文档库 最新最全的文档下载
当前位置:文档库 › %9E%8B异步电动机电磁噪声的槽配合选取方法

%9E%8B异步电动机电磁噪声的槽配合选取方法

%9E%8B异步电动机电磁噪声的槽配合选取方法
%9E%8B异步电动机电磁噪声的槽配合选取方法

三相异步电动机启动方法的选择和比较

三相异步电动机启动方法的选择和比较 1、直接启动 直接启动的优点是所需设备少,启动方式简单,成本低。电动机直接启动的电流是正常运行的5倍左右,理论上来说,只要向电动机提供电源的线路和变压器容量大于电动机容量的5倍以上的,都可以直接启动。这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。 直接启动可以用胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可以用限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。 2、用自偶变压器降压启动 采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。 自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。 3、Y-△降压启动 定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。启动电流小,启动转矩小。 Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺点是只能用于△连接的电动机,大型异步电机不能重载启动。 4、转子串电阻启动 绕线式三相异步电动机,转子绕组通过滑环与电阻连接。外部串接电阻相当于转子绕组的内阻增加了,减小了转子绕组的感应电流。从某个角度讲,电动机又像是一个变压器,二次电流小,相当于变压器一次绕组的电动机励磁绕组电流就相应减小。根据电动机的特性,转子串接电阻会降低电动机的转速,提高转动力矩,有更好的启动性能。 在这种启动方式中,由于电阻是常数,将启动电阻分为几级,在启动过程中逐级切除,可以获取较平滑的启动过程。 根据上述分析知:要想获得更加平稳的启动特性,必须增加启动级数,这就会使设备复杂化。采用了在转子上串频敏变阻器的启动方法,可以使启动更加平稳。 频敏变阻器启动原理是:电动机定子绕组接通电源电动机开始启动时,由于串接了频敏变阻器,电动机转子转速很低,启动电流很小,故转子频率较高,f2≈f1,频敏变阻器的铁损很大,随着转速的提升,转子电流频率逐渐降低,电感的阻抗随之减小。这就相当于启动过程中电阻的无级切除。当转速上升到接近于稳定值时,频敏电阻器短接,启动过程结束。 转子串电阻或频敏变阻器虽然启动性能好,可以重载启动,由于只适合于价格昂贵、结构复杂的绕线式三相异步电动机,所以只是在启动控制、速度控制要求高的各种升降机、输送机、行车等行业使用。 5、软启动器 软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控

发电机电磁噪音分析

发电机电磁噪音分析与措施 发电机型号为SF250—28/1730,水轮机型号为ZDT03一LM一140,于9月18日发电。在试运行过程中出现噪音过大现象。经测试,机组试运行时,在空转状态下,距离机座1 m处测量噪音值为60 dB;起励建压后,有刺耳的高频声,离机座1m处测量噪音值为95 dB;满负荷运行时离机座1m处测量噪音值为110 dB。 1、噪音分析 发电机的噪音种类大体上可分为:电磁噪音、机械噪音、空气动力噪音。电磁噪音是电磁力作用在定、转子间的气隙中,产生旋转力波或脉动力波,是定子产生振动而辐射噪音。它与电机气隙内的谐波磁场及由此产生的电磁力波幅值、频率和极数,以及定子本身的振动特性,如固有频率、阻尼、机械阻抗有密切的关系。机械噪音是由机械接触而引起的,如轴承、电刷等,跟接触部件材料、制造质量及装配工艺、配合精度有关。空气动力噪音由电机内的冷却风扇产生,主要由风扇形式、通风道风阻、挡风板等决定。 2、定子绕组谐波计算 设计时借用24极1730机座的冲片,槽数为144槽,冲片尺寸:外径D1:1 730mm,内径Di:1490mm;槽形尺寸:b =13 mm,h =48 mm。每极每相的槽数q=1—5/7,定子绕组接线循环序列: 2 2 1 2 2 1 2;2 2 1 2 2 1 2--利用计算机谐波分析得KYP=0.9397、KQPA=0.9552、KQPB=0.9552、KQPC= 0.9552、FP= 100、FPF=0,但是在谐波磁场极对数10对极上存在反转波FPF=10.78.谐波磁场极对数v=10很接近基波极对数P=14,力波节点对数M =v—P=10—14=一2很小,因为振动幅值与力波节点对数(M2—1)2成反比,所以引起铁心共振。 3、机组结构布臵 因本机组为在原有旧厂房基础上的增容改造机,受原厂房结构限制,本发电机组采用无机坑布臵形式,发电机直接裸露在厂房地面上,声波因无机坑屏蔽隔离就直接传送到厂房内,所以噪音比传统有机坑布臵形式的发电机组大。 由现场测量的噪音数据得出加励磁后电机噪音急剧增大,表明噪音主要为电磁噪音。通过分析发电机电磁噪音主要的由于定子绕组谐波分量过大引起,加上发电机组采用无机坑布臵形式,所以噪音越明显。 4、治理措施 (1) 采用扩相带来降低谐波分量。扩相带后并联支路数、线圈尺寸及技术数据不变,只是定子绕组接线循环序列改为:2 2 2 1 2 1 2;2 2 2 1 2 1 2--利用计算机程序分析得KYP=0.9 397,KOPA=0.948,KOPB=0.948,KQPC=0.948,FP=100,FPF=0,谐波磁场极对数10对极上反转波下降至FPF=1.5986.由此可见基波极对数P=14附近的谐波磁场极对数反转波幅值大幅降低,从而达到降低谐波分量目的。扩相带后绕组系数KQPA=0.948 KQPB=0.948 KQPC= 0.948较扩相带前KQPA=0.9552 KQPB=0.9552 KQPC=0.9552略有所低,但对机组的性能影响不大。 (2) 增加机座断面惯性矩来避开共振区。增加支撑圆钢12根沿圆周均布并焊接牢固,使得机座断面惯性矩增加,从而改变定子铁心固有频率,避开共振区。 (3) 加厚加固挡风板以降低因振动引起的机械噪音。挡风板厚度由原 2 mm 改为4 mm,把紧螺栓由6xM10改为12xM10。

异步电动机-应用最广的电动机-

异步电动机-应用最广的电动机- 概述: 异步电动机――可以旋转的交流变压器。 新产品――Y系列优点――符合IEC国际电工标准;节能、高效、噪音小、温升低、重量轻、转矩大等优点。 第一节异步电机分类、结构、和工作原理 一.电动机的分类和防护 分类: 1.按电源性质分――直流电动机;交流电动机。 2.直流电动机分――自激;他激(并激;串激;复激) 3.交流电动机分――同步电动机;异步电动机(笼型;绕线型)又分单相、三相交流电动机。 防护――IP为标志 1.对异物入侵的防护――分7级。 2.对水入侵的防护――分9级。 S-静态M-动态二种防护试验。 第二位数字二种防护等级。 第一位数字一种防护等级。 前附加字母W气候防护R管道通风。 电动机外壳防护标志。 二.异步电机结构及作用 1.定子――铁心――磁路的一部分;线环――电路;机座――支撑、散热。 2.转子――铁心――磁路的一部分;线环或笼式导体――电路;导电滑环――引出转子线环电流调速或启动用。 3.附件――端盖――支撑轴承;风扇――散热。 三.异步电动机额定数据 1.型号――Y180 M-2 其中Y――小型异步电动机;180――机座中心高;M――机座长度代号(L是长、M是中、S是短);2――两磁极(1对磁极)。 2.额定功率――额定条件下轴上输出机械功率。 3.额定电压、电流、频率、――均为所用电源的额定值。 4.接线――角、星等。 5.定额――连续、断续等。 6.温升――60度左右,根据绝缘等级及工作环境不同有所不同。 7.绝缘等级――B等,因绝缘材料及工作环境而定。 四.旋转磁场 条件: 1.三相交流电流相位差120度角。 2.三相线圈空间位置及它们在通过峰值电流所产生磁通相差120度角。 特点;

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

洗衣机运行过程中电机噪声大的原因及解决方案

洗衣机运行过程中电机产生噪声的原因及解决方法 0.引言 随着国民经济的发展,人民的生活水平不断提高,希望从繁重的家务劳动中解放出来,洗衣机作为家庭中的助手,受到广大消费者的喜爱。目前世界上主要流行的洗衣机有波轮式、滚筒式、搅拌式,我国生产的主要为前两种,其中生产量和社会拥有量最庞大的为波轮洗衣机】 【1。波轮洗衣机因为结构简单、耗电少、洗涤力强、成本低、便于维修等优点较适合我国广大居民的消费水平和洗涤需要,在国内使用最为广泛。洗衣机如果运用不当或者出现故障时会出现很大的震动和噪声,本文将以国内应用最为广泛的波轮式洗衣机为对象对产生震动和噪声的原因做全面性的阐述并提出解决方案。 1.洗衣机运行过程中噪音的来源 电机是洗衣机的动力,也是洗衣机的噪音源。电机的震动通过传动皮带和底座传到洗衣机的转动系统和箱体部分,产生洗衣机的噪音。 细分之后,电机的噪音可分为三种:电磁噪音、机械噪音和空气摩擦声。电磁噪声是指电机在运行中,定子和转子之间的脉动磁拉力、七夕不均匀产生的单向磁拉力等使定子产生周期震动而发生的噪音。机械噪音是电机在运行中,旋转部分和静止部分因震荡和摩擦而发出的声音。震源是轴承和旋转系统质量不对称而产生的周期震动。空气摩擦噪音是电机在运行时,转子上的风扇和叶片对空气产生冲击和摩擦而产生的声音。对洗衣机来说,转子上仅有铸铝小叶片,对空气的冲击和摩擦作用很小,因此可以忽略不计。

2.降低噪音的方法 (1)降低电磁噪音的方法由于电机加工和装配不良造成定子和转子气隙不均匀,电路中产生高次谐波,是引起电磁谐波大的主要原因。由于磁路系统设计等方面的原因,电磁噪音是无法完全消除的,只能通过调整、检修来降低电磁噪音。气隙的均匀性受零、部件精度及装配精度的影响,一般来说由于加工工艺的限制,转子的外圆与定子的内圆都不完全呈圆形,都有一定的椭圆度,转子轴的轴线与转子的外圆中心线也有一定的不同轴度,上下端盖的轴承中心线和定子内圆的中心线也不完全重合和平行,所以气隙的不均匀性总是存在的。增大气隙可以削弱由于气隙不均匀而产生的单向磁拉力,但是气隙是电动机进行能量转换的媒介,气隙增大将导致电机输出转矩下降。洗衣机电机的气隙一般为0.3mm,在电机已选定型的情况下,要想降低电磁噪声,只有通过减小气隙的不均匀性来解决。

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

三相异步电动机结构详细图解

三相异步电动机结构详细图解 图1封闭式三相异步电动机的结构 1—端盖2—轴承3—机座4—定子绕组5—转子 6—轴承7—端盖8—风扇9—风罩10—接线盒 异步电动机的结构也可分为定子.转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定.转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为~2mm。 三相异步电动机外形有开启式.防护式.封闭式等多种

形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式.潜水泵式等。不管外形如何电动机结构 基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图1所示是一台封闭式三相异步电动机解体后的零部件图。 1.定子部分 定子部分由机座.定子铁心.定子绕组及端盖.轴承等部件组成。 (1)机座。机座用来支承定子铁心和固定端盖。中.小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。 (2)定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。 (a)直条形式(b)斜条形式

图2 笼型异步电动机的转子绕组形式 (3)定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间.绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。 (4)轴承。轴承是电动机定.转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。 2.转子部分 转子是电动机中的旋转部分,如图中的部件5。一般由

绕线型异步电动机串电阻

课程设计名称:电子技术课程设计题目:绕线型异步电动机串电阻启动 学期:2013-2014学年第2学期 专业:电气技术 班级:电技12-2 姓名:周立君 学号:1205020229 指导教师:王巍

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 绕线型三相异步电动机串电阻启动设计 二、设计任务 1、分析绕线型三相异步电动机的启动过程; 2、给出启动级数、各级启动电阻计算公式; 3、以实际例子说明启动级数和各级启动电阻的计算过程; 三、设计计划 电机与拖动课程设计共计1周内完成: 1、第1~2天查资料,熟悉题目; 2、第3~5天方案分析,具体按步骤进行设计及整理设计说明书; 3、第6天准备答辩; 4、第7天答辩。 四、设计要求 1、以实际例子说明启动级数和各级启动电阻的计算步骤; 2、对电枢串电阻启动进行优缺点分析; 指导教师:王巍 时间:年月日

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机;电枢串电阻;启动

产生电磁噪声的机制

产生电磁噪声的机制 【导读】噪声抑制主要是以使用屏蔽和滤波器作为典型手段,在噪声传播的路径中实现噪声抑制。为了有效使用这些手段,对电磁噪声产生和传播机制的充分了解就尤为重要。 就噪声源而言,有三种因素: 噪声源、传播路径及天线(假设噪声干扰最终是以电磁波形式传播,天线亦包含在内),如图1(a)所示。如果是作为噪声受害者,可以使用完全相同的原理图,即图1(b)中所示,只需将图左右翻转,并将噪声源改为噪声接收器。这就意味着可以认为产生和接收噪声两种情况的机制是相同的。 首先,将对噪声产生的机制进行说明。 图1 EMC的三个因素 噪声源 有各种不同的情况会产生可以成为噪声源的电流。例如,一个电路的运行需要某一信号分量而对其他电路产生了问题。另一种情况,尽管没有电路需要此信号分量,但也不可避免产生噪声。有时噪声可能是由于疏忽而造成的。当然,噪声抑制的思维方式视每种情况而异。但如果您能了解特定的噪声是如何产生的,则处理将会变得较为容易。 在本章节中,我们将采用以下三种噪声源典型案例,介绍产生噪声的机制及一般应对策略。 1(i)信号 2(ii)电源 3(iii)浪涌

信号成为噪声源或受害方时 在文中,我们将主要用于传递信息的线称为信号线。通常为了通过电路传输信息,总是需要一定量的电流,即使是非常小的电流。随后,电流周围便产生了磁场。当电流随着信息而发生变化时,会向周围发射无线电波,从而便产生了噪声。随着信息量的增加,通过信号线的电流频率也随之增加,或可能需要更多的信号线。通常,电流频率越高,或信号线数量越多,发射的无线电波强度就越大。因此,电子设备的性能越高、处理的信息量越大、电子设备中所使用的信号线越多,就越容易产生噪声干扰。 传输信息的电路大致可分为模拟电路和数字电路,分别使用模拟信号和数字信号。从电路噪声的角度出发对其一般特性做如下说明。 图2 模拟信号和数字信号 模拟电路 当模拟电路为噪声源时,一般产生的噪声较少,因为模拟电路使用有限频率,并采用控制电流流动的设计情况较多。 但如果有能量外泄,则仍会产生噪声干扰。例如,电视和广播接收器采用一个具有恒定频率的信号,此频率称为本地震荡频率,以便从天线接收的无线电波中有选择地放大目标频率。如果此频率泄漏到外部,则可能对其他设备产生干扰。为了防止发生此情况,调谐器部分会被屏蔽,或在线路中使用EMI静噪滤波器。

电机电磁噪声的分析

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数m 为, ()()12m Z p Z p =±+±±+ 式中1Z 、2Z - 定、转子槽数、p -极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60 相带整数槽绕组)为: ()()26m Kp p Z p =+±±+ 式中012K =±±?、、 定转子二阶齿谐波作用产生的力波次数为: ()()1222m Z p Z p =±+±±+ 在设计时,应尽量避免定转子槽配合产生较低的m ,另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即 2Z 与 1Z 相差较大及21Z Z ?, 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量。 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。 Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

异步电机定转子槽配合

Page 3.24SPEED’s Electric Machines Poles Stator Slots Rotor Slots (Bars) Unskewed Skewed 21291, 151— 18111, 121, 151, 211, 221141, 182, 191, 221, 26, 281, 302, 31, 33, 34, 35 24151, 1612, 171, 19, 3218, 20, 26, 31, 33, 34, 35 3022, 38182, 20, 21, 23, 24, 37, 39, 40 3626, 28, 44, 4625, 27, 29, 43, 45, 47 4232, 33, 34, 50, 52— 4838, 40, 56, 5837, 39, 41, 55, 57, 59 41291151 18101, 141181, 221 24151, 161, 17, 32216, 18, 202, 30, 33, 34, 35, 36 3626, 44, 46242, 27, 28, 30, 322, 34, 45, 48 42342, 502, 52, 54332, 34, 382, 512, 53 4834, 38, 56, 58, 62, 64362, 382, 392, 40, 442, 57, 59 6050, 52, 68, 70, 7448, 49, 51, 56, 64, 69, 71 7262, 64, 80, 82, 8661, 63, 68, 76, 81, 83 63626, 46, 482281, 33, 47, 49, 50 5444, 64, 66, 6842, 43, 51, 65, 67 7256, 58, 62, 82, 84, 86, 8857, 59, 60, 61, 83, 85, 87, 90 9074, 76, 78, 80, 100, 102, 10475, 77, 79, 101, 103, 105 848342, 36, 44, 62, 6435, 44, 61, 63, 65 7256, 58, 86, 88, 9056, 57, 59, 85, 87, 89 8466, 682, 70, 98, 100, 102, 104682, 692, 712, 972, 992, 1012 9678, 82, 110, 112, 11479, 80, 81, 83, 109, 111, 113 106044, 46, 74, 7657, 69, 77, 78, 79 70, 71, 73, 87, 93, 107, 109 9068, 72, 74, 76, 104, 106, 108, 110, 112, 114 99, 101, 103, 117, 123, 137, 139 12086, 88, 92, 94, 96, 98, 102, 104, 106, 134, 136, 138, 140, 142, 144, 146 127256, 64, 80, 8869, 75, 80, 89, 91, 92 9068, 70, 74, 88, 98, 106, 108, 110712, 732, 86, 87, 93, 94, 1072, 1092 10886, 88, 92, 100, 116, 124, 128, 130, 13284, 89, 91, 104, 105, 111, 112, 125, 127 125, 127, 141, 147, 161, 163 144124, 128, 136, 152, 160, 164, 166, 168, 170, 172 148474, 94, 102, 104, 10675, 77, 79, 89, 91, 93, 103 126106, 108, 116, 136, 144, 146, 148, 150, 107, 117, 119, 121, 131, 133, 135, 145 152, 154, 158 169684, 86, 106, 108, 116, 11890, 102 138, 150 144120, 122, 124, 132, 134, 154, 156, 164, 166, 168, 170, 172 T ABLE 3.3 R ECOMMENDED COMBINATIONS OF STATOR AND ROTOR SLOT NUMBERS 1 used especially for fractional horse power machines.2might cause increased motor vibrations.

(完整版)三相异步电动机的型号及选用

三相异步电动机的型号及选用 三相异步电动机的分类 三相异步电动一般为系列产品,其系列、品种、规格繁多,因而分类也较繁多。 1、按电动机尺寸大小分类 大型电动机:定子铁心外径D>1000mm或机座中心高H>630mm。 中型电动机:D=500~1000mm或H=355~630mm。 大型电动机:D=120~500mm或H=80~315mm。 2、按电动机外壳防护结构分类 3、按电动机冷方式分类 电动机按冷却方式可分为自冷式、自扇冷式、他扇冷式等。可参见国家标准GB/T1993-93《旋转电机冷却方式》。 4、按电动机的安装形式分类 IMB3:卧式,机座带底脚,端盖上无凸缘。 IMB5:卧式,机座不带底脚,端盖上有凸缘。 IMB35:卧式,机座带底脚,端盖上有凸缘。 5、按电动机运行工作制分类 S1;连续工作制 S2:短时工作制 S3~S8:周期性工作制 6、按转子结构形式分类 三相笼型异步电动机 三相绕线型异步电动机 三相异步电动机的型号及选用

我国电机产品型号的编制方法是按国家标准GB4831-84《电机产品型号编制方法》实施的,即有汉语拼音字母及国际通用符号和阿拉伯数字组成,按下列顺序排列。 1 产品(类型)代号 CHANPINGUI 异步电动机同步电动机同步发电机直流电动机直流发电机汽轮发电机水轮发电机测功机潜水电泵纺织用电机交流换向器电动机 产品代号 Y T TF Z ZF QF SF C Q F H 2 特殊环境代号 使用场合热带用湿热带用干燥带用高原用船用户外用化工防腐用 汉语拼音字母 T TH TA G H W F 产品规格代号:L-----长机座;M-----中机座;S-----短机座。 下面为两个产品举例: (1)三相异步电动机 Y2---132M---4 规格代号,中心高132mm,M中机座,4极 产品代号,异步电动机,第二次改型设计 (2)户外防腐型三相异步电动机 Y---100L2---4---WF1 特殊环境代号,W户外用,F化工防腐用,1中等防腐 规格代号,中心高100,长机座第二铁心长度,4极 产品代号,异步电动机 3 常用三相异步电动机产品型号、结构特点及应用场合 序号名称型号机座号与功率范围结构特点应用场合 新老 1 小型三相异步电动机(封闭式) Y2 (IP55) Y(IP44) JO2 JO H80~355

第2章:产生电磁噪声的机制-3

株式会社村田制作所 产生电磁噪声的机制 [阅读所需平均时间: 约47分钟] 2-4. 数字信号中的谐波 如章节2-3所述,谐波是数字电路产生的一种噪声源。如果能够很好地控制谐波,便能有效抑制数字电路产生的噪声。本章节将讲述数字信号所包括谐波的基本性质。 2-4-1. 谐波的本质(就噪声而言) (1) 数字信号是由谐波组成的 通常而言,具有恒定循环周期的所有波形都可以分解为包括循环频率和谐波的基波,其中谐波的频率为循环频率的整数倍。[参考文献 2]基波的倍数称为谐波次数。 在精确重复波的情况下,除此之外没有任何其它频率成分。数字信号有很多循环波形。因此,在测量频率分布(称为“频谱”)时,可以精确分解为谐波,显示出离散分布的频谱。 (2) 测量时钟脉冲信号的谐波 图2-4-1显示了频谱分析仪测量的33MHz时钟脉冲信号谐波的示例。像针一样向上突起的部分为谐波,其出现的间隔正好为33MHz。可以发现奇次谐波和偶次谐波的趋势不一样。最下面部分约为40dB或更低,指示频谱分析仪的背景噪声。

图2-4-1 谐波的本质 (3) 如何从噪声频率中找出噪声源 上面提及的谐波性质有助于根据噪声频率找出噪声源。通过测量噪声频谱间隔,可以类比推导出造成噪声的信号循环频率。例如,我们在电子设备中观察到了如图2-4-2所示的噪声。出现强烈噪声的频率的间隔似乎是33MHz。因此,可以认为噪声是与33MHz时钟同步运行的电路造成的。 即使此电子设备当前使用的电路具有非常接近的循环频率,如33.3MHz或34MHz,如果可以精确测量噪声频率和间隔,就可分离出这样的频率。例如,如果在图2-4-2中330MHz处存在噪声,则可以假设噪声是由33.0MHz的电路而不是33.3MHz的电路所造成的。这是因为33.3MHz或34MHz信号都不包括330MHz谐波。 (4) 只包括整数倍频率 此外,循环波形并不包括低于基频的任何频率成分。例如,100MHz信号绝不会产生 20MHz、50MHz或90MHz的噪声。如果出现此种频率,则噪声是由分频信号而不是源信号所导致的。 数字电路通常与时钟脉冲信号同步运行,而且很多数字电路的运行频率为时钟脉冲信号的1/N(称为“分频”)。在这种情况下,谐波是分频信号频率的整数倍。但是,如果两个或更多电路以经过分频的相同时钟脉冲信号运行,时钟脉冲信号的谐波会与分频信号的谐波相互重叠,导致难以对其进行区分。

直流电机的磁噪声

直流电机的磁噪声 1产生原因 直流电机的定于是凸极式的,给我们的分析带来许多困难。其一是直流电机的凸极形磁极造成了定子圆周的严重不对称。由第三章的分析知道,这时,必须考虑广义齿(即磁极)的对称振动和广义齿的反对称振动。一般来说,直流电机定子振动时,变形主要在非磁极相连的那部分圆周。其二是磁极的凸极形状,使定子励磁绕组所产生的主极磁场类似于同步电机转子励磁绕组所产生的主极磁场。因此,完全可以借鉴同步电机的分沂。但现在所不同的是:同步电机中主极磁场是随转子一道同步旋转的,而直流电机中主极磁场由定子直流电所产生,是静止的。这样,直流电机的电磁噪声必然是与转子关系密切,从而得到与同步电机不同的结果。其三是凸极形是定子磁极,既然是静止的,气隙中的主要能量也必然是存贮在静止的区域中,即直流电机定子的磁极下的气隙中。由马克斯韦定律可知,直流电机的电磁振动激振力波或力矩主要是在磁极下起作用。 磁极上的作用力主要有随时间而变的径向力、切向力和弯曲力矩。既然考虑产生振动的交变力,它肯定不可能完全由定子方面直流电产生,必须有转子方面产生附加磁场的参加,才能产生这种交变力。因此,在直流电机电磁噪声的分析与控制中,转子所产生的磁场频率、极对数和幅值的分析才是至关重要的。为简便起见,在分析中不考虑切向力矩。 气隙磁场产生的径向力波为 22022001202212120(,)1{cos cos[()]}2221 cos{[()]} 22k n r k r h B b t p B kZ kZ t B B kZ kZ t νννννννθνθνθωμμννθωμΛ= =Λ+±-ΛΛ≈±±-∑∑∑∑∑∑(7-45) 由此可知:直流电机中由径向力波引起的振动和噪声频率为转子旋转齿额,即 221 260r Z n f kZ k ωπ== k=1,2,3… 实践证明,与同步电机一样,定子主极磁场与转子一阶齿谐波磁场相互作用,所产生的力波是引起直流电机电磁噪声和振动的主要成份。所不同的是,现在,由于力波主要在磁极下起作用,作用力或力矩在蹈极极面下求平均值。因此主要考虑主极磁场基波与一阶转子齿谐波磁场相互作用所产生的力波和力矩。这样,可以假定直流电机的气照磁场由二部分组成,一是主极磁场基波,二是转子开招引起的一阶齿谐波磁场。 诸自强7.4 直流电机的电磁噪声 多次实验研究表明:直流电机的磁振动主要是由齿频磁力产生。 2/60Z n πω=秒 式中 Z —电枢铁芯齿数。

三相异步电动机结构图解

三相异步电动机结构图解 图1封闭式三相异步电动机的结构 1—端盖2—轴承3—机座4—定子绕组5—转子 6—轴承7—端盖8—风扇9—风罩10—接线盒 异步电动机的结构也可分为定子.转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定.转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为

0.2mm~2mm。 三相异步电动机外形有开启式.防护式.封闭式等多种形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式.潜水泵式等。不管外形如何电动机结构 基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图1所示是一台封闭式三相异步电动机解体后的零部件图。 1.定子部分 定子部分由机座.定子铁心.定子绕组及端盖.轴承等部件组成。 (1)机座。机座用来支承定子铁心和固定端盖。中.小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。 (2)定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用0.5mm厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。

(a)直条形式(b)斜条形式 图2 笼型异步电动机的转子绕组形式 (3)定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间.绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。 (4)轴承。轴承是电动机定.转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。

三相异步电动机的规格型号及选用

三相异步电动机的型号及选用 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 三相异步电动机的分类 三相异步电动一般为系列产品,其系列、品种、规格繁多,因而分类也较繁多。 1、按电动机尺寸大小分类 大型电动机:定子铁心外径D>1000mm或机座中心高H>630mm。 中型电动机:D=500~1000mm或H=355~630mm。 大型电动机:D=120~500mm或H=80~315mm。 2、按电动机外壳防护结构分类 3、按电动机冷方式分类 电动机按冷却方式可分为自冷式、自扇冷式、他扇冷式等。可参见国家标准GB/T199 3-93《旋转电机冷却方式》。 4、按电动机的安装形式分类

IMB3:卧式,机座带底脚,端盖上无凸缘。 IMB5:卧式,机座不带底脚,端盖上有凸缘。 IMB35:卧式,机座带底脚,端盖上有凸缘。 5、按电动机运行工作制分类 S1;连续工作制 S2:短时工作制 S3~S8:周期性工作制 6、按转子结构形式分类 三相笼型异步电动机 三相绕线型异步电动机 三相异步电动机的型号及选用 我国电机产品型号的编制方法是按国家标准GB4831-84《电机产品型号编制方法》实施的,即有汉语拼音字母及国际通用符号和阿拉伯数字组成,按下列顺序排列。 1 产品(类型)代号 CHANPINGUI 异步电动机同步电动机同步发电机直流电动机直流发电机汽轮发电机水轮发电机测功机潜水电泵纺织用电机交流换向器电动机

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

这个板块中关于噪音的问题非常多。在此我总结了1下,只从最常见发生机率最大也是刚刚开始做无刷最容易忽视的情况做1个分析和有效解决方案,我看好多的噪音求助就属于我下面要说的噪音种类了。先说这种情况下的原因,解决方案相信大家看完了就应该知道怎么做了。 所有的电动机均呈现某种形式的齿槽效应。 齿槽效应越低电动机转动越平稳。 在电动机和电动机的铁芯结构中的磁体所产生的非均匀磁场形成了齿槽效应:当转子中的磁体切割定子齿时产生磁力。当磁力从1个齿转到另外1个齿时,磁力帮助或阻止转动,使转子有规律的加速或者减速。不均匀的磁拉力产生的齿槽效应。电动机转动不平稳会引起速度脉动和转矩脉动、效率损耗、振动和噪音。速度脉动是指全过程内的速度变化或者速度波动;而转矩脉动则描述了全过程内的转矩变化,槽中绕铜导线将增加这一效果。而从1个齿到另外1个齿的不平衡拉力也在转子中产生了径向偏差,根据这一个产生的齿槽效应的强弱,相应幅度的电磁振动和电磁噪音将随之出现。这种情况在无刷电机中表现最为明显。 根据这个基础在保证满足基本性能要求情况下,调整相关参数或气隙或磁钢磁场强度或者其他,只要是减弱齿槽效应的就可以,相对来说已经做好的电机调气隙是最方便的,直接降低了气隙磁密,这样可以解决或者削弱90%(这里不是说噪音的幅度是说电磁噪音的种类)以上的电磁噪音,只不过需要牺牲其他方面的性能。具体调整矛盾的程度自己把握控制。 至于为什么,因为不管是电枢结构或者是电磁参数不当或者材料共振频率或者其他原因所形成的电磁振动噪音最终要表现于外时,必须得通过1个途径,那就是气隙。控制了气隙也就可以直接影响电磁振动。这里要说明一下电磁振动是电磁噪音的声源,他们本为1体,只不过因为其他相关原因表现出来的幅度不同而已。 这里我有点疑惑,这个相对于做过成熟的无刷设计者来说应该是众所周知了的问题吧?为什么没人把它明白的说出来,这个论坛上我没见到人说,只看见到处的噪音求助和讨论。 强磁无刷哦,比如我拿个例子来说,我以前做了个2.2kw的永磁无刷,磁钢是4mm厚,气隙1.0,做出来的电机那个电磁噪音无法抑制,什么加厚磁轭,什么控制机座的共振频率,什么改齿宽1系列减弱电机因齿槽效应的的方法来改都不行,照样噪音,后来把通过把转子外径车小了,1步1步的做到了1.6气隙才噪音才变没了,好了,这个时候的电机性能拿去和以前的1.0气隙的性能比却没降多少哦,知道为什么没?呵呵,原来是4mm的磁钢太厚了,材料过剩浪费了,就是说设计方案好多都存在输出过剩,设计出来后电机性能比设计的性能高的多哦,所以减了后并不降低多少的,这个样机我后来用了2.5mm的磁钢,气隙1.7mm,绕组稍微补偿了点,结果是性能ok,空载电流才0.14A(原来的空载电流是现在的10倍)负载电流也比原来的低,振动噪音全过。 重申:在这个论坛上叫喊噪音的做无刷电机的估计都是把气隙磁密取的过高来设计电机的,而在强磁电机设计中要想取合适的电机磁密,就只能加大气隙来适应,所以在有些时候能用粘接磁的地方就别用烧结磁了,浪费了。硬要用烧结磁的话就只要加大气隙,不然产生的振动噪音就n难搞定。 当然有相关特殊要求的的电机不在此列。 小无刷电机或者其他常规电机的情况和大无刷电机的不一样的 电机由于在加工过程中所带来的误差造成感应电动势的不完全对称、永磁材料的不一致、电

相关文档
相关文档 最新文档