文档库 最新最全的文档下载
当前位置:文档库 › 2012年高考数学压轴题精炼4

2012年高考数学压轴题精炼4

2012年高考数学压轴题精炼4
2012年高考数学压轴题精炼4

2012高考数学压轴题精炼四

1.(本小题满分14分)

已知f(x)=2

22+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=

x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.

本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.

解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)

2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,

∴f '(x)≥0对x ∈[-1,1]恒成立,

即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①

设?(x)=x 2-ax -2,

方法一:

?(1)=1-a -2≤0,

① ? ?-1≤a ≤1,

?(-1)=1+a -2≤0.

∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '

(1)=0

∴A={a|-1≤a ≤1}. 方法二:

2a ≥0, 2

a <0, ①? 或

?(-1)=1+a -2≤0 ?(1)=1-a -2≤0

? 0≤a ≤1 或 -1≤a ≤0

? -1≤a ≤1.

∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '

(1)=0

∴A={a|-1≤a ≤1}. (Ⅱ)由222+-x a x =x

1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,

x 1+x 2=a ,

∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .

x 1x 2=-2,

∵-1≤a ≤1,∴|x 1-x 2|=82

+a ≤3.

要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,

当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立,

即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②

设g(t)=m 2+tm -2=mt+(m 2-2),

方法一:

g(-1)=m 2-m -2≥0,

② ?

g(1)=m 2+m -2≥0, ?m ≥2或m ≤-2.

所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.

方法二:

当m=0时,②显然不成立;

当m ≠0时,

m>0, m<0,

②? 或

g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0

? m ≥2或m ≤-2.

所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.

2.(本小题满分12分)

如图,P 是抛物线C :y=

21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.

(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹

方程;

(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求

||||||||SQ ST SP ST +的取值范围.

本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想

和综合解题能力.满分12分.

解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.

由y=2

1x 2, ① 得y '=x.

∴过点P 的切线的斜率k 切= x 1,

∴直线l 的斜率k l =-切k 1=-1

1x , ∴直线l 的方程为y -

21x 12=-11x (x -x 1), 方法一:

联立①②消去y ,得x 2+

12x x -x 12-2=0. ∵M 是PQ 的中点

x 0=

221x x +=-11x , ∴

y 0=21x 12-1

1x (x 0-x 1).

消去x 1,得y 0=x 02+2021

x +1(x 0≠0),

∴PQ 中点M 的轨迹方程为y=x 2+

2021x +1(x ≠0). 方法二:

由y 1=21x 12,y 2=21x 22,x 0=2

21x x +, 得y 1-y 2=

21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-1

1x , ∴x 1=-

01x , 将上式代入②并整理,得

y 0=x 02+2021

x +1(x 0≠0),

∴PQ 中点M 的轨迹方程为y=x 2+2021

x +1(x ≠0).

(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b).

分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则

=+||||||||SQ ST SP ST |

|||||||||||||||21y b y b Q Q OT P P OT +='+'. y=2

1x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③

y=kx+b

y 1+y 2=2(k 2+b),

y 1y 2=b 2.

方法一:

∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|2

11y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数, ∴|

|||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二: ∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b

b k +. 当b>0时,||||||||SQ ST SP ST +=b 2

2)(2b b k +=b b k )(22+=b k 2

2+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2b

b k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,

于是k 2+2b>0,即k 2>-2b. 所以|

|||||||SQ ST SP ST +>b b b -+-)2(2=2. ∵当b>0时,b

k 2

2可取一切正数, ∴|

|||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:

由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=1

1x b y -. 则x 1y 2-bx 1=x 2y 1-bx 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).

于是b=122212122121x x x x x x -?-?

=-2

1x 1x 2.

∴||||||||SQ ST SP ST +=||||||||21y b y b +

|1|21x x -|1|21x x -||12x x +||21x x ≥2. ∵||1

2x x 可取一切不等于1的正数, ∴|

|||||||SQ ST SP ST +的取值范围是(2,+∞). 3.(本小题满分12分)

某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400

万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.

(总费用...

=采取预防措施的费用+发生突发事件损失的期望值.) 本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12

分.

解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);

②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为

1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).

综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.

4.(本小题满分14分)

已知.,2,1,1,}{,011 =+==>+n a a a a a a a n

n n 满足数列

(I )已知数列}{n a 极限存在且大于零,求n n a A ∞

→=lim (将A 用a 表示); (II )设;)(:,,2,1,1A b A b b n A a b n n n n n +-

==-=+证明 (III )若 ,2,121||=≤n b n

n 对都成立,求a 的取值范围. 本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.

解:(I )由两边取极限得对且存在n

n n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .2

4,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得 (II ).11,11A

b a A b a a a A b a n n n n n n ++=++=+=++得由 都成立对即 ,2,1)(.)

(11111=+-

=+-=++-=++

-=∴++n A b A b b A b A b A b A A b A a b n n n n n n n n (III ).21|)4(21|,21||21≤++-≤

a a a

b 得令 .,2,12

1||,23.2

3,14.2

1|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).

(ii )假设当那么即时结论成立,2

1||,)1(k k b k k n ≤≥= k k k k k A b A A b A b b 2

1||1|)(|||||1?+≤+=+ 故只须证明

.232||,21||1

成立对即证≥≥+≤+a A b A A b A k k

.2

12121||,23.2||,12

12||||.2,14,23,422

411222++=?≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a a a a a A 时故当即时而当由于

即n=k+1时结论成立.

根据(i )和(ii )可知结论对一切正整数都成立.

故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b n

n 5.(本小题满分14分,第一小问满分4分,第二小问满分10分)

已知a R ∈,函数2()||f x x x a =-.

(Ⅰ)当2a =时,求使()f x x =成立的x 的集合;

(Ⅱ)求函数()y f x =在区间[12],

上的最小值. 本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分.

解:(Ⅰ)由题意,2()2f x x x =-.

当2x <时,2()(2)f x x x x =-=,解得0x =或1x =;

当2x ≥时,2()(2)f x x x x =-=

,解得1x =.

综上,所求解集为{011+,,. (Ⅱ)设此最小值为m .

①当1a ≤时,在区间[12],

上,32()f x x ax =-. 因为

22()323()03

f x x ax x x a '=-=->,(12)x ∈,, 则()f x 在区间[12],

上是增函数,所以(1)1m f a ==-. ②当12a <≤时,在区间[12],

上,2()()0f x x x a =-≥,由()0f a =知 ()0m f a ==.

③当2a >时,在区间[12],

上,23()f x ax x =-. 22()233()3

f x ax x x a x '=-=-. 若3a ≥,在区间(12),

内()0f x '>,从而()f x 为区间[12],上的增函数, 由此得 (1)1m f a ==-.

若23a <<,则2123

a <<. 当213x a <<时,()0f x '>,从而()f x 为区间2[1]3

a ,上的增函数; 当223a x <<时,()0f x '<,从而()f x 为区间2[2]3

a ,上的减函数. 因此,当23a <<时,(1)1m f a ==-或(2)4(2)m f a ==-. 当723

a <≤时,4(2)1a a -≤-,故(2)4(2)m f a ==-; 当733

a <<时,14(2)a a -<-,故(1)1m f a ==-. 综上所述,所求函数的最小值

111274(2)23713

a a a m a a a a -≤??<≤??=?-<≤??->??,当时;0,

当时;,当时;,当时. 6.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)

设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,

,,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,

其中A B ,

为常数. (Ⅰ)求A 与B 的值;

(Ⅱ)证明:数列{}n a 为等差数列;

(Ⅲ)

1>对任何正整数m n ,都成立.

本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力. 解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=.

由1(58)(52)n n n S n S An B +--+=+,知

2132372122S S A B S S A B --=+??-=+?,, 即 28248A B A B +=-??+=-?

,, 解得 20A =-,8B =-.

(Ⅱ)方法1

由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ①

所以 21(53)(57)2028n n n S n S n ++--+=--. ② ②-①,得 21(53)(101)(52)20n n n n S n S n S ++---++=-, ③ 所以 321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④ ④-③,得 321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=. 因为 11n n n a S S ++=-, 所以 321(52)(104)(52)0n n n n a n a n a ++++-+++=. 又因为 520n +≠,

所以 32120n n n a a a +++-+=, 即 3221n n n n a a a a ++++-=-,1n ≥. 所以数列{}n a 为等差数列.

方法2

由已知,得111S a ==,

又1(58)(52)208n n n S n S n +--+=--,且580n -≠, 所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的. 设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=.

于是 1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--, 由唯一性得 n n b a =,即数列{}n a 为等差数列. (Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-. 要证

1, 只要证

51mn m n a a a >++因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,

故只要证 5(54)12520()mn mn m n ->+-+++

即只要证 202037m n +->

因为 558m n a a m n +=+- 558(151529)m n m n <+-++-

202037m n =+-,

所以命题得证.

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学中的放缩技巧

高考数学中的放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分 12 分)已知椭圆 C 的中心在坐标原点 ,焦点在 x 轴上,椭圆 C 上的点到焦点 的距离的最大值为 3,最小值为 1. (I) 求椭圆 C 的标准方程 ; (II) 若直线l : y kx m 与椭圆 C 相交于 A,B 两点(A,B 不是左右顶点 ),且以 AB 为直径的圆 过椭 圆 C 的右顶点 .求证 :直线 l 过定点 ,并求出该定点的坐标 . (22)(本小题满分 14分)设函数 f(x) x 2 bln(x 1),其中 b 0. 1 (I) 当 b 时 ,判断函数 f (x) 在定义域上的单调性 ; 2 (II)求函数 f (x)的极值点 ; 1 1 1 (III) 证明对任意的正整数 n ,不等式 ln( 1) 2 3 都成立 . n n n 22 xy (21)解: (I) 由题意设椭圆的标准方程为 2 2 1(a b 0) ab 2 a c 3,a c 1,a 2,c 1, b 2 3 22 x 2 y 2 1. 43 Q 以AB 为直径的圆过椭圆的右顶点 D(2,0), k AD k BD 1, y kx m (II)设 A(x 1, y 1),B(x 2,y 2), 由 2 x 2 y 得 1 4 3 2 2 2 (3 4k 2 )x 2 8mkx 4(m 2 3) 2 2 2 64m 2 k 2 16( 3 4k 2)( 2 m 3) 0, 22 3 4k 2 m 2 0 8mk 2 ,x 1 x 2 2 4(m 2 3) 3 4k 2 y 1 y 2 2 (kx 1 m) (kx 2 m) k x 1x 2 mk(x 1 x 2) m 2 3(m 2 4k 2) 3 4k 2

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

2017高考数学压轴题+黄冈压轴100题

2017高考压轴题精选 黄冈中学高考数学压轴100题 目录 1.二次函数 ................................................................................................................................................................................ 2 2 复合函数 ............................................................................................................................................................................... 4 3.创新型函数............................................................................................................................................................................. 6 4.抽象函数 .............................................................................................................................................................................. 12 5.导函数——不等式 ............................................................................................................................................................... 13 6.函数在实际中的应用 ........................................................................................................................................................... 20 7. 函数与数列综合 ................................................................................................................................................................. 22 8.数列的概念与性质 ............................................................................................................................................................... 33 9. Sn 与an 的关系 ................................................................................................................................................................... 38 10.创新型数列......................................................................................................................................................................... 41 11.数列—不等式 ..................................................................................................................................................................... 43 12.数列与解析几何 .............................................................................................................................................................. 47 13.椭圆 ................................................................................................................................................................................. 49 14.双曲线 ................................................................................................................................................................................ 52 15.抛物线 ................................................................................................................................................................................ 56 16 解析几何中的参数范围问题 .......................................................................................................................................... 58 17 解析几何中的最值问题 .................................................................................................................................................. 64 18 解析几何中的定值问题 .................................................................................................................................................... 67 19 解析几何与向量 .......................................................................................................................................................... 70 20 探索问题............................................................................................................................................................................ 77 (1)2a b c π++..., ....................................................................................................................................................... 110 (2)2a b c π++< (110)

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

数学专题 高考数学压轴题15

新青蓝教育高考数学压轴100题1二次函数 2复合函数 3创新性函数 4抽象函数 5导函数(极值,单调区间)--不等式 6函数在实际中的应用 7函数与数列综合 8数列的概念和性质 9 Sn与an的关系 10创新型数列 11数列与不等式 12数列与解析几何 13椭圆 14双曲线 15抛物线 16解析几何中的参数范围问题 17解析几何中的最值问题 18解析几何中的定值问题 19解析几何与向量 20探究性问题

15.抛物线 例1.已知抛物线C :2 2y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N . (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行; (Ⅱ)是否存在实数k 使0=?NB NA ,若存在,求k 的值;若不存在,说明理由. 解:(Ⅰ)如图,设 211(2) A x x ,, 222(2) B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得 122k x x += ,121x x =-, ∴ 1224N M x x k x x +=== ,∴N 点的坐标为248k k ?? ???,. 设抛物线在点N 处的切线l 的方程为 284k k y m x ? ?-=- ? ??, 将2 2y x =代入上式得2 2 2048mk k x mx -+-=, 直线l 与抛物线C 相切, 22 22282()0 48mk k m m mk k m k ??∴?=--=-+=-= ???,m k ∴=. 即l AB ∥. (Ⅱ)假设存在实数k ,使0NA NB = ,则NA NB ⊥,又M 是AB 的中点, 1 ||||2MN AB ∴= . 由(Ⅰ)知121212111 ()(22)[()4] 222M y y y kx kx k x x =+=+++=++ 2 2142224k k ??=+=+ ???. MN ⊥ x 轴,22216 ||||2488M N k k k MN y y +∴=-=+-= . 又 222121212 ||1||1()4AB k x x k x x x x =+-=++- x A y 1 1 2 M N B O

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

全国名校高三数学经典压轴题100例(人教版附详解)

好题速递1 1.已知P 是ABC ?内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r ,x 、y R ∈,则2y x +的取值范围是 ___ . 解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x y x y x y +=++,知点Q 在线段 BC 上.从而1AP x y AQ +=>?? +

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

相关文档
相关文档 最新文档