文档库 最新最全的文档下载
当前位置:文档库 › 基于MSC_Patran二次开发的结构参数化建模及其集成开发环境

基于MSC_Patran二次开发的结构参数化建模及其集成开发环境

基于MSC_Patran二次开发的结构参数化建模及其集成开发环境
基于MSC_Patran二次开发的结构参数化建模及其集成开发环境

 文章编号 167127953(2005)02204217

收稿日期 2004212208作者简介 何祖平(1975-),男,硕士,助理工程师

基于MSC.Patran 二次开发的结构参数化建模

及其集成开发环境

何祖平 王德禹

上海交通大学船舶海洋与建筑工程学院 上海 200030

摘 要 应用PC L 语言结合会话文件对MSC.Patran 平台进行二次开发,通过梁结构建模与分析的参数化,提高了工作效率,同时也促进了建模和计算精度的改善;通过在M icros oft Visual C ++ 6.0的编辑器中加载外部工具的方法,将PC L 开发环境与VC 编辑器集成,充分利用VC 编辑器的强大功能,使PC L 程序的开发更为方便快捷。

关键词 船舶结构 参数化建模 MSC.Patran PC L 语言 会话文件 二次开发 集成开发环境中图分类号 U661.42 文献标识码 A

Parameterized m odeling based on MSC.Patran and

its integrated development environment

HE Zu 2ping WANG De 2yu

School of Naval Architecture ,Ocean and Civil Eng. Shanghai Jiaotong University Shanghai 200030Abstract The PC L language combined with the session file of MSC.Patran is applied for the parameterized m odeling and analysis for structures ,which can im prove the efficiency with the m odeling and analysis precision enhanced.The tech 2nique can be further popularized for analysis of ship and other structures.This paper als o introduces a method to integrate PC L development environment into VC editor by loading the exterior tools.The power ful ability of VC editor is able to make the PC L development m ore convenient and efficient

K ey w ords ship structure parameterized m odeling MSC.Patran PC L language session file second 2time de 2velopment integrated development environment

随着造船技术与航运市场的发展,船舶建造

向大型化和经济化方向发展,越来越多的船舶超越了现行有关规范的规定,需要利用有限元直接计算的手段来评估船舶的安全性。这类计算有的选用国内自主开发的软件,有的采用各大船级社的结构计算软件。MSC 公司的系列软件在我国船舶结构计算中占据着非常广泛的市场。

然而,直接应用通用有限元软件分析船舶结构需要较高的有限元技巧和较长建模时间,这种方式不能满足现实船舶设计建造的要求,也不具备处理突发事件的能力。有些结构建模和分析在通用软件中实现也不是很方便。作者在研究船舶强梁腹板开孔问题时,由于需要考虑不同的开孔参数和载荷边界条件,建模与分析过程中有许多

重复性的工作,耗费大量许多宝贵的时间。为解

决这个问题,本文采用对通用有限元软件MSC.Patran 进行二次开发的方法,针对船舶行业的应用特点和特定的问题,开发适当的功能模块。

MSC.Patran 具有齐全的前、后处理功能,以MSC.Patran 为平台,应用PC L 语言并结合会话文件对MSC.Patran 进行二次开发实现结构建模与分析的参数化方法可行而且非常方便。

1 PC L 语言及会话文件介绍

1.1 PC L 语言

PC L (patran command language )语言的语法类

似C 语言,它提供一般高级语言所有的大部分数据类型。PC L 提供由IF Then E lse ,S witch and case ,F or 以及While 等关键字组成的循环与控制操作。PC L 函数由关键字FUNCTI ON 开始,E ND FUNC 2TI ON 结束,结构如下。

7

1

FUNCTI ON fname(arglist)

declarations...

 statements...

(and/or)

NOOD L commands

E ND FUNCTI ON

PC L语言中提供类的概念,类由关键字C LASS开始,E ND C LASS结束,类中可以声明变量与函数,不同于C++中类的概念,PC L的类不具有继承、派生等功能,它更像C语言里面的结构体。在类中可以定义变量和函数,在类里面调用类的函数用类名加函数名,中间用一个点号连接,如classname.funtionname,PC L类结构如下所示。

C LASS classname

C LASSWI DE declarations...

functions

E ND C LASS

从功能上说,PC L语言可以实现一般高级语言所能实现的大部分功能,同时它还提供与F or2 tran和C的访问接口;另一方面,也由于PC L语言与MSC.Patran的紧密关系,应用PC L语言作为MSC.Patran的开发工具是必然的选择。应用PC L 可以开发出界面漂亮、功能强大的应用程序。现在,几乎所有的分析仿真软件都采用PC L语言作为工具,建立了与的集成关系,有的也直接将PATRAN作为分析系统的前后处理器。

1.2 PC L程序的调用

可以通过.pcl文件或者编译成库文件.plb的形式调用,也可以直接在Patran命令行逐条输入并执行。另外,也可以将PC L程序嵌入Patran会话文件(.ses文件)中执行,Patran会话文件管理器会把它不能处理的语句传递给PC L编译器处理。Patran命令行下,PC L程序的调用格式如下。

!!I NPUT filename.pcl(直接引入PC L程序),

!!LI BRARY libname.plb(引入库文件中的程序)。

由于Patran启动时要加载init.pcl,所以可以通过在该文件中增加命令来实现自己开发的PC L 程序自动运行。尤其象增加菜单、增加文件查找目录等初始化工作,可使得PC L客户应用程序与Patran完美地集成在一起。

1.3 会话文件

Patran运行时,所有的操作都会记录在会话文件(session file,.ses文件)中,系统默认为pa2tran.ses.01,每次启动时版本编号自动递增。也可以将一段时间的操作记录在某个指定的会话文件中。会话文件中记录的操作可以通过回放的形式重做,里面也可以嵌入变量、函数定义等PC L程序段,会话文件的这个功能为开发PC L程序提供了方便,通过修改会话文件开发建模程序,工作效率得到较大的提高。

此外,日志文件(journal file,.jou文件)中会保存整个模型数据库db文件的建模过程,利用它也可以重建模型数据库。

2 参数化建模与分析的实现

对于船舶结构,一个简单的分段模型的建模过程可能都要用到几千条PC L语句,如果整个建模过程都通过手工书写代码的形式进行,容易出错,这将是一项非常繁琐费力的工作。

Patran的建模过程实际上是一组命令的执行过程,会话文件中就保存了这些命令。因此,可以将PC L语言与会话文件结合起来,通过调用会话文件实现参数化建模。由于在Patran用户界面中操作直观方便,会话文件的编写采用Patran自动生成和手工编写相结合的方式进行。为了实现参数化,解决建模中的重复操作,首先手工在Patran 中建立结构模型,然后对保存下来的会话文件做必要的修改,在会话文件中增加变量声明,必要的数据用变量替换。例如:研究船舶横梁腹板开孔问题时,对开孔的位置和大小的说明数据用变量替换。经过这样修改后,给变量赋不同的值,本来只能实现单一模型建模的会话文件可以根据不同的参数建立模型了。开发复杂、大型的建模程序时,其中的单个建模片断也可应用这种方法实现。后面将说明,为了实现特定的功能,会话文件中还需要嵌入PC L函数。

结构参数化建模与分析过程见图1。

会话文件可以嵌套调用,建模过程可以采用多个会话文件实现,前面的文件结束后使用s f-play()函数调用后面的文件,会话文件一个个依次执行,这样做既便于控制流程,也便于源代码的管理。

建模和分析过程中要用到的函数和参数的声明以及变量的赋值过程需要放在单独的会话文件中,因为Patran模型数据库中不保存建模过程中声明的变量和函数,以后再打开模型文件时,建模

81

图1 结构参数化 建模与分析过程时声明的函数和变量都不可用了。由于对模型参数化分析或者因其他原因需要利用模型重新计算时,只要重新执行一次函数和参数的声明以及变量赋值过程的会话文件就可以了,图1中箭头所指的就是这种模式,跳过了建模的步骤。

3 PC L开发环境与 VC编辑器集成

Patran自身不带PC L 编辑器,PC L程序的编写可以在任意的文本编辑工具中进行。

用PC L语言开发Pa2 tran界面会用到一些预先定义的宏,需要调用cpp. exe进行预处理,还原宏的内容。另外,将其PC L源程序编译为库文件时需要调用p3pclcom p.exe中com pile命令。这些操作可以放到一个批处理文件中,设PC L源文件后缀为cpp,预处理后,后缀为pcl,编译后生成同名的库

文件,则批处理命令如下。

@echo off

if“x%1”==“x”g oto ERROR

set filename=%1

IF EXIST%P3-H OME%g oto C ONT

SET P3-H OME=C:\patran2001r2

g oto C ONT

:C ONT

rem预编译

call%P3-H OME%/bin/cpp.exe

-C-I%P3-H OME%/customization%filename%.cpp %filename%.pcl

if errorlevel1 g oto ERROR

rem编译为库文件

echo!!C OMPI LE%filename%.pcl into

%filename%.plb|%P3-H OME%\bin\p3pclcom p. exe

if errorlevel1 g oto ERROR

rem清除中间文件

:C LE AN

del%filename%.pcl

exit(0)

:ERROR

del%filename%.pcl

exit(1)

Micros oft Visual C++ 6.0的编辑器的自定义功能中tools选项里有外部工具调用的相关设置,利用这项功能可以将PC L开发环境集成到该编辑器中。将以上批处理命令保存在文件precom2 pile.bat中,通过参数设置,在VC编辑器的tools 菜单中添加一个PC L编译菜单,待编译文件名作为参数传给批处理命令,当选中Use Output Win2 dow选项时,可以将屏幕提示重新定向输出到编辑器的Output窗口中。添加PC L编译工具后T ools菜单中将出现“PC L编译”菜单。

完成设置之后,在编辑环境中就直接编译PC L程序,像编译C++程序一样方便,省去切换的麻烦,在程序编写过程中还可以利用Micros oft Visual C++ 6.0的文本编辑器的强大功能,极大的方便了程序开发,提高了工作效率。

4 PC L应用开发实例

研究船舶强梁结构开孔问题时,研究模型为三档肋位之间的横梁、甲板、纵壁及外板组成的一个立体分段,需要根据不同的开孔参数及载荷工况分析结构的应力情况,分析模型达上百个之多,工作量非常大。利用前面介绍的方法,作者针对该问题开发了参数化建模与分析程序。主要由4个子模块组成,输入开孔的参数后,整个建模及分析过程都自动完成,下面对横梁腹板根部开空问题研究子模块做一简要介绍。

为了分析方便,在Patran主菜单中创建了一个船舶结构分析控制主菜单。横梁腹板根部开孔问题研究的参数输入界面包含对梁中部和根部两种开孔大小和位置的说明。输入参数值并确认后,将参数值保存到一个名为param.dat的临时文件中,然后启动建模程序。会话文件由13个会话文件组成。

91

01.FileCreate.ses

12.Load-Case.ses

13.Analysis.ses

每个文件实现一个特定的功能,文件之前嵌套调用,例如:01.FileCreate.ses结尾处通过语句s f-play(“.\02.Deck.ses”)调用下一个会话程序。变量声明直接嵌入会话文件,例如,根部开孔半径的声明为

G LOBA L RE A L gr-Radius

赋值后,建模时对该变量的引用如下(其中变量str-center为开孔中心坐标)

sgm-edit-sur face-add-hole(1,gr-Radius,@

 TRUE,““,str-center,””,“Sur face124”,@

sgm-edit-sur face-add-h-edit-ids)

外载荷中有一个是直升机着舰时的集中力,如果完全按照点载荷施加,由于挤压效应影响,加载点附近应力非常大,这与实际情况不符合。准确的模拟实船结构需要考虑直升机着舰时轮子与舰体的接触面积。此外,课题需要研究不同着舰位置下横梁的应力分布,每个模型有近20种工况。因此,无论载荷加载几何上还是网格上,对载荷接触面的准确分离都不便操作。利用PC L函数的参数化建模功能,该问题可以得到很好的解决。

直升机着舰力为340.51kN,接触面为364×370的矩形。将着舰力均布在接触面上,用一个空间场函数描述,没有非接触范围的压力值设为0。函数源代码如下。

FUNCTI ON F orceZ(x,y,z,pointX,pointY)

RE A L x,y,z

RE A L pointX,pointY,f

f=340510.0/(364.03370.0)

IF((abs(pointX-x)<=185.0))then

IF((abs(pointY-y)<=182.0))then

RET URN f

E ND IF

E ND IF

RET URN0.0

E ND FUNCTI ON

函数F orce Z的返回值为空间点(x,y,z)处z 轴方向的压力,point X、point Y分别为接触面中心的x,y坐标。再用fields-create()函数创建一个空间场,用loadsbcs-create2()函数创建一个压力载荷,改变参数point X、point Y即可实现甲板上任意位置着舰力的加载。如果能提供接触面内压力更详细的分布,只要对函数稍做修改即可准确的模拟出来。图2是程序运行后得到的立体分段有限元模型右舷部分,图3是横梁根部开孔附近应力云纹图。

从图中可以看出,由程序根据参数自动建立的有限元模型网格质量非常好,分析结果孔边应力集中点及开孔附近应力分布也符合一般开孔板受力后的研究结果[5]

图2 分段模型右舷部分(倒置

)

图3 横梁根部开孔附近应力云纹图

5 结束语

在船舶强梁腹板开孔问题研究中应用PC L 语言结合Patran会话文件在MSC.Patran平台上实现结构参数化建模与分析的技术,一方面可以减少建模与分析过程中的重复劳动,提高工作效率;另一方面,工作效率提高后,有更多的时间用于建模,可以更准确地模拟实际结构;此外,应用PC L 函数可以更好地模拟载荷及边界条件,促进了建模与分析精度的提高。

参考文献

1 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997

2 MSC.Patran User′s Manual.MSC公司,1998

3 MSC.Patran PC L and Customization.MSC公司,1998

4 MSC.Patran PC L Reference Manual.MSC公司,1998

5 西田正孝[日].应力集中.北京:机械工业出版社,1986

02

ug的参数化建模方法及三维零件库的创建

ug的参数化建模方法及三维零件库的创建 发布:2007-2-16 10:56:58 来源:模具网浏览189 次编辑:佚名摘要:UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。其参数化功能能够很好反映设计意图,参数化模型易于修改。本文以UGNX为支撑平台,介绍了三维参数化建模的基本思想和实现方法,结合实例分析了三维零件参数化模型的建立步骤,并创建立一个简单的零件库。 关键词:UGNX,参数化,标准件库 一.引言 CAD技术的应用目前已经从传统的二维绘图逐步向三维设计过渡。从实现制造业信息化的角度来说,产品的三维模型可以更完整地定义和描述设计及制造信息。在产品设计和开发过程中,零部件的标准化、通用化和系列化是提高产品设计质量、缩短产品开发周期的有效途径,而基于三维CAD系统的参数化设计与二维绘图相比更能够满足制造信息化的要求。UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。本文以UGNX为支撑平台,介绍了三维参数化建模的实现方法,结合实例分析了一种三维零件库的建立方法。 二.参数化设计思想 在使用UG软件进行产品设计时,为了充分发挥软件的设计优势,首先应当认真分析产品的结构,在大脑中构思好产品的各个部分之间的关系,充分了解设计意图,然后用UG提供的强大的设计及编辑工具把设计意图反映到产品的设计中去。因为设计是一项十分复杂的脑力活动,一项设计从任务的提出到设计完成从来不会是一帆风顺的,一项设计的完成过程就是一个不断改进、不断完善的过程,因此,从这个意思上讲,设计的过程就是修改的过程,参数化设计的目的就是按照产品的设计意图能够进行灵活的修改,所以它的易于修改性是至关重要的。这也是UG软件为什么特别强调它的强大的编辑功能的原因。 三.三维参数化建模的实现方法 1 系统参数与尺寸约束 UGNX具有完善的系统参数自动提取功能,它能在草图设计时,将输入的尺寸约束作为特征参数保存起来,并且在此后的设计中进行可视化修改,从而到达最直接的参数驱动建模的目的。用系统参数驱动图形的关键在于如何将从实物中提取的参数转化到UG中,用来控制三维模型的特征参数。尺寸驱动是参数驱动的基础,尺寸约束是实现尺寸驱动的前提。U G的尺寸约束的特点是将形状和尺寸联合起来考虑,通过尺寸约束实现对几何形状的控制。设计时必须以完整的尺寸参考为出发点(全约束),不能漏注尺寸或多注尺寸。尺寸驱动是在二维草图Sketcher里面实现的。当草图中的图形相对于坐标轴位置关系都确定,图形完全约束后,其尺寸和位置关系能协同变化,系统将直接把尺寸约束转化为系统参数。 2 特征和表达式驱动图形 UGNX建模技术是一种基于特征的建模技术,其模块中提供各种标准设计特征,各标准特征突出关键特征尺寸与定位尺寸,能很好的传达设计意图,并且易于调用和编辑,也能创建特征集,对特征进行管理。特征参数与表达式之间能相互依赖,互相传递数据,提高了表达式设计的层次,使实际信息可以用工程特征来定义。不同部件中的表达式也可通过链接来协同工作,即一个部件中的某一表达式可通过链接其它部件中的另一表达式建立某种联系,当被引用部件中的表达式被更新时,与它链接的部件中的相应表达式也被更新。 3 利用电子表格驱动图形

齿轮减速器参数化建模设计

本科毕业设计(论文) 题目齿轮减速器参数化建模设计 姓名 专业机械设计制造及其自动化五班 学号 指导教师 二〇一四年五月

齿轮减速器参数化建模设计 摘要 减速器是原动机和工作机之间独立的闭式机械传动装置。用来降低原动机转速或增加转矩,满足工作机的需求。由于减速器具有结构紧凑,传动效率高,准确、可靠的传输,使用维护方便等优点,因此在工矿企业及运输、建筑等部门中运用极为广泛。 本课题从机械设计出发,以减速器三维精确建模为重点,详细介绍Unigraphics NX的草图功能、特征造型功能,基本三维建模过程,简单介绍其实体装配功能。UG作为一款CAD/CAM/CAE设计软件中的佼佼者,它包括了世界上最强大、最广泛的产品设计应用模块,具有高性能的机械设计和制图功能,为制造设计提供了高性能和灵活性,以满足客户设计任何复杂产品的需要。熟练掌握其基本功能的使用,对于我们机械设计专业的学生是有着非常好的作用的。ANSYS软件是大型通用有限元分析软件,ANSYS的前处理器中有建模功能,但由于直接在ANSYS软件中建立精确的齿轮齿廓比较困难。本文是应用UG 软件绘制出齿轮, 把其导入有限元软件ANSYS中进行减速器零部件的有限元分析。 关键词:减速器;Unigrapics NX ;ug ;有限元分析;ansys

Gear reducer parameterization modeling design In this paper Reducer is the prime mover and work machine between independent closed mechanical drive device. Used to reduce the prime mover speed or increase the torque, meet the needs of working machine. Because the reducer has compact structure, high transmission efficiency, accurate and reliable transmission, use convenient maintenance, so in industrial and mining enterprises, and is widely used in transportation, construction and other departments. This topic from mechanical design, focusing on reducer 3 d precise modeling, function, character modelling detail sketches Unigraphics NX features, basic 3 d modeling process, introduces its entity assembly function. UG as a CAD/CAM/CAE design of software, it includes the world's most powerful, the most extensive product design application modules, with high performance of mechanical design and drawing function, provide support for design and manufacture of highper formance and flexibility, to meet the needs of customers design any complex products. Mastering the use of the basic functions, for the students of our mechanical design professional is a very good role. ANSYS software is a large general finite element analysis software, ANSYS modeling capabilities of the top processor, but as a result of directly in the ANSYS software to establish the precise gear tooth profile is difficult. This article is using UG software to map the gear, The import of reducer parts based on the finite element software ANSYS finite element analysis. Key words: reducer; Unigrapics NX. Ug; The finite element analysis; ansys

UG建模和参数化建模分析

UG软件的建模与参数化技术分析 (2) 第一章简介 (2) 第二章UG建模分析 (3) 2.1实体建模 (3) 2.2特征建模 (3) 2.3自由形体建模 (4) 2.4实体特征建模 (4) 2.4.1基本体素特征建模 (5) 2.4.2扩展特征建模 (5) 2.4.3成型特征建模 (7) 2.4.4特征操作 (8) 2.5总结 (9) 第三章参数化设计 (10) 3.1参数化设计的定义【7】【8】 (10) 3.2参数化设计的类型 (11) 3.2.1基于特征的参数化设计 (11) 3.2.2基于草图的参数化设计 (13) 3.2.3基于装配的参数化设计 (14) 3.3基于Excel表格的参数化设计【4】【5】 (15) 3.4总结 (18) 参考资料 (19)

UG软件的建模与参数化技术分析 第一章简介 Unigraphics(简称UG)是全球主流MCAD 系统,是计算机辅助设计、辅助制造、辅助工程和产品数据管理(CAD/CAM/CAE/PDM)一体化的软件系统之一,应用十分广泛【1,2】。UG 基于完全的三维实体复合造型、特征建模、装配建模技术,能设计出各种各样复杂的产品模型,并且具有强大的参数化设计功能,能够很好地表达设计意图,易于修改参数化模型。另外UG 提供了完善的二次开发工具,二次开发程序可以建立起与UG 系统的链接,使用户开发的功能与UG 实现无缝集成。利用UG 二次开发技术,用户可以开发专用CAD 系统,满足实际的应用需求。 UG软件是第三代CAD系统的典范,是基于特征建模和基于约束的参数化和变量化的建模方法。为什么说UG为第三代CAD系统?【7】 第一代CAD系统主要用于二维绘图,其技术特征是利用解析几何的方法定义有关点、线、圆等图素。 第二代CAD系统主要是二维交互绘图系统及三维几何造型系统,其发展过程是从计算机辅助绘图到计算机辅助设计,从二维绘图到三维设计,进而到三维集成化设计的过程。在几何造型方面分别采用了三维线框模型、表面模型和实体模型。在实体造型上广泛采用了实体几何构造法(CSG法)和边界表示法(B-rep 法),CSG法即用简单实体(称为体素)通过集合运算交、并、差构造复杂实体的方法;B-rep法即是用物体封闭的边界表面描述物体的方法。 第三代CAD系统在建模方法上出现了特征建模和基于约束的参数化和变量化建模方法,由此出现了各种特征建模系统、二维或三维的参数化设计系统以及两种建模方法互相交叉、互相融合的系统。UG软件中参数化三维设计的核心技术便是特征建模,所以UG软件第三代CAD系统的典范,在接下来的章节将介绍三代建模方法(特征建模)相比较二代CAD的优势。

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

CREO2.0齿轮建模

基于CREO2.0渐开线变位圆柱直齿轮的参数化设计 第一步: 设置参数 1、启动软件,新建文件,起名GEAR,取消“使用缺省模版”,选 择“mmns-par-solid”确定。 2、工具-参数-添加参数-如下图添加。 参数字母含义如下: M-模数 Z-齿数 ANG-压力角 B-齿轮厚度 DA-齿顶圆直径 DF-齿根圆直径HAX-定义齿顶高系数CX-定义齿顶系数X-变位系数第二步:设置圆柱齿轮的基本尺寸关系 1、工具-关系-输入如下关系:

2、以FRONT面为草绘面进行草绘—绘制四个圆。 3、工具-关系-输入以下关系:

确定后,按再生按钮。 第三步:绘制渐开线齿轮轮廓曲线 1、点击曲线-来自方程的曲线-选择笛卡尔坐标-进入程序编辑器 2、在程序编辑器输入以下方程: 3、编写完成后保存退出-在绘图窗口就产生一条曲线。 4、以RIGHT面和TOP面创建基准轴A-1;以分度圆和曲线为参照 创建参考点PNT0;以点PNT0和中心轴A-1为基准创建平面DTM1;

以DTM1平面为基准,以中心坐标为轴创建齿廓中心面DTM2。 5、打开关系窗口输入:D12=360/(4*Z),按再生按钮。 6、以DTM2为中心创建镜像特征,生成对称的渐开线,创建齿廓。 第四步:绘制渐开线齿轮单齿实体 1、拉伸实体:在使用边上选取“环”,选取最里面的圆(齿根圆 直径),完成草图,拉伸长度出始为15.在关系窗口输入:D13=B。

按再生按钮,就生成圆柱齿轮的齿根圆实体。 2、拉伸实体-创建齿轮的齿廓。初始值设为15. 3、在关系窗口输入以下容,按再生,生成实体。

isight集成UG、Patran和Nastran实例教程

UG、Patran和Nastran集成教程 本教程是一个进行悬臂梁减重分析的例子,iSIGHT-FD V2.5集成的软件是UG NX3.0、MSC.Patran 2005 r2和MSC.Nastran 2005。 一 UG参数化过程 1.打开UG NX 3.0程序,新建一个零件,名称为beam.prt,然后点击菜单“应用-建 模”,右键选择“视图方向-俯视图”; 2.点击草图按钮,进入草绘界面,然后点击直线按钮,绘制如下图所示的工字形 截面; 3.使用”自动判断的尺寸”按钮标注如下所示线段的尺寸; 4.按照同样方法标注其它尺寸,最终结果如下图所示:

5.点击左侧的“约束”按钮,然后选择下图所示的最上面的两条竖直线段,最后点击约束 工具栏上的等式约束,给这两条线段施加一个等式约束; 6.给这两条线段施加等式约束后,点击左侧的“显示所有约束”按钮,会在两条线段上出 现两个“=”,标明等式约束已成功施加上,如下图所示;

7.接下来,为最下面的两条竖直线段施加等式约束,如下图所示; 8.为左侧的两条Flange线段施加等式约束,如下图所示; 9.为右侧的两条Flange线段施加等式约束,如下图所示; 10.点击左上角的“完成草图”按钮,退出草绘状态。

11.选择菜单“工具-表达式”,弹出表达式编辑窗口,在下方名称后的文本框中输入Length, 在公式后的文本框中输入200,点击后面的√,即可将该参数加入中部的大文本框中,然后点击确定; 12.点击左侧的拉伸按钮,选择工字形草图,然后在弹出的输入拉伸长度的框中将数值改为 上一步创建的参数名称Length,最后点击拉伸对话框中的√,接受所作的更改;

参数化建模介绍

2:参数化建模介绍 UG标准件开发都是基于标驱动参数化的标准件UG模板部件,因此UG标准件开发的实现,最重要的环节是建立参数化的标准件UG模板部件。在建立参数化标准件UG模板部件过程中要大量地应用到草图、参数化建模、表达式及装配建模等技术。 2.1参数化草图技术在UG标准件开发中的应用 在此部分不再详述草图的功能,介绍一些技巧: 1. 合理地设置草图的放置面,以达到标准件在调用时能够实现自动地装配定位。在此我们一般先建立绝对基准坐标系(Absolute CSYS,位于绝对位置的基准坐标系)或位于绝对工作坐标原点的固定基准面和固定基准轴,然后建立与绝对基准坐标系或过顶基准面呈一定偏置关系的相关基准面,并以此相关基准面作为草图的放置面。 2. 合理运用相关参数点、基准轴和相关基准面,建立标准件的草图定位原点。例如当我们使用相关参数点作为标准件的草图定位原点,只要在标准件管理器中,将相关参数点的坐标值设置为理想的目标值,标准件就能自动装配定位到指定位置。 2.2参数化建模技术在UG标准件开发中的应用 UG虽然支持非参数的标准件开发,但是,如果开发非参数的标准件就失去了其本质意义,因为它不能建立系列规格的零件尺寸标准,不能控制零件的几何及尺寸的变更。在真正意义上的UG标准件开发中,我们必然要使用全参数建模技术,用参数去驱动和控制标准件的结构和尺寸规格,因此在UG标准件开发过程中要具有参数化建模的观点和思想。要实现UG标准件的参数化建模,注意一下细节和技巧。 1. 前期要吃透标准件的特点,根据标准件的特点定义好设计意图、规划好结构设计实现方法、规划主控参数。 2. UG支持在一个部件文件中有多个主体结构体,我们在标准件的开发中一

ProE齿轮参数化建模画法教程

ProE齿轮参数化建模画法作者:lm2000i (一) 参数定义

(二)在Top面上做从小到大的4个圆(圆心点位于默认坐标系原点),直径为任意值。生成后修改各圆直径尺寸名为(从小到大)Df、DB、D、Da,加入关系: Alpha_t=atan(tan(Alpha_n)/cos(Beta)) Ha=(Ha_n+X_n)*M_n Hf=(Ha_n+C_n-X_n)*M_n

D=Z*M_n/cos(Beta) Db=D*cos(Alpha_t) Da=D+2*Ha Df=D-2*Hf 注:当然这里也可不改名,而在关系式中采用系统默认标注名称(如d1、d2...),将关系式中的“Df、DB、D、Da”用“d1、d2…”代替。改名的方法为:退出草绘----点选草图----编缉----点选标注----右键属性----尺寸文本----名称栏填新名称 (三)以默认坐标系为参考,偏移类型为“圆柱”,建立用户坐标系原点CS0。此步的目的在于后面优化(步5)时,能够旋转步4所做的渐开线齿形,使DTM2能与FRONT重合。

选坐标系CS0,用笛卡尔坐标,作齿形线(渐开线):Rb=Db/2 theta=t*45 x= Rb*cos(theta)+ Rb*sin(theta)*theta*pi/180 y=0 z= Rb*sin(theta)- Rb*cos(theta)*theta*pi/180

注:笛卡尔坐标系渐开线方式程式为 其中:theta为渐开线在K点的滚动角。因此,上面关系式theta=t*45中的45是可以改的,其实就是控制上图中AB的弧长。 (四)过Front/Right,作基准轴A_1;以渐开线与分度圆交点,作基准点PNT0;过轴A_1与PNT0做基准面DTM1。

【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计

本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS提供了强大的参数化建模功能。在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。 进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法: (1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中,根据参数化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。然后根据返回的分析结果进行参数化分析,得出一个或多个参数变化对样机性能的影响。再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3种类型的参数化分析方法包括:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。 10.2.1 设计研究(Design study) 在建立好参数化模型后,当取不同的设计变量,或者当设计变量值的大小发生改变时,仿真过程中,样机的性能将会发生变化。而样机的性能怎样变化,这是设计研究主要考虑的内容。在设计研究过程中,设计变量按照一定的规则在一定的范围内进行取值。根据设计变

patran入门实例

课程 4. U形夹的三维几何模型 目的: ?生成一个新的数据库 ?生成几何体 ?改变图形显示 模型描述: 本练习是通过MSC/PATRAN的点、线、面、体建立一个几何模型,熟悉PATRAN 的几何建模过程,模型的几何尺寸见下图。 练习过程 1.新生成一个数据库并命名为clevis.db File/New Database… New Database Name New Model Preference Tolerance Default 2. 把几何参数选择改为PATRAN 2方式。 PATRAN 2 Convention代表着一个特点的参数化几何类别。这个操作可以使用户产生一个几何体,该几何体可以通过PATRAN 2的中性文件和IGES文件输入或输出到PATRAN 3中。 Preference/Geometry… Geometric Representation Patran 2 Convention Solid Origin Location P3/PATRAN Convention

3. 生成一个位于U形夹孔内半径上的点。 单击主框架中的Geometry开关。 Geometry Action: Object: Method: Point Coordinates List: 为易于查看所产生的新点,可通过Display/Geometry菜单来增大点的尺寸。Display/Geometry… Point Size: 也可打开Entity Labels开关来观查所产生的新点。 Display/Entity Color/Label/Render… 4. 用刚生成的点产生4条曲线,来表示U形夹孔的上半部圆弧。 Geometry Action: Object:

UG的参数化建模

摘要:UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。其参数化功能能够很好反映设计意图,参数化模型易于修改。本文以UGNX为支撑平台,介绍了三维参数化建模的基本思想和实现方法,结合实例分析了三维零件参数化模型的建立步骤,并创建立一个简单的零件库。关键词:UGNX,参数化,标准件库ThemethodofparameterizationmodelofUGandtheestablishmentmethodsof3Dpartware 摘要:UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。其参数化功能能够很好反映设计意图,参数化模型易于修改。本文以UGNX为支撑平台,介绍了三维参数化建模的基本思想和实现方法,结合实例分析了三维零件参数化模型的建立步骤,并创建立一个简单的零件库。 关键词:UGNX,参数化,标准件库 The method of parameterization model of UG and the establishment methods of 3D part warehouses. Ye Peng1 Hu jun1 Li ping2 (1 China Academic of Engineering Physics, Mianyang City Sichuan Provine, post code 621900 2 College of machinical engineering and automation Harbin Engineering University, Harbin 150001) Abstract: The UGNX is the CAD / CAE / CAM integration software of EDS company ,with powerful parameter design function, and it got the extensive application in the domain of designing and manufacturing. His parameter function can reflect design intention very clearly, and the parameter model is easy to revising. In this paper, based on the UGNX, we introduce the basic thought and realization method of 3D parameterization model, and the establishment step of 3D part parameterization model combined the living example, at the last, we create a simple 3D part warehouse. Keywords:UGNX, Parameterization,Standard component warehouse 一.引言 CAD技术的应用目前已经从传统的二维绘图逐步向三维设计过渡。从实现制造业信息化的角度来说,产品的三维模型可以更完整地定义和描述设计及制造信息。在产品设计和开发过程中,零部件的标准化、通用化和系列化是提高产品设计质量、缩短产品开发周期的有效途径,而基于三维CAD系统的参数化设计与二维绘图相比更能够满足制造信息化的要求。UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。本文以UGNX为支撑平台,介绍了三维参数化建模的实现方法,结合实例分析了一种三维零件库的建立方法。 二.参数化设计思想 在使用UG软件进行产品设计时,为了充分发挥软件的设计优势,首先应当认真分析产品的结构,在大脑中构思好产品的各个部分之间的关系,充分了解设计意图,然后用UG提供的强大的设计及编辑工具把设计意图反映到产品的设计中去。因为设计是一项十分复杂的脑力活动,一项设计从任务的提出到设计完成从来不会是一帆风顺的,一项设计的完成过程就是一个不断改进、不断完善的过程,因此,从这个意思上讲,设计的过程就是修改的过程,参数化设计的目的就是按照产品的设计意图能够进行灵活的修改,所以它的易于修改性是至

proe圆锥齿轮全参数化画法

3.3锥齿轮的创建 锥齿轮在机械工业中有着广泛的应用,它用来实现两相交轴之间的传动,两轴的相交角一般采用90度。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,本节将介绍参数化设计锥齿轮的过程。 3.3.1锥齿轮的建模分析 与本章先前介绍的齿轮的建模过程相比较,锥齿轮的建模更为复杂。参数化设计锥齿轮的过程中应用了大量的参数与关系式。 锥齿轮建模分析(如图3-122所示): (1)输入关系式、绘制创建锥齿轮所需的基本曲线 (2)创建渐开线 (3)创建齿根圆锥 (4)创建第一个轮齿 (5)阵列轮齿 图3-122锥齿轮建模分析 3.3.2锥齿轮的建模过程 1.输入基本参数和关系式

(1)单击,在新建对话框中输入文件名conic_gear,然后单击; (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图3-123所示; 图3-123 “参数”对话框 (3)在“参数”对话框单击按钮,可以看到“参数”对话框增加了一行,依次输入新参数的名称、值、和说明等。需要输入的参数如表3-3所示; 名称值说明名称值说明 M 2.5 模数DELTA ___ 分锥角 Z 24 齿数DELTA_A ___ 顶锥角 Z_D 45 大齿轮齿数DELTA_B ___ 基锥角 ALPHA 20 压力角DELTA_F ___ 根锥角 B 20 齿宽HB ___ 齿基高 HAX 1 齿顶高系数RX ___ 锥距 CX 0.25 顶隙系数THETA_A ___ 齿顶角 HA ___ 齿顶高THETA_B ___ 齿基角 HF ___ 齿根高THETA_F ___ 齿根角 H ___ 全齿高BA ___ 齿顶宽 D ___ 分度圆直径BB ___ 齿基宽 DB ___ 基圆直径BF ___ 齿根宽 DA ___ 齿顶圆直径X 0 变位系数

ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计 本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计((Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight 计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS 建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS 键变量,并将这些关键变量设置为可以改变的设计变量。在分析时, 以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真, 值下样机性能的变化。 进行差数参数化建模时,在确定好影响样机性能的关键输入值后,ADAMS/View 了4种参数化的方法: (1)参数化点坐标 点坐标参数化时,修改点坐标值时,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的以已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。 值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。 上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动, 以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中, 化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。 果进行参数化分析,得出一个或多个参数变化对样机性能的影响。然后再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3 设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。

CATIA全参数化建模理念

CATIA参数化建模理念 1.CATIA参数化建模思路 1.1.逆向建模 现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。 1.2.骨架设计 在传统的三维设计包含两种设计模式: ①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。 ②自上而下设计的设计理念为先总体规划,后细化设计。 大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。 1.3.参数化模板设计 一、参数化设计基本原理 参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。 ①参数(Parameter)是作为特征定义的CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。 ②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则(rules)、检查(checks)和设计表(design tables)。 ③公式(formulas)是用来定义一个参数如何由其他参数计算出的。 ④零件设计表:设计表是Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。 ⑤配置(Configuration)是设计表中相关的参数组的一组值。

proe参数化建模简介(齿轮建模实例)

proe参数化建模简介(1) 本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。 第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。(后一部分要等一段时间了,呵呵)参数化设计是proe重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。 所以,首先要了解proe中参数和关系的相关理论。 一、什么是参数? 参数有两个含义: ●一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。 ●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。 二、如何设置参数 在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。

1.参数的组成 (1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。 (2)类型:指定参数的类型 ?a)整数:整型数据 ?b)实数:实数型数据 ?c)字符型:字符型数据 ?d)是否:布尔型数据。 (3)数值:为参数设置一个初始值,该值可以在随后的设计中修改 (4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见 (5)访问:为参数设置访问权限。

UG_NX_内齿圆柱齿轮参数化建模

第三章内齿圆柱齿轮参数化建模 1.1内齿圆柱齿轮简介 内齿轮(internal gear) ------ 齿顶曲面位于齿根曲面之内的齿轮。应用于有特殊要求的传动系统中。 1.2建模分析 内齿轮的建模和直齿轮的建模基本上是大同小异,只是齿顶圆和齿根圆位于内侧而已。其中,齿顶圆和齿根圆的表达式也有所不同,它们分别是: da=d-2*m*(hax+x)(齿顶圆) df=d+2*m*(hax+cx-x)(齿根圆) 1.3建模表达式 a = 20 (压力角) z= 25 (齿数) m = 4 (模数) hax = 1 (齿顶高系数) cx= 0.25 (顶隙系数) x= 0 (变位系数) d=m*z (分度圆) db=d*cos(a)(基圆) da=d-2*m*(hax+x)(齿顶圆) df=d+2*m*(hax+cx-x)(齿根圆)

t =1 (系统变量) s=45*t (展开角) xt=db/2*cos(s)+db/2*sin(s)*rad(s) (X 坐标) yt=db/2*sin(s)-db/2*cos(s)*rad(s) (Y 坐标) zt = 0 (Z 坐标) 1.4建模过程 (1)新建文件 (2)建立表达式 打开表达式”工具,输入相应参数和公式,如图 其他要求与第二章相同 (3)建立渐开线

使用规律曲线”工具,选择根据方程”建立渐开线。 (4)建立基本圆 使用圆弧/圆”工具,以原点为圆心,分别建立直径为d/2”、da/2 ”、df/2 ”的三个圆,第四个圆为内齿轮的外圈圆,直径大小根据实际需要而定。如图 (5)建立连接线 打开直线"工具,建立以原点和渐开线内端点为端点的连接线 (6)建立对称面 打开基准平面”工具,以自动判断”依次选择Z轴、渐开线与分度圆交点,建立参考平 面,然后再以自动判断”选择参考平面与Z轴,输入角度360/4/z ”,建立对称平面

isight集成catia和abaqus,nastran流程详解

isight集成catia和abaqus,nastran流程详解 CAD软件中参数化建模,导入有限元软件中计算各个工况,isight根据计算结果调整模型参数,反复迭代计算的过程是尺寸优化的典型问题~ 下面将比较详解叙述菜鸟新手是如何成功用isight集成catia和abaqus流程,在此过程中,遇到不少棘手问题,翻遍了本版的帖子,浸淫在#isight优化联盟群#,得到了许多人的帮助,特别鸣谢@牛人@Alex和@潇潇,这也反哺自己将之分享给类似问题的亲们以参考。 优化思路 同做其他事情一样,我们必须思路清晰,这一点在isight流程集成上面显得尤为突出。isight 有比较标准的集成流程,但又没有唯一固定的途径,像集成catia,即可以用自带的组件,又可以用通用的simcode,而关于catia的宏命令又有不同的写法,文件路径设置时又有不同的方法,诸如之类。条条大路通罗马,前提是我们知道罗马在何方,如果我们为了集成而集成,会发现照着别人的流程做,别人的没有问题自己的有问题,同样的错误解决方法适用于别人的模型,不适用于自己的。 我要处理的算例是一个L型的支架,约束条件是均布载荷下最大应低于上限值,目标函数是结构质量最小,一阶频率最大。优化思路是在catia中参数化建模,更改参数值即可实现模型的自动更新,每次更新的模型导入abaqus中分别计算模态和均布载荷作用下的应力值,isight根据计算结果,更改模型参数值,反复迭代计算优化的过程。 5.7含自带的catia和abaqus组件,自己也花了些时间尝试下的,可以集成,但有其局限性,个人推荐用simcode集成,虽然步骤繁琐点,但是灵活性更好,适用于不同的机子。 catia参数化建模和宏命令 catia建模咱都会,参数化的话即把相关尺寸用参数代替,这样我们只需要更改参数值便可实现模型的更新,而无需重复建模,具体的操作步骤请百度一下。 以上便是参数化的L支架模型,参数已在模型上象征性标出 .txt文件是catia自己可以输出的参数设计列表,更改参数值,你会发现模型出现更新提醒,但是需要手动执行更新 那如何实现模型的自动更新的呢?我的做法是用宏命令记录我手动更新的过程,宏命令的具体操作步骤也请百度一下的吧。 宏录制——更改.txt参数值——打开模型——手动更新——保存模型——退出模型 这样会生成一个.catvbs宏命令文件,更改.txt中参数值,然后双击.catvbs,稍等片刻你会发现模型更新了。 {插播一下:你一定惊奇于宏命令的NB,但需要指出的是catia中宏命令并不是万能的,许多操作并不能被记录。 比如说我们迫切想提取出模型的质量或者体积作为优化设计的目标,但是很无奈宏命令无法直接记录手动测量的过程,需要二次开发。

proe参数化建模教程(最新)

proe参数化建模 本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。 第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。(后一部分要等一段时间了,呵呵) 参数化设计是proe重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。 所以,首先要了解proe中参数和关系的相关理论。 一、什么是参数? 参数有两个含义: ●一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。 ●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。 二、如何设置参数 在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。 1.参数的组成 (1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系

的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。 (2)类型:指定参数的类型 ?a)整数:整型数据 ?b)实数:实数型数据 ?c)字符型:字符型数据 ?d)是否:布尔型数据。 (3)数值:为参数设置一个初始值,该值可以在随后的设计中修改 (4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见 (5)访问:为参数设置访问权限。 ?a)完全:无限制的访问权,用户可以随意访问参数 ?b)限制:具有限制权限的参数 ?c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。 (6)源:指定参数的来源 ?a)用户定义的:用户定义的参数,其值可以随意修改 ?b)关系:由关系式驱动的参数,其值不能随意修改。 (7)说明:关于参数含义和用途的注释文字 (8)受限制的:创建其值受限制的参数。创建受限制参数后,它们的定义存在于模型中而与参数文件无关。 (9)单位:为参数指定单位,可以从其下的下拉列表框中选择。 2.增删参数的属性项目 可以根据实际需要增加或删除以上9项中除了“名称”之外的其他属性项目

相关文档