文档库 最新最全的文档下载
当前位置:文档库 › 方波信号的分解与合成

方波信号的分解与合成

方波信号的分解与合成
方波信号的分解与合成

实验四 方波信号的分解与合成

任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。1822年法国数学家傅里叶在研究热传导理论时提出并证明了将周期函数展开为正弦级数的原理。奠定了傅里叶级数的理论基础、揭示了周期信号的本质,即任何周期信号(正弦信号除外)都可以看作是由无数不同频率、不同幅度的正弦波信号叠加而成的,就像物质都是由分子或者原子构成一样。周期信号的基本单元信号是正弦谐波信号。

一、实验目的

1、通过对周期方波信号进行分解,验证周期信号可以展开成正弦无穷级数的基本原理,了解周期方波信号的组成原理。

2、测量各次谐波的频率与幅度,分析方波信号的频谱。

3、观察基波与不同谐波合成时的变化规律。

4、通过方波信号合成的实验,了解数字通信中利用窄带通信系统传输数字信号(方波信号)的本质原理。

二、实验原理

1、一般周期信号的正弦傅里叶级数

按照傅里叶级数原理,任何周期信号在满足狄利克雷条件时都可以展开成如式2-3-1所示的无穷级数

∑∑∑∞

=∞

=∞=+Ω+=Ω+Ω+=101

10)cos(2)sin()cos(2)(n n n n n n n t n A A t n b t n a a t f ? (2-4-1)

其中)cos(n n t n A ?+Ω称为周期信号的n 谐波分量,n 次谐波的频率为周期信号频率的n 倍,每一次的谐波的幅度随谐波次数的增加依次递减。当0=n 时的谐波分量为

2

a (直流分量)。当1=n 时的谐波分量为)cos(11?+Ωt A (一次谐波或基波分量直流分量)。

2、一般周期信号的有限次谐波合成及其方均误差

按照傅里叶级数的基本原理可知,周期信号的无穷级数展开中,各次谐波的频率按照基波信号的频率的整数倍依次递增,幅度值确随做谐波次数的增加依次递减,趋近于零。因此,从信号能量分布的角度来讲,周期信号的能量主要分布在频率较低的有限次谐波分量上。此原理在通信技术当中得到广泛应用,是通信技术的理论基础。

周期信号可以用其有限次谐波的合成来近似表示,当合成的谐波次数越多时,近似程度越高,可以用方均误差来定义这种近似程度,设傅里叶级数前有限项(N 项)和为

]sin cos [2)(1

t n b t n a a t S n N

n n N Ω+Ω+=∑= (2-4-2)

用)(t S N 近似表示)(t f 所引起的误差函数为)()()(t S t f t N N -=ε (2-4-3)

方均误差可以定义为 dt t T

t E T

N N

N ?

=

=0

22)(1)(εε (2-4-4)

通常,随着合成的谐波次数的增加,方均误差逐渐减小,可见合成波形与原波形之间的偏差越来越小。通常有限次谐波的合成波形如图5-15所示

图5-15 方波信号有限次谐波合成波形图

一个波峰时,表示合成谐波为一次谐波;两个波峰时,表示有至少两次谐波参与合成;三个波峰时,表示至少有三次谐波参与合成。 3、周期方波信号的傅里叶正弦级数

若方波信号如图5-16所示:

图5-16周期方波信号一

因为方波信号正好是奇谐对称信号。因此其傅里叶正弦级数为:

,5,3,1]sin 1

3sin 31[sin 4

)(=+Ω++Ω+Ω=

n t n n t t t f ,π (2-4-5) 若方波信号如图5-17所示:

图5-17 周期方波信号二

则信号变为偶函数,但仍为奇谐对称信号。因此其傅里叶正弦级数为:

5,3,1],7cos 71

5cos 513cos 31[cos 4

)(=+Ω-Ω+Ω-Ω=

n t t t t t f π (2-4-6) 4、周期方波信号的分解与合成实验过程原理框图

图5-18 方波信号分解与合成实验过程原理框图

方波信号的分解与合成实验过程如图5-18所示,实验开始前,先打开信号发生器电路,同时利用示波器与频率计辅助观察,通过占空比调节将输出方波信号的占空比为50%,同时将信号频率调节为BPF1的中心频率(实际中一般为50或100Hz),将幅度调节到合适大小(例如峰峰值大小为8V、10V或者12V大小)。

输出方波信号经过各带通滤波器滤波后即可得到各次谐波分量,通过示波器与频率计即可观察到。最后讲各次谐波分量相加即可得到由有限次谐波分量合成的近似方波信号。

三、实验仪器或实验条件

函数信号发生器模块、频率计模块、方波信号分解模块(滤波器模块)以及方波信号合成模块(加法器模块)。

另外需要配套至少20M双踪示波器一台。

四、实验内容与实验方法

方波信号的分解与合成实验主要包含两部分内容:

1、对已知方波信号进行滤波分解,得到各次谐波分量,对各次谐波分量进行测量与观察,掌握其频率与幅度的变化规律,加深对傅立叶级数分解以及方波信号频谱规律的理解;

2、将傅里叶级数的基波与各次谐波进行合成,例如基波+1次谐波、基波+1次谐波+2次谐波、基波+1次谐波+2次谐波+3次谐波…。观察基波与不同谐波合成时的变化规律,了解各次谐波近似合成方波信号的规律。

五、数据记录与处理

1、对方波信号的分解过程须按照表5-8做好各波形及其参数记录

表5-8分解前后各波形特征参数记录表

2、对波形合成须按照表5-9做好各次不同谐波合成后波形的波形变化记录

表5-9不同谐波合成后的波形记录表

六、实验注意事项

1、注意实验仪器设备的使用规范性与安全性;

2、注意细心观察实验现象,找出理论结论与实际实验结果的差异并分析存在差异的原因;

3、理论联系实际,弄清楚信号带宽与系统带宽的关系,思考数字通信系统中传输数字信号的本质?

七、思考题

1、在方波信号的分解中用到了带通滤波器,带通滤波器的中心频率必须满足什么条件?为什么必须满足这些条件?

2、分解过程中,按照傅立叶级数理论结论,偶次谐波是不存在的,可是利用示

波器观察实验电路中的偶次谐波输出时却存在一个不为零的信号输出,为什么?

3、如果换用三角波或其他周期信号重做该实验,结果会怎么样?

4、在波形合成时,通常合成谐波有几次,则合成波形一个周期就会有几个波峰出现,为什么?

5、波形合成时,合成波形与理论上的合成波形会有较大的出入,为什么?

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

《解题思路》信号波形合成实验电路(2)

信号波形合成实验电路(C 题) 设计任务:设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。 1.基本要求 (1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz 和30kHz 的正弦波信号,这两种信号应具有确定的相位关系(要求2个信号来自同一信号源); 需要分频,所以振荡器产生150kHz 的信号。3分频得到50kHz ,5分频得到 30kHz 、15分频得到10kHz 。 (2)产生的信号波形无明显失真,幅度峰峰值分别为6V 和2V ; 方波的展开式:)7sin 7 15sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ 其中h 是方波的幅度(一半高度)h=2.36V ,方波高度4.71V 。 采用RLC 串联谐振电路作为选频电路,对方波进行频谱分解。其中RLC 分别选:对于10kHz 的基波,1、10mH 、25.36nF 、Q=100;对于30kHz 的3次谐波,1、10mH 、2.8nF 、Q=100。 采用低通开关电容滤波器TLC04,截止频率设为40kHz 需要2MHz 的时钟,20kHz 需要1MHz 的时钟。需要用运放组成带通滤波器。 (3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz 和 30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V 。 制作一个移相网络,使得两路信号同相,然后叠加即可(运放实现)。 2.发挥部分 (1)再产生50kHz 的正弦信号作为5次谐波,参与信号合成,使合成的波 形更接近于方波; 用运放组成带通滤波器(运放实现)。 (2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的 10kHz 、30kHz 等各个正弦信号,合成一个近似的三角波形; 三角波的展开式)7sin 7 15sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ, 将上一步中的3种波形按这一系数合成三角波。 (3)设计制作一个能对各个正弦信号的幅度进行测量和数字显示的电路,测 量误差不大于±5%; 采用平均值检波电路检波,然后用AD 采集、显示即可(MCU 实现)。 (4)其他。 可以添加语音功能(ISD1420实现)。

方波的合成与分解

综合性实验报告 题目:方波的合成与分解 实验课程:信号与系统 学号: 姓名: 班级:12自动化2班指导教师:

方波的分解与合成 一、实验类型 综合性实验 二、实验目的和要求 1.观察方波信号的分解。 2.用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。 3.掌握带通滤波器的有关特性测试方法。 4.观测基波和其谐波的合成。 三、实验条件 实验仪器 1.20M 双踪示波器一台。 2.信号与系统实验箱。 四、实验原理 1. 信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。 例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数 求出它的各次分量,在区间)1,1(T t t +内表示为: ) sin cos 1(0)(t n n b t n n n a a t f Ω+Ω∑∞ =+= 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

A A (c) 图7-1 信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图7-1来形象地表示。其中图7-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图7-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图7-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图7-2所示。 信号分解 信号合成 图7-2 用同时分析法进行频谱分析 其中,P801出来的是基频信号,即基波;P802出来的是二次谐波;P803的是三次谐波,依此类推。 P809

信号波形合成实验报告之欧阳家百创编

信号波形合成实验电路 欧阳家百(2021.03.07) 摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。振荡电路采用晶振自振荡并与74LS04 结 合,产生6MHz 的方波源。分频电路采用74HC164与74HC74分频出固定频率的 方波,作为波形合成的基础。滤波采用TI公司的运放LC084,分别设置各波形 的滤波电路。移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结 果造成影响。 关键词:方波振荡电路分频与滤波移相电路加法器 Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHz

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

TI杯模拟电子设计大赛信号波形合成实验电路

TI杯模拟电子设计大赛 信号波形合成的设计与实现 参赛学校: 参赛队员: 指导老师:

摘要 生活中离不开信号,我们时时刻刻都在和信号打着交道,正弦波,方波这两种波是最基本的波形,我们通过设计方波的产生来更加深刻了解到信号的产生。 Abstract Life is inseparable from the signal, we all the time and signal name of dealings, sine wave, square wave are the two waves in the most basic waveform. Now we design a products to generate square wave signal to know the wave deeply . 一.设计思路 采用单片机430 来控制输出值的显示。基本的流程图如下所示:

又因为我们将方波傅利叶分解出得出如上的图,我们发现方波就是基波,三次谐波,五次谐波组成。 对三角波分解,如下图 从图中,我们知道三角波是三次谐波翻转180度,然后和基波与五次谐波相加所得,其中因

为别的谐波幅值不太,我们可以不做考虑。 二.方案论证 1、方波的产生方案论证和选择 方波是要设计的基础部分,下面产生的任何波形都是在这个波上产生的。 方案一:采用专用DDS芯片产生方波。优点:软件设计,控制方便,电路易实现。但是因为题目要求是“方波振荡器的信号经分频与滤波处理”,也就是说,软件控制不是题目想要的。 方案二:采用晶振来产生。用60M的晶振来产生方波,通过对60M的有源晶振分频来产生频率分别为10K Hz,30K Hz,50K Hz 的方波,但这样产生的分频电路过于复杂,不利于系统的搭建。 方案三:利用555产生出一定频率的方波。根据后面的要求,我们直接用555产生50K Hz 和60K Hz的方波 为了后面的设计,又因为555的技术已经很成熟了,选择方案三,使用555来直接产生方波。 2、分频与滤波 通过RC振荡来滤波,为了得到毛刺少的波,我们用三阶滤波。 3、移相电路设计方案论证和选择 方案一:由三相输入隔离变压器二次绕组接成12边形的移相电路t每相有3个绕组通过特殊的连接方法组成。其存在着如体积大移相变化率>5 等诸多缺点。 方案二:用运放和R,C 来调节翻转的角度。R ,C 电路在输入输出时会有90度的迟滞。 根据题目的要求,我们只要在0~90度可调与一个反向器就好。 4加法器的设计方案 根据题目要求,只要可调就好。 5.电源方案的选择与论证 方案一:采用升压型稳压电路。用两片MC34063芯片分别将3V的电池电压进行直流斩波调压,得到5V 和12V的稳压输出。只需使用两节电池,节省了电池,又减小了系统体积重量。但该电路供电电流沁,供电时间短,无法使用相对庞大的系统稳定运作。 方案二:采用三端稳压集成7805与7905分别得到5V和-5V的稳定电压。利用该方法方便简单,工作稳定可靠。 综上所述,选择方案二,采用三端集成稳压器电路7805和7905。 三.信号波形系统的组成: 1方波的产生的电路设计 方波是由555发生器,二极管,三极管以及电阻,电容组成。其原理图如图1,图2所示。

方波分解为多次正弦波之和的设计百度

目录 1 技术要求 (1) 1.1 设计目的 (1) 1.2 初始条件 (1) 1.3 设计要求 (1) 2 基本原理 (1) 2.1 连续时间周期信号用三角函数展开的原理 (1) 2.1.1 信号分解与正交函数集 (1) 2.1.2 三角函数的正交性 (3) 2.1.3 连续时间周期信号分解为三角函数之和 (3) 2.2 方波分解为多次正弦波之和的原理 (4) 3 建立模型描述 (5) 3.1正弦波合成并与原始方波进行比较模型的建立 (5) 3.2 其他模型的建立 (5) 4 源程序代码 (6) 4.1 正弦波合成并与原始方波比较的源程序代码及运行结果 (6) 4.1.1 正弦波合成并与原始方波比较的源程序代码 (6) 4.1.2 程序运行结果 (7) 4.2 正弦波合成趋势图源程序代码及运行结果 (9) 4.2.1 正弦波合成趋势图源程序代码 (9) 4.2.2 程序运行结果 (11) 4.3 方波单边频谱图源程序代码及运行结果 (11) 4.3.1 方波单边频谱图源程序代码 (11) 4.3.2 程序运行结果 (12) 4.4 方波与其分解后的各次谐波的比较图源程序代码及运行结果 (13) 4.4.1 方波与其分解后的各次谐波的比较图源程序代码 (13) 4.4.2 程序运行结果 (14) 5 调试过程及结论 (15) 5.1 调试过程叙述 (15) 5.1.1 正弦波合成并与原始方波比较的源程序调试过程 (15) 5.1.2 方波单边频谱图源程序调试过程 (15) 5.1.3 方波与其分解后的各次谐波的比较图源程序调试过程 (15) 5.1.4 正弦波合成趋势图源程序调试过程 (15) 5.2 结论 (16) 6 心得体会 (17) 7 参考文献 (17) 8 附录 (18)

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

方波信号合成电路word版

题目方波信号合成电路的 摘要 本文根据傅里叶级数展开方法,将正弦波转换成为各频率的方波。首先,通过方波产生电路、分频电路、滤波电路获取所需频率的正弦波;再通过反相、调相、调幅电路得到需要的基波、3次谐波、5次谐波。最后将三路信号经加法电路将正弦波合称为方波。与其他方法相比具有成本廉价、可靠性高等优点。 关键词:波形合成器、傅里叶、方波、正弦波、滤波、调相、调幅。

目录 单元一:总体框图设计 (1) 单元二:方波振荡电路设计 (2) 单元三:方波振荡电路制作 (3) 单元四:分频器的设计与制作 (4) 单元五:滤波电路的制作 (5) 单元六:相位调整电路的制作 (6) 单元七:幅度调整电路的设计与制作 (7) 单元八:总调 (8) 单元九:参考文献 (9)

单元一:总体框图设计 一:项目总体方案分析 (1)总体方案图 基波:4KHZ 3次基波:12KHZ 5次基波:20KHZ (2)采用120khz方波分频: 二:方案分析 (1)方波产生电路 方案一:用555定时器构成多谐震荡器,占空比可调节(10%~90%),适合产生中低频。

方案二:用运放产生方波信号,若选用TLC083芯片,压摆率可达19V/us,带宽为10MHZ。可实现可调震荡。 经分析,本系统采用方案二。 (2)分频器 方案一:采用可编程逻辑控制器。 方案二:采用74LS161对120KHZ方波信号进行分频,可得占空比为50%的12KHZ、20KHZ信号,其电路简单,成本低。 经分析,本系统采用方案二。 (3)滤波电路 方案一:采用RC滤波,有源滤波电路。 方案二:TLC04芯片,四阶低通滤波。 经分析,本系统采用方案二。 (4)求和电路:用反向求和电路,不用同向求和电路。

方波的合成与分解

1 综合性实验报告 题目:方波的合成与分解 实验课程:信号与系统 学号: 姓名: 班级:12自动化2班指导教师:

方波的分解与合成 一、实验类型 综合性实验 二、实验目的和要求 1.观察方波信号的分解。 2.用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。 3.掌握带通滤波器的有关特性测试方法。 4.观测基波和其谐波的合成。 三、实验条件 实验仪器 1.20M 双踪示波器一台。 2.信号与系统实验箱。 四、实验原理 1. 信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。 例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数 求出它的各次分量,在区间)1,1(T t t +内表示为: ) sin cos 1(0)(t n n b t n n n a a t f Ω+Ω∑∞ =+= 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

A t A n A t (a) (b) Ω (c) ω Ω5Ω 3Ω Ω3Ω 5 图7-1 信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图7-1来形象地表示。其中图7-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图7-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图7-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图7-2所示。 信号分解 信号合成 图7-2 用同时分析法进行频谱分析 其中,P801出来的是基频信号,即基波;P802出来的是二次谐波;P803的是三 TP801TP808TP802 TP809 TP501滤波器1 滤波器滤波器2 n Ω 以上 Ωn Ω 2被测 信号 P801P808P809 P816 P802P810

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

信号波形合成实验电路(C题)

信号波形合成实验电路(C 题) 摘要:该系统由方波振荡电路产生300k 方波,经三分频和十分频,同时得到10K,30K,50K 的方波。使用TI 公司的四阶开关电容低通滤波器TLC041D ,可同时产生几路正弦信号,再经移相和加法器合成方波信号或三角波,由单片机采样峰值进行液晶显示.整个系统简易实现,性价比高。 关键字:方波振荡器 开关电容滤波器TLC041D 移相器 峰值检测 液晶显示 1. 方案设计 1.1 总体方案与系统框图 题目要求从方波中提取基波和三次谐波,五次谐波,再合成方波,为实现题目要求,本系统的各个模块如图1所示。由施密特触发器构成方波振荡电路,由简单的门电路和触发器构成分频电路,使用通用运放组成滤波,放大,移相电路合成方波或三角波。 图1 1.2 理论分析及TI 芯片选用依据 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,如式(1-1): ) (公式1) sin cos (21 )(1 0∑∞ =++=n n n t n b t n a a t f ωω 对于方波和三角波分别可以通过傅立叶展开,如式1-2,1-3所示: )(公式2)7sin 71 5sin 513sin 31(sin 4)( ++++= t t t t h t f ωωωωπ )(公式3)7sin 7 1 5sin 513sin 31(sin 8)(2222 +-+- = t t t t h t f ωωωωπ 结合题目要求,本系统主要需要以下器件: (1) 信号源施密特触发器CD40106产生300K 方波; (2) 300K 方波分别经分频器 得到50K ,30K ,10K 方波; (3) 滤波芯片TLC041,通用运算放大器OP 系列,以及电流监测芯片))

实验二 方波信号的分解

实验二方波信号的分解 一、实验目的 学习和掌握基波、谐波和他们叠加的波形 二、实验内容 运行下面的程序: t=0:0.01:2*pi; f1=4/pi*sin(t); % 基波 f3=4/pi*(sin(3*t)/3); %三次谐波 f5=4/pi*(sin(5*t)/5);f7=4/pi*(sin(7*t)/7);f9=4/pi*(sin(9*t) /9); y1=f1+f3; y2=f1+f3+f5; y3=f1+f3+f5+f7+f9; subplot(2,2,1);plot(t,f1),hold on y=1*sign(pi-t);plot(t,y, 'c:'); title('周期矩形波的形成-基波') subplot(2,2,2);plot(t,y1); holdon;y=1*sign(pi-t);plot(t,y, 'c:'); title('周期矩形波的形成-基波+3次谐波') subplot(2,2,3);plot(t,y2) holdon;y=1*sign(pi-t);plot(t,y, 'c:'); title('基波+3次谐波+5次谐波'); subplot(2,2,4) ;plot(t,y3);hold on;y=1*sign(pi-t);plot(t,y, 'c:')

title('-基波+3次谐波+5次谐波+7次谐波+9次谐波') 运行结果: 结果分析:叠加到的谐波次数越高,形成的波形越接近方波。编写11次、13次、15次谐波的叠加程序: t=0:0.01:2*pi; f1=4/pi*sin(t); % 基波 f3=4/pi*(sin(3*t)/3); %三次谐波 f5=4/pi*(sin(5*t)/5); f7=4/pi*(sin(7*t)/7); f9=4/pi*(sin(9*t)/9);

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

信号波形合成

2010年全国大学生电子设计与创新大赛 ——信号波形合成实验电路 (C题) 参赛学校:武汉理工大学华夏学院 院系:信息工程系 专业班级:电信 07 级 参赛队员: 赛前指导教师: 2010年8月

摘要: 基于电路设计的要求,信号波形合成器的电路主要由方波振荡电路、分频和滤波电路、移相电路、加法器电路模块等电路模块组成。本次信号波形合成器是基于傅里叶变换的原理设计的,选择了MAX038集成函数信号发生器,实现基准信号的产生,电路结构简单,效率快、精度高;采用TI公司的MSP430F149单片机的定时计数器完成分频功能,搭建有源RC移相电路实现移相功能,最后利用运算加法器完成信号的合成。该系统电路简单,目的明确,具有很好的实用性。 关键词:方波振荡电路 MSP430F149 移相电路加法器电路 Abstract: Based on the circuit design requirements, signal waveform synthesis of circuit consists mainly of pulse oscillator circuit, frequency and phase filter circuits, circuit and adder circuits module circuit signal waveform synthesis is based on Fourier transform principle of design, chose MAX038 integrated function signal generator, realize the benchmark signals, such as simple structure, high precision and efficiency, The company adopts the MSP430F149 TI single-chip function complete timing counter frequency, phase shifting active RC circuit implementation phase function, and finally the computational adder complete synthesis of signal. The simple circuit system, purpose, have very good practicability.

实验五、方波信号合成和分解

实验五、方波信号的合成与分解 一、 实验目的 1、观测1KHz Vpp =3V 方波信号的频谱,并与其傅利叶级数各项的频率与系数作比较; 2、观测基波和其谐波的合成。 二、 实验原理 任何确定性的电信号都可以表示为随时间变化的某种物理量,比如:电压)(t u 和电流)(t i 等。主要表现在随着时间t 的变化,信号波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这一特性称为信号的时间特性。 信号还可以分解为一直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同,主要频率分量所占有的频率范围也不同等,信号的这一特性称为信号的频率特性。 无论是信号的时间特性,还是信号的频率特性,都包含了信号的全部信息量。 根据周期信号的富里叶级数展开式可知,任何非正弦周期信号,只要满足狄里赫利条件都可以分解为一直流分量和由基波及各次谐波(基波的整数倍)分量的叠加。例如一个周期的方波信号)(t f 可以分解为 ?? ? ????????++++=t t t t E t f 11117sin 715sin 513sin 31sin 4)(ωωωωπ 如图5-1(a)所示。 同样,由基波及各次谐波分量也可以叠加出来一个周期方波信号,如图5-1(b)所示。至于叠加出来的信号与原信号的误差,则取决于富里叶级数的项数。 (a) 方波信号的分解 (b) 方波信号的合成 图 5-1 方波信号的分解与合成 分解方法是,将输出信号加到一个滤波器组,其中每一个单元滤波器中心频率等于信号的各次谐波频率,在滤波器输出端得到分开来的基频信号和各次谐波信号。

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

相关文档
相关文档 最新文档