记作 注意:区别两直线平行及共线

2.空间向量的加法、减法和数乘向量的运算:

b

1)已知向量a = OA

,b = OB , a

试画出a b a b +- 及

2)数乘向量法则:怎样理解a λ 与a

的关系?.

对a λ

:当λ>0时 , 当λ<0时 , 当λ=0时 平面向量的三角形法则、平行四边形法则及“封口向量”在空间向量仍然成立。 3.线性运算律

(1) 加法交换律:a +b = . 2) 加法结合律:(a +b )+

c = .(3) 数乘分配律:λ(a +b )= .三.知识应用:

例1.已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并在图中

标出化简结果的向量。

(1)AB +AD +1AA (2)1DD -+ (3)AB +AD +

2

1

(1DD -BC ) 从例题中得到什么结论,你是怎么理解的?

例2.M 、N 分别是四面体ABCD 的棱AB 、CD 的中点,

求证:=1

2

(+)

巩固练习:

1.下列说法正确的是

( )

A .在平面内共线的向量在空间不一定共线

B .在空间共线的向量在平面内不一定共线

C .在平面内共线的向量在空间一定不共线

D .在空间共线的向量在平面内一定共线 2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →

,则四边形ABCD 是

( )

A .空间四边形

B .平行四边形

C .等腰梯形

D .矩形

3.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连接AM 、AG 、MG ,则AB →+12(BD →+BC →

)

等于

( )

A.AG →

B.CG →

C.BC →

D.12

BC →

4.在正方体ABCD —A 1B 1C 1D 1中,给出以下向量表达式:

①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→

的是

( )

A

B

C

D

A 1

B 1

C 1

D 1

D

C

B

M A

A .①②

B .②③

C .③④

D .①④

5.如图,空间四边形OABC ,OA →=a ,OB →=b ,OC →

=c ,点M 在 OA 上,且OM =2MA ,N 是BC 的中点,则MN →

等于( ) A.12a -23b +12c B .-23a +12b +12 C.12a +12b -23c D.23a +23b -12c

6.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →

|,则

( )

A.AB →=AC →+BC →

B.AB →=-AC →-BC →

C.AC →与BC →

同向

D.AC →与CB →

同向

7.化简:(AB →-CD →)-(AC →-BD →

)=________.

8.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →

=____________.

9.如图,设O 为?ABCD 所在平面外任意一点,E 为OC 的中点.若 AE →=12OD →+xOB →-32OA →

,则x =________.

10.已知平行六面体ABCD-A 1B 1C 1D 1,

1)写出分别与向量AB ,AD ,1AA 相等的向量。

2)化简向量 ⑴11AB B C + ⑵.11AB A D -

⑶.1AB CB AA ++ ⑷.1BA BC CC ++ ⑸.1AD CC BA +-

11、已知空间四边形ABCD ,连接AC,BD, 设M,G 分别是BC,CD 的中点,化简下列各表达式

1)AB BC CD ++

2)1()2AB BD BC ++

3)1()2

AD AB AC -+

12.在正方体ABCD-A 1B 1C 1D 1中,点E 是上底面A 1B 1C 1D 1的中心,求下列各式中的x,y,z 的值。

(1)1BD =x +y +z 1AA (2)=x +y +z 1AA

A

B C

D A 1

B 1

C 1

D 1 B

G C

D

A

装 订 线

庆云第一中学课堂导学案

(设计者:于长田 审核者:刘晓莉)

年级 高二 学科 数学 编号 x (2-1)45日期 2015-12-03 班级 姓名 3.1.3

空间向量的数量积

一.学习目标:1、掌握空间向量夹角和模的概念及表示方法;

2、掌握两个向量的数量积的概念、性质、计算方法及运算律;

二.自学指导:阅读课本P85—P88页内容并注意下面问题:

1.空间向量的夹角及其表示:

2、异面直线: ;

3、两条异面直线所成得的角: ;

如果 ,则称两条异面直线垂直。

4.向量的模:

5.向量的数量积:

6.空间向量数量积的性质:

(1) ;(2) ;(3) ;(4) 7.空间向量数量积运算律:

(1) ;(2) ;(3)

三.知识应用

例2.已知平面α⊥平面β,α∩β=l ,点A 、B 在α内,并且它们在l 上的正射影分别为A ’,B ’;C ,D 在β内,并且它们在l 上的正射影分别为C ’,D ’,

求证:

例3.已知长方体ABCD -A ’B ’C ’D ’,AB =AA ’=2,AD =4,E

为侧面AB ’的中心,

F 为A ’D ’的中点,计算下列数量积:

设OA a = ,则有向线段OA 的长度叫做向量a

的长度或模,记作: ; 已知向量,a b ,则||||cos ,a b a b ??<> 叫做,a b

数量积,记作 , 即 .

''''

AB CD A B C D ?=?

'BC ED ? '

BF AB ? '

EF FC ?

例1.如图表示一个正方体,求下列各对向量的夹角:

(1)AB 与''A C ; (2)''AB C A 与; (3)''AB A D 与; (4)''AB B A 与。 已知两非零向量,a b

,在空间任取一点O ,作,OA a OB b == ,则AOB ∠叫做向量a

与b 的夹角,记作 ;且规定,a b <>∈ ,显

然有,,a b b a <>=<> ;若,2

a b π<>= ,则称a 与b 互相垂直,记作:

四.自学检测:P88页练习A B

【巩固练习】

1、下面运算正确的是( )

A 、a b a c b c ?=??=

B 、00a b a ?=?=

或0b = C 、)()(c b a c b a ?=? D 、()

b a b a ?=?λλ)(

2、边长为1的正方体ABCD -1111D C B A 中,下列结论不正确的是( )

A 、111-=?D C

B 、111=?B

C C 、0111=?

D A AA D 、011=?A AC 3、在空间四边形OABC 中,OC OB =,3

π

=

∠=∠AOC AOB ,

则等于( )

A 、21

B 、2

2 C 、21- D 、0

4、如图,已知PA ⊥平面ABC , 120=∠ABC ,6===BC AB PA ,则PC 等于( ) A 、26 B 、6 C 、12 D 、144 5

、根据下列等式,分别求

(1)1=

(2) 1-=

(3) 0=

(4)=?

6、已知四面体ABCD 的每条棱长都等于a ,点G F E ,,分别是棱DC AD AB ,,的中点,求下列向量的内积:

(1)? (2)? (3)? (4)? (5)? (6)?

7、已知正方体''''D C B A ABCD -的棱长为1,设a AB =,b AD =,AA =',求: (1)''DB AC ?

, ; (2)BD ?'.

8、在空间四边形OABC 中, 60,45,5,4,6,8=∠=∠====OAB OAC BC AC AB OA ,求 与BC 的夹角的余弦值。

9、已知正方体''''D C B A ABCD -的棱长为1,设,=b AD =,c AA ='

',求: (1))(+?;(2))(++? (3)()

)(+?+ (4

)++

装 订 线

庆云第一中学课堂导学案

(设计者:于长田 审核者:刘晓莉)

年级 高二 学科 数学 编号 x (2-1)46日期 2015-12-04 班级 姓名

3.1.4空间向量的直角坐标运算

学习目标:掌握向量的坐标表示、坐标运算,平行向量、垂直向量坐标之间的关系,两个向量夹角与向量

长度的坐标计算公式。

自学指导:阅读课本P89—P91页,并注意以下问题: 1.空间向量的直角坐标运算:

于是,我们在空间向量集合的元素与三元有序实数组集合

之间建立起了一一对应关系,即a ?

(a 1,a 2,a 3)

2.空间向量的平行和垂直的条件

换用坐标表示,得 当 与三个坐标平面都不平行时,

两个向量 垂直,

换用坐标表示,得

3.两个向量夹角与向量长度的坐标计算公式:

知识应用

建立空间直角坐标系Oxyz ,分别沿x 轴、y 轴、z 轴的正方向引单位向量, , i j k

,这

三个互相垂直的单位向量构成空间向量的一个基底{, , i j k },这个基底叫做 。 单位向量, , i j k

都叫做 。

空间直角坐标系Oxyz ,也常说成空间直坐系 。

在空间直角坐标系中,已知任一向量a ,根据量分解定理,存在惟一数组(a 1,a 2,a 3),a = ,123

, , a i a j a k

分别为向量a 在, , i j 方向上的分向量,有序实数组(a 1,a 2,a 3)叫做向量a 直角坐标系中的坐标。上式可简记作 。 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),

则容易得到 a +b = ; a -b

= ; λa

= ; a b ?=

。 在空间直角坐标系Oxyz 中,对空间任一点P ,相对于原点确定了一个 向量OP ,设OP xi y j zk =++

,则(x ,y ,z )也就是点P 的坐标,即P (x ,y ,z ), 设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则212121(,,)AB OB OA x x y y z z =-=---

这就是说, 。

//(0)a b b a b

λ≠?= 11

223

3//(0)a b a b b a b a b

λλλ=??

≠?=??=? b 3

12123//a a a a b b b b ?== , a b

a b a b ⊥??= 1122330

a b a b a b a b ⊥?++=

例1.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,求, , p q p q ?

。 例2.已知向量a =(-2,2,0),

b =(-2

,0,2),求向量n

,使得n ⊥a 且n ⊥b 。 设a =(a 1

,a 2,a 3

),b

=(b 1,b 2,b 3), 则||a

== ,||b ==

cos ,||||a b a b

a b ?<>==?

。 设A (x 1,y 1,z 1),B (x 2,y 2,z 2),

则||AB = 。

自学检测:P92练习A 、 B

【巩固练习】

1、已知向量(2,3,5)a =- 与向量15

(3,,)2

b λ= 平行,则λ等于( )

A 、23

B 、92

C 、92-

D 、23

-

2、已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB AC ⊥

,则( ) A 、λ=28 B 、λ=-28 C 、λ=14 D 、λ=-14

3、已知A (3,3,3)B (6,6,6),O 为原点,则BO OA

与的夹角是 ( )

A 、0

B 、π

C 、32

π D 、2π

4、已知A (1,-2,11),B (4,2,3)C (6,-1,4),则ABC ?的面积是 ( )

A

B

、 C

、 D

、5、已知(1,1,0),(1,0,2),a b ka b a b ==-+-

且与2互相垂直,则k 的值为( )

A 、1

B 、

15 C 、35 D 、75

6、已知(1,1,),(2,,),||a t t t b t t b a =--=-

则的最小值是( )

A

B

C

D 、115

7、已知(2,4,),(2,,2),||6a x b y a a b ===⊥

若且,则x+y 的值为 。

8、已知,a b

都是空间向量,若||3,||2||a b a b ==- ,则,a b

的夹角为 。 9、已知A (0,0,0),B (2,5,0),C(1,3,5),则AB AC 在上正射影的数量为 。

10、(2,3,5)a =-

的单位向量为 。

11、(2,3,5)(1,0,1)a b =-= 已知,,则同时与,a b

垂直的单位向量是 。 12、已知(3,2,5),(1,3,0),(7,2,1)a b c =-=-=-

,求

(1)a b c ++ (2)()a b c +? (3)2||a b c -+ (4)2

(||||||)a b c ++

13、求下列两个向量的夹角的余弦值:

(1)(3,5,1),(3,2,0)a b =-= (2)(1,3,5),(3,12,0)c d =--=

14、已知点A (2,3,-1)

,B (8,-2,4)C (3,0,5),是否存在实数x ,使AB+x AB AC 与垂直?

15、已知关于x 的方程2

2

(2)350x t x t t --+++=有两个实根,(1,1,3),(1,0,2),a b c a tb =-=-=+

(1)当||c

取最小值时,求t 的值; (2)在(1)的条件下,求b c 和的夹角。

例3.已知A (1,1,0),B (0,3,0),C (2,2,3),

求(1),AB AC <>

;(2)AC 在AB 上正投影的数量。

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

三维设计3.1.2 空间向量的基本定理

3.1.2 空间向量的基本定理 学习目标 1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.3.理解基底、基向量及向量的线性组合的概念. 知识点一 共线向量定理与共面向量定理 1.共线向量定理 两个空间向量a ,b (________),a ∥b 的充要条件是________________,使________________. 2.向量共面的条件 (1)向量a 平行于平面α的定义 已知向量a ,作OA → =a ,如果a 的基线OA ________________________,则就说向量a 平行于平面α,记作________. (2)共面向量的定义 平行于____________的向量,叫做共面向量. (3)共面向量定理 如果两个向量a ,b __________,则向量c 与向量a ,b 共面的充要条件是____________,使____________. 知识点二 空间向量分解定理 1.空间向量分解定理 如果三个向量a ,b ,c ________,那么对空间任一向量p ,________________________,使__________. 2.基底 如果三个向量a ,b ,c 是三个____________,则a ,b ,c 的线性组合____________能生成所有的空间向量,这时a ,b ,c 叫做空间的一个________,记作________,其中a ,b ,c 都叫做__________.表达式x a +y b +z c ,叫做向量a ,b ,c 的____________或____________. 类型一 向量共线问题 例1 如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→ ,F 在对角线A 1C 上,且A 1F →=23 FC → .求证:E ,F ,B 三点共线.

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

高中数学_3.1.2 空间向量的基本定理教学设计学情分析教材分析课后反思

3.1.2 空间向量的基本定理教学设计 教学设计思路 本节课主要类比平面向量的定理,和学生一起探讨得到空间向量的三个定理,并会在立体几何中进行简单应用。 教学目标 (1)知识和技能目标: 了解共面向量的概念,向量与平面平行的意义;理解共线、共面和 空间向量的分解定理,并能利用它们解决简单问题;理解空间向量 的基底、基向量的概念。 (2)过程和方法目标: 经历概念的形成过程、解题思维过程,体验数形结合思想的指导作 用; 渗透数形结合和类比、转化化归的数学思想方法; 通过问题驱动,让学生在质疑、交流、讨论中形成良好的数学思维 品质。 (3)情感、态度、价值观目标: 本节的学习较多的运用了几何直观、类比、特殊到一般等思维方

法,经历向量及其运算由平面向空间的推广过程,并注意维数增 加带来的影响,并逐步认识向量的应用价值,提高兴趣,树立信 心。 教学重点和难点 本节的重点是空间向量共线和共面的条件,空间向量分解定理,难点是对这些定理条件的理解与运用,空间向量分解定理的空间作图。 教学方法启发式提问探究 教学手段投影仪、多媒体 教学过程 b y c

【问题2】在问题1的前提下,如果c与a、b共面,那么c与a、b之间有何数量关系?(先复习平面向量基本定理)类比归纳切实理解共面向量定理,培养学生思考问题能力 环节三:问题引导实战演练例1已知斜三棱柱ABC- 1 1 1 C B A,设AB a =,b = AC, 1 AA c =,如图,在面对角线 1 AC, 棱BC上分别取点M、N,使 1 AC k AM=,BC BN k = (1 0≤ ≤k),求证:向量MN 与向量a,c共面. 思考1:如何证明三个向量共面 呢? 思考2:MN能直接用a和c表 示吗? 思考3:可以将MN进行分解, 教师引导 思路,学 生回答过 程,逐步 完成例题 层层递进,有 利于培养学生 的解题习惯

平面向量基本定理(教案)

《2.3.1 平面向量基本定理》教案 【教材】人教版数学必修4(A版)第105-106页【课时安排】1个课时 【教学对象】高一学生【授课教师】华南师范大学数学科学学院陈晓妹 【教材分析】 1.向量在数学中的地位 向量是近代数学中重要的概念,它不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具,因此具有很高的教育价值。 2.本节在教学中的地位 平面向量基本定理是向量进行坐标表示,并由此进一步将向量运算转化为坐标运算的重要基础;该“定理”以二维向量空间为依托,可以推广到n维向量空间,是今后引出空间向量用三维坐标表示的基础。因此本节知识在本章中起承上启下的作用。 3.本节在教学思维方面的培养价值 平面向量基本定理蕴含了转化的数学思想。它是用基本要素用基本要素(基底、元)表达事物(向量空间、具有某种性质的对象的集合),并把对事物的研究转化为对事物基本要素研究的典型范例,这是人们认识事物的一种重要方法。 【目标分析】 知识与技能 1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表 示为一组基底的线性组合; 2.了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。过程与方法 1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上 的向量的一维性”,培养“维数”的基本观念; 2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定 理所蕴含的转化思想。 情感态度价值观 1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程; 2.与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。 【学情分析】 有利因素 1.学生在前面已经掌握了向量的基本概念和基本运算(特别是向量加法平行四边形法则和 向量共线的充要条件)都为学生学习本节内容提供了知识准备; 2.学生在物理学科的学习中已经清楚了力的合成和力的分解,同时作图习惯已经养成,这 为我们学习向量分解提供了认知准备。 不利因素

空间向量基本定理

空间向量基本定理 【学习目标】 在复习平面向量定理的基础上,掌握空间向量基本定理及其推论; 【学习重点】 掌握空间向量基本定理及其推论; 【学习难点】 掌握空间向量基本定理及其推论。 【课前预习案】 一、复习 平面向量向量基本定理 。 二、课本助读:认真阅读课本第35页的内容. 1.空间向量基本定理:如果向量 , , 是空间中三个 的向量,a 是空间中 向量,那么 实数123,,λλλ,使得 112233a e e e λλλ=++①。 空间中 的三个向量123,,e e e 叫做这个空间的一个 。①式表式向量a 关于基底123,,e e e 的分解。 特别地,当向量123,,e e e 时,就得到这个向量的一个正交分解。当1e i =,2e j =,3e k =时,就是我们前面学过的标准正交分解。 2.以下四个命题中正确的是( ) A .空间的任何一个向量都可用其它三个向量表示 B .若{a ,b ,c }为空间向量的一组基底,则a ,b ,c 全不是零向量 C .△ABC 为直角三角形的充要条件是AB ·AC →=0 D .任何三个不共线的向量都可构成空间向量的一个基底 【课堂探究案】 探究一:基底的判断

A / C M E D / B / D B 1.若{a ,b ,c }是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .a,2b,3c B .a +b ,b +c ,c +a C .a +2b,2b +3c,3a -9c D .a +b +c ,b ,c 2.在以下3个命题中,真命题的个数是( ) ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面; ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a , b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. A .0 B .1 C .2 D .3 探究二:用基底表示向量 3. 如图,在正方体///B D CA OADB -中,,点E 是AB 与OD 的交点,M 是OD / 与CE 的交点,试分别用向量OC OB OA ,,表示OD 和OM 4.如图,在平行六面体 ABCD —A ′B ′C ′D ′中, 的单位向量分别是' ,,,,321AA AD AB e e e 且,2=AB ,5=AD ,7'=AA 试用321,,e e e 表示AC 、B A '、 D A '、'AC . 【课后检测案】 1.在长方体ABCD —A 1B 1C 1D 1中,下列关于1AC 的表达式中: ①1AA +A 1B 1→+A 1D 1→ ;

(完整)空间向量__新高中数学教学教学教案

欢迎阅读 空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距 离公式. 理解空 间向量的夹角的概念;掌握空间向量的数量积的概念、 性质和运算律;了解空间 向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

空间向量基本定理教案

《3.1.2空间向量基本定理》教案 一、教学目标: 1.知识目标:了解向量与平面平行的意义,掌握它们的表示方法。理解共线向量定理、共面向量定理和空间向量分解定理,理解空间任一向量可用空间不共面的三个已知向量唯一线性表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。会用空间向量的基本定理解决立体几何中有关的简单问题。 2.能力目标:通过空间向量分解定理的得出过程,体会由特殊到一般,由低维到高维的思想方法。培养学生类比、联想、维数转换的思想方法和空间想象能力。 3.情感目标:创设适当的问题情境,从生活中的常见现象引入课题,开始就引起学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与生活实践的联系。 二、教学重点: 运用空间向量基本定理表示空间任一向量,并能根据表达式判断向量与基底的关系。 三、教学难点: 空间向量的分解作图,用不同的基底表示空间任一向量。灵活运用空间向量基本定理证明空间直线的平行、共面问题。 四、教学过程 1.复习引入: 在平面向量中,我们学习了平行向量基本定理、平面向量基本定理,请大家回忆一下定理的内容。(找同学回答) 由上节课的学习,我们可以把平面向量的线性运算推广到空间向量,那么请大家思考:平行向量基本定理在空间中是否成立? 结论在空间中也成立。这就是空间中的“共线向量定理”(板书并投影) 注意:①向量0a ≠; ②a b ∥b a λ?=是共线向量的性质定理,b a λ=?a b ∥是空间向量共线的判定定理; 2、问题探究: “向量与平面平行”的概念:如果向量a 的基线平行于平面α或在平面α内,就称a 平行于平面α,记作a ∥α。

最新2017优质课《2.3.1平面向量基本定理》教案

《2.3.1平面向量基本定理》教案 参赛号:70 一、教材分析 本节课是在学习了共线向量定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。所以,本节在本章中起到承上启下的作用。平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。平面向量基本定理提供了一种重要的数学思想—转化思想。 二、教学目标 知识与技能: 了解平面向量基本定理及其意义,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量. 过程与方法:通过学习平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力. 情感态度与价值观:通过学习平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。 教学重点:平面向量基本定理的探究; 教学难点:如何有效实施对平面向量基本定理的探究过程. 三、教学过程 1、情景创设 七个音符谱出千支乐曲,26个字母写就百态文章! 在多样的向量中,我们能否找到它的基本音符呢? 问题1 给定一个非零向量a ,允许做线性运算,你能写出多少个向量? a a λ 问题2 给定两个非零向量12 ,e e ,允许做线性运算,写出尽量多的向量? 1、12 //e e 通过线性运算会得到11221122 +e e e e λλλλ的形式,本质上它

们表示的都是1e 的数乘。 2、12 e e ,不共线 通过线性运算会得到1122+e e λλ,它表示的是什么向量? 1e 2e 不妨我们作出几个向量12+e e ,122+e e , 12-e e , 12-2e e 来看看。只要给定1λ和2λ的值,我们就可以作出向量1122+e e λλ,本质上是1e 的数乘和2e 的数乘的合成。随着1λ和2λ取值的变化,可以合成平面内无数多个向量。 问题3 那么我们能否这样认为:平面上的任何一个向量都可以由1e 和2e 来合成呢? 我们在平面上任取一个向量a ,看看它能否由1e 和2e 来合成,也就是能否找 到这样的1e 和2e ,使1122+a e e λλ=? 这个问题可简述为:平面上有两个不共线的向量1e 和2e ,平面上的任意一个向量能否用这两个向量来表示? 思考探究: 根据探寻的目标1122+a e e λλ=,结合上面向量合成的做法,显然a 就应该是合成后的平行四边形的对角线,而平行四边形两边应该是1e 和2e 所在的直线,因此,只要作出这个平行四边形,问题就迎刃而解了。 1e 2e a 如图所示,在平面内任取点O ,作=1e ,=2e ,=. 作平行四边形 ONCM. 则ON OM OC +=.由向量共线定理可得,存在唯一的实数1λ,使 =OM 1λ1e ;存在唯一的实数2λ,使=ON 2λ2e .即存在唯一的实数对1λ,2λ,使得a =1λ1e +2λ2e .

相关文档
相关文档 最新文档