文档库 最新最全的文档下载
当前位置:文档库 › 铁基超导:让我们出乎意料

铁基超导:让我们出乎意料

铁基超导:让我们出乎意料
铁基超导:让我们出乎意料

铁基超导:让我们出乎意料

——2008十大科学进展解读(二)

--------------------------------------------------------------------------------

本报记者陈瑜

2008年以前,假如一位学生在参加研究生入学面试时,将铁基化合物列为高温超导材料,该学生只会不及格。

这种假设透露了一个信息:该学生对基础知识的掌握不过关。铁基材料通常具有铁磁性,被认为最不具备成为高温超导材料的条件。

但历史开了一个大玩笑。在美国《科学》杂志公布的2008年十大科学进展中,铁基高温超导材料名列其中。在由科技日报社组织,部分院士、多家中央新闻单位以及该报读者参与评选的“2008年国内十大科技新闻”中,该发现同样入围。

———事件回放———铁基化合物惊现超导特性

2008年2月23日,日本科学技术振兴机构和东京工业大学联合发布公报称,东京工业大学教授细野秀雄的研究小组合成了氟掺杂钐氧铁砷化合物。该化合物是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质没有超导性能,但如果把化合物中的一部分氧离子转换成氟离子,它就开始表现出超导性,并且在26K(零下247摄氏度)时具有超导特性。

但是26K的临界温度并没有突破麦克米兰极限(一般认为,传统超导临界温度最高只能达到39K,被称为麦克米兰极限)。

临界温度可达到55K

一个多月后,中国科学技术大学微尺度国家实验室的陈仙辉教授和中国科学院物理研究所的王楠林研究员领导的研究小组几乎同时发现新的铁基高温超导材料,其超导临界温度超过了40K。紧接着,中国科学院物理研究所的赵忠贤院士领导的研究小组又将这一纪录提高到55K。

“该材料是除铜氧化合物高温超导体之外,第一个临界温度超过40K的非铜氧化合物超导体,突破了…麦克米兰极限?。”丁洪认为,这也使人们相信铁基高温超导材料不是传统超导体。

———新的突破———打破铜氧化合物垄断

“该发现最大的意义在于实现了高温超导基础研究领域上新的突破,为新型高温超导研究指明了一个新的方向。”中国科学院物理研究所研究员丁洪表示,铁基高温超导材料的出现,也印证了一句话:在科学研究上总有出其不意的惊喜。

同时,这项最新发现也结束了过去20多年,铜氧化合物高温超导材料一统高温超导材

料江山的局面。

丁洪介绍,超导是指物质的电阻在一定条件下变为零的现象,一般需在很低的温度下(靠近绝对零度,即零下273摄氏度)才能实现。高温超导材料则是指在相对较高的温度(>40K)以上超导的材料。

1986年,科学家发现一种成分为钡、镧、铜、氧的陶瓷性金属氧化物,该种铜氧化合物能在临界温度约为35K的条件下成为高温超导材料。随后发现的铜氧化合物超导体的临界温度一路飙升,直至138K,并成为物理学中的一个极为耀眼的研究热点。

新的超导机制有望取得突破

“铁基高温超导材料的发现,对高温超导的基础研究是一个大的推动。”丁洪笑言,铁基高温超导材料被发现后,对研究人员最直观的影响是睡眠时间的减少。目前,铁基高温超导材料成为凝聚态物理的又一个研究热点,这当中的一个原因是铁基高温超导材料有望促成对高温超导工作机制的突破。

在超导体中,电阻为零是因为在临界温度下,大量成对电子的集体运动能完全克服一切微小的阻力。普通的超导体中,成对电子的相互吸引力是由在材料中的离子振动提供的。然而,大多数物理学家认为这种机制无法解释铜氧化合物在温度高达138K时的工作情况。

新老两类材料的高温超导机制是否一样?虽然铜氧化合物的超导机制尚未有定论,但诺贝尔奖获得者、美国普林斯顿大学教授菲利普·安德森已经预言,假如不一样,就意味着新材料的发现比预想的要重要得多,也许能从中发现全新的超导机制。

有助于将临界温度进一步提高

丁洪介绍,以前的研究认为,传统超导体的最高临界温度为23K,但在2001年发现的传统超导体二硼化镁,其临界温度达39K,究其原因,是因为二硼化镁具有两个能带,通过某种机制可以将临界温度提高接近两倍。

目前作为单能带的铜氧化合物的临界温度已达138K,如果能将转变温度提高两倍,其临界温度将高于绝对零度(273K),这样就能发现新的常温超导体。而新发现的铁基高温超导材料恰恰是多能带,如果其兼具铜氧化合物的强配对性,也许能将临界温度进一步提高。

“发现和研究更高临界温度的高温超导材料,并将超导的临界温度提高到一个新的水平,甚至达到室温超导,会成为物理学学者的下一个竞争的目标。”

———巨大应用———

应用尚需时日

“铁基高温超导材料具有潜在应用性,但该发现的最大意义体现为基础研究上的突破。将新发现高温超导材料理解为马上能应用,是一种误读。”丁洪认为,基础科学在短时间内

一般看不出应用前景,但它通常能为应用前景指明方面。虽然目前超导目前在很多领域有了应用,比如通信技术、磁悬浮技术以及医学上的核磁共振等。但丁洪分析,要真正将铁基高温超导材料用于实践尚需时日。

事实上,铁基高温超导材料的发现,在基础研究领域掀起的波澜远远大于应用研究。丁洪介绍,尽管20多年来,铜氧化合物一直是超导领域研究的热点,但铜氧化合物作为陶瓷性金属氧化物,本身也有劣势,如延伸性不够,不适合做导线。

相反,铁基高温超导材料在这方面有优势,该材料可以不用氧,只需要两个元素可以做成合金。但铁基高温超导材料的劣势也很明显。目前铜氧化合物的高温超导温度已达138K,而铁基超导温度仅为55K,两者之间差距很大,而转变温度应是越高越好。

我国研究目前后劲不足

丁洪同时表示,从铜氧化合物到铁基高温超导材料,我国和世界先进国家之间的差距明显缩小,但也应该看到,虽然目前在铁基高温超导材料研究方面,我国走在前面,但由于缺乏优秀科学家、先进技术手段,研究后劲明显不足。相比起来,美国、日本有很好的后续力量。“我国应该在这方面有所侧重,解决发展后劲不足的问题。”

■新闻缘起

近日,美国《科学》杂志公布了该刊评选出的2008年十大科学进展,其中在对细胞重新编程“定制”细胞系方面的进展名列第一位。

《科学》杂志负责评选的编辑罗伯特·孔茨说:“当《科学》杂志的作者和编辑们着手挑选今年最大的科学进展时,我们关注的是那些能够解答一些重大问题的科学研究,比如宇宙如何运作,以及那些为未来新发现奠定基础的科学研究。”

《共享科学》栏目将从中选出老百姓关注的科技成果进行解读,让读者和我们一起及时去领略科技的巨大魅力。

■相关链接

高温超导技术应用前景广阔

1911年,荷兰莱顿大学的卡茂林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林·昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。

这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。

超导材料和超导技术有着广阔的应用前景。人们可以到用超导原理制造超导列车和超导

船,由于这些交通工具将在无磨擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于上世纪70年代成功地进行了载人可行性试验,超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。

超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。

现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。

铁基高温超导体研究进展

物理四38卷(2009年)9期 h t t p :∕∕w w w.w u l i .a c .c n 铁基超导体专题 铁基高温超导体研究进展* 陈仙辉? (中国科学技术大学物理系 合肥微尺度物质科学国家实验室 合肥 230026 )摘 要 最近,由于在铁基L n (O ,F )F e A s 化合物及其相关化合物中发现具有高于40K 的超导电性,层状的铁基化合物引起了凝聚态物理学界很大的兴趣和关注.在随后的研究中发现,在该类材料中最高超导临界温度可达到55K.这些重要的发现使得人们又重新对高温超导体的探索产生了极大的兴趣,并且为研究高温超导的机理提供了新的一类材料.文章主要介绍了作者所在组在新型铁基超导体方面的最新研究进展,包括:(1)铁基超导材料探索研究;(2) 铁基超导体的单晶制备及物性研究;(3)铁基超导体的电子相图及自旋密度波(S DW )和超导共存研究;(4)同位素交换对超导转变和S DW 转变的效应.最后,在已完成的工作基础上提出了一些今后的研究方向和发展前景.关键词 铁基超导体,自旋密度波,相图,结构相变 N e w i r o n -p n i c t i d e s u p e r c o n d u c t o r s C H E N X i a n - H u i ? (H e f e iN a t i o n a lL a b o r a t o r y f o rP h y s i c a l S c i e n c e a tM i c r o s c a l e a n dD e p a r t m e n t o f P h y s i c s ,U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y o f C h i n a ,H e f e i 230026,C h i n a )A b s t r a c t T h ed i s c o v e r y o f s u p e r c o n d u c t i v i t y w i t hac r i t i c a l t e m p e r a t u r e (T c )h i g h e r t h a n40Ki nt h e i r o na r s e n i d eL n (O ,F )F e A s h a s d r a w nm u c h i n t e r e s t i n c o n d e n s e dm a t t e r p h y s i c s .L a t e r d i s c o v e r i e s ,i n c l u -d i n g t h e e n h a n c e m e n t o f T c u p t o 55K ,h a s e v o k e d i n t e n s e e x c i t e m e n t i n t h e p i l g r i m a g e t o w a r d s t h e u n d e r -s t a n d i n g o f t h em e c h a n i s mo f h i g hT c s u p e r c o n d u c t i v i t y ,w h i l e p r o v i d i n g a b r a n d n e wf a m i l y o fm a t e r i a l s t o a d d r e s s t h i s i s s u e .I n t h i s r e v i e ww e p r e s e n t o u r g r o u p 'sm a j o r r e s e a r c h o n n e w i r o n b a s e d s u p e r c o n d u c t o r s ,i n c l u d i n g :(1)o u r i n i t i a l i n v e s t i g a t i o n s ;(2)t h e s y n t h e s i s o f i r o n a r s e n i d e s i n g l e c r y s t a l s a n d t h e c h a r a c t e r -i z a t i o no f i t s p h y s i c a l p r o p e r t i e s ;(3)t h e e l e c t r o n i c p h a s e d i a g r a mo f i r o n b a s e d s u p e r c o n d u c t o r s a n d t h e c o -e x i s t e n c eb e t w e e n s p i n d e n s i t y w a v e s a n d s u p e r c o n d u c t i v i t y ;(4)t h e e f f e c t o f i s o t o p e e x c h a n g e o n s p i n d e n -s i t y w a v e s a n d s u p e r c o n d u c t i n g t r a n s i t i o n s .T o f i n i s h ,w e p r o p o s e p o s s i b l e f u t u r e d i r e c t i o n s i n t h i s f i e l d .K e y w o r d s i r o n - p n i c t i d e s u p e r c o n d u c t o r ,s p i nd e n s i t y w a v e (S DW ),p h a s e d i a g r a m ,s t r u c t u r a l t r a n s i t i o n * 国家自然科学基金二 国家重点基础研究发展计划(批准号:2006C B 601001,2006C B 922005 )和中国科学院资助项目2009-07-15收到 ? E m a i l :c h e n x h @u s t c .e d u .c n 1 引言 1986年,I B M 研究实验室的物理学家B e d n o r z (柏诺兹)和M ül l e r (缪勒)发现了临界温度为35K (零下238.15℃)的镧钡铜氧超导体[1]. 这一突破性发现导致了一系列铜氧化物高温超导体的发现.自那以后,铜基高温超导电性及其机理成为凝聚态物理的研究热点.然而直至今日,铜基高温超导机制仍未解决,这使得高温超导成为当今凝聚态物理学中最大的谜团之一.因此科学家们都希望在铜基超导材料以外再找到新的高温超导材料,能够从不同的 角度去研究高温超导机制,最终解决高温超导的机制问题. 最近,由于在铁基L a O 1-x F x F e A s (x =0.05 0.12)化合物中发现有26K 的超导电性[2] , 层状的Z r C u S i A s 型结构的L n O MP n (L n =L a ,P r ,C e ,S m ;M =F e ,C o ,N i ,R u 和P n =P 和A s )化合物引起了科学家很大的兴趣和关注[3,4] .2008年3月, 四 906四

超导体材料

超导体材料 超导体的定义 1911年,荷兰发明氦液化器的昂尼斯〔H.K.Onnes)偶然发现,在液氦温度(4.2K)下,汞的电阻突然消失,这种现象被称为超导。但是,象汞这样金属的超导状态在很弱的磁场中就会被破坏。进一步的研究表明,要成为超导状态,温度丁,磁场强度H和电流密度J都必须分别处于临界温度T c,临界磁场强度H c和临界电流密度J c以下。如图1所示,在T-H-J 坐标空间中有一个临界面,其内部就是超导状态。临界条件下具有超导性的物质称为超导材料或超导体。 图 1 超导状态的T-H-J临界面(区面内:超导状态;曲面外:正常状态) 【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】 超导体的应用 50年代后期,发现超导状态的温度提高,而且发现丁能产生强磁场的银及钒的合金和化合物,促使超导现象的应用登上了科技舞台。由于电阻近于0Ω,在超导体内流动的电流将没有损耗.这样,很细的导线就可以通过很强的电流,可产生很强的磁场。问题是它必须在液氦温度下工作,液氮的价格、供应和使用方式使得它的普遍应用受到了严格的限制。即使如此,超导磁体仍大量被使用于加速器、聚变装置、核磁共振和磁分析等仪器上。例如美国费密实验室用了1000多个超导磁体,每年的被氮费用高达500万美元,但因此而节省的电力为18500万美元;美国于1990年建成的周长为83km的超级质子对撞机使用10000个超导磁体,每年可节省电力6亿美元。【唐小真,杨宏秀,丁马太.材料化学导论[M].高等教育出社,1997.】超导核磁共振层析仪能给出人体任一部位的剖面图.其分辨本领远远超过x射线或超声层祈仪.是现代高级医院重要的诊断设备之一。 超导技术在医疗上可用于外科手术。例如导管牵引术,将导管插入血管后,靠强磁体引导到脑部等血管瘤部位后,将磁性胶体注入血管,靠强磁体引导到肿瘤前提供血管定位,使给养阻塞,从而使肿瘤萎缩死亡。【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】利用超导体送电的超导电缆已经出现,利用超导体储存电能的超导储能器可在瞬间释放出极强的电能。这种储能器为激光技术提供了储存条件。它可将强电流存储在超导线圈之中,然后启动开关,一瞬间便会释放出巨能,从而发出强大的激光。 用超导体做的超导磁体,可以得到极强的磁场。因为超导线圈没有电阻,超导磁体可以比普通电磁体轻得多:几千克超导磁体抵得上几十吨常规磁体产生的磁场这将给电力工业带来一系列的变革,发电机会因使用超导体而提高输出功率几十倍、上百倍;已试制出来的

超导材料的发展

超导材料的发展 摘要:超导材料的发现为人类诸多梦想的实现提供了可能,新型超导材料一直是人类追求的目标。该文主要从超导材料的探索与发现、制备技术、研究面临的挑战等几个方面来探讨超导材料的发展与研究现状。 关键词:超导材料高温超导 引言:超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。正如半导体带来了资讯时代、光纤带来了传讯时代,高温超导材料将从根本上改变人类的用电方式,给电力、能源、交通以及其它与电磁有关的科技业带来革命性的发展。 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投人的研究工作。自191 1年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K 附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年,发现了一系列A15型超导体和三元系超导体,如Nb3Sn、V3Ga、Nb3Ge,其中Nb3Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。 1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La—BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。l987年初,中、美科学家各自发现临界温度大于90K的YBaCuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BiSrCuO,再后来又有人将Ca掺人其中,得到BiSrCaCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。

铁基高温超导体的研究进展及展望

2008年 第53卷 第19期: 2265 ~ 2273 https://www.wendangku.net/doc/4d16115103.html, https://www.wendangku.net/doc/4d16115103.html, 2265 《中国科学》杂志社 SCIENCE IN CHINA PRESS 评 述 铁基高温超导体的研究进展及展望 方磊, 闻海虎* 中国科学院物理研究所超导国家重点实验室, 北京 100190 * 联系人, E-mail: hhwen@https://www.wendangku.net/doc/4d16115103.html, 2008-07-21收稿, 2008-09-03接受 摘要 自从2008年2月末F 掺杂的LaFeAsO 被报道有26 K 的超导电性后, 基于此体系材料的超导转变温度在短短几个月中被迅速地提高到55 K, 很多新超导体被发现, 同时人们对具有更高临界转变温度的新超导材料充满希望. 本文简要地回顾了这种体系中材料的探索、制备以及设计, 另外在理论和实验上对其超导机理的认识也给予了介绍和总结. 最后基于目前的实验数据, 对铁基超导体和铜氧化物高温超导体的重要物理参数进行了比较, 同时展望了这种新超导体的应用前景. 关键词 铁基超导体 超导转变温度 ZrCuSiAs 结构配对对称性 超导是一种宏观量子现象, 费米面上动量相反的电子配成对, 同时建立长程的位相相干进而发生凝聚, 其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性). 在正常金属中, 电子在一个充满各种振动的背景中运动, 最普通的是晶格的振动. 晶格的振动模可以被一种称为“声子”的元激发进行描述. 电子和声子碰撞后损失了动能进而导致能量的损耗. 这也就是正常金属在有限温度下电阻的来源. 然而在零温极限下所有的振动模式都停止了(不计量子涨落), 所以一个干净的系统中能量的损耗和电阻率都是为零的. 对于一个超导体而言, 费米面上的电子两两吸引形成束缚对, 这种束缚的电子对被称为库珀对. 库珀对服从玻色统计, 在临界温度(T c )下发生凝聚. 这种凝聚态具有很长的相干长度, 因而对晶格振动导致的局域散射不敏感, 所以输运上并不损耗能量, 电阻率可以在较高温度(T c 以下)保持为零. 与此同时, Ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能, 人们因此对高临界温度的新超导体充满了期望. 人类寻找新超导体的历史已经持续将近100年, 在最初的几十年中, 新超导体的探索主要集中在单元素材料和多元素合金上. 然而这些材料的超导转变温度不超过23 K(Nb 3Ge)[1]. 一个重大的突破发生 在1986年底, 在IBM Zurich 工作的Bednorz 和 Muller [2]发现铜氧化物LaBaCuO 的超导转变温度高于30 K. 自此寻找更高T c 的超导体的浪潮席卷全世界, 在短短的几年中, 铜氧化物超导转变温度被提升到134 K(常压)和164 K(高压). 然而铜氧化物超导体的相干长度非常短, 各向异性度很高, 又因为是陶瓷, 所以材质很脆, 这些不利因素都妨碍了它在工业上大规模的应用. 所以, 超导界的科学家们一直希望发现另外一种非铜氧基的高温超导体, 并且这种超导体具备更优异的性质. 转机发生在2008年的2月末, 日本东京工业学院Hosono 教授的研究小组发现在母体材料LaFeAsO 中掺杂F 元素可以实现26 K 的超导电性[3]. 此类母体材料的研究历史可以追溯到1974年美国杜邦公司Johnson 等人[4]在寻找新的功能材料中的工作. 随后, 一个德国的研究组合成了系列的具有同样ZrCuSiAs 结构的新材料[5]. 这些新材料被取名为四元磷氧化物LnOMPn(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M=Mn, Fe, Co, Ni; Pn=P, As). 图1是LaFeAsO 的基本结构. 这个体系空间群为P4/nmm, 具有四方的层状结构, 在c 方向上以—(LnO)2-(MP)2-(LnO)2—形式交替堆砌, 一个单胞中有两个分子LnOMP. 对于母体材料而言, 层和层之间电荷是平衡的, 例如,

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

铁基超导体

铁基超导体 对于现代人来说,超导已经不再是一件什么神秘的事情了,普通的中学生就已经知道了所谓的超导现象:当导体的温度降到一个临界温度时电阻会突然变为零。处于超导状态的导体称之为超导体。超导体除了电阻为零的特殊性质之外,人们后来又发现了它的另一个神奇的性质——完全抗磁性,也就是说超导体内的磁感应强度为零,把原来存在于体内的磁场也完全“排挤”出去。这一现象也被称为“迈斯纳效应”。正是由于超导体的这一性质,而铁基材料通常具有铁磁性,因此被认为最不具备成为高温超导材料的条件。但最近的科研结果却打破了这一传统的束缚,铁基超导材料成为了高温超导研究领域的一个“重大进展”。 铁基超导体的发现历程 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,美国科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点,超导体的临界温度也不断“飙升”,在短短几年中,铜氧化合物的超导临界转变温度就被提高到134K(常压)和164K(高压)。然而直至今日,对于铜基超导材料的高温超导机制,物理学界仍未形成一致看法,这也使得高温超导成为当今凝聚态物理学中最大的谜团之一。因此很多科学家都希望在铜基超导材料以外再找到新的高温超导材料,从而能够使高温超导机制更加明朗。

2008年2月23日,日本科学技术振兴机构和东京工业大学联合发布公报称,东京工业大学教授Hosono的研究小组合成了氟掺杂钐氧铁砷化合物。该化合物是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质没有超导性能,但如果把化合物中的一部分氧离子转换成氟离子,它就开始表现出超导性,并且在26K(零下247摄氏度)时具有超导特性。其实在2006和2007年Hideo Hosono小组就已经分别报道在LaFePO 和LaNiPO 材料中发现转变温度为2到7K的 超导电性。但这一次却立刻引发 了人们对这一体系的强烈关注 (下图为LaFeAsO的晶体结构)。 3月14日,中科院物理所闻海虎, 在镧氧铁砷 (LaOFeAs) 材料中用二价金属替换三价的La,在空穴型掺杂中取得重要进展,临界温度达到25K。3月25日,中国科技大学陈仙辉领导的科研小组又报告,氟掺杂钐氧铁砷化合物在临界温度43开尔文(零下230.15℃)时也变成超导体。3月28日,中国科学院物理研究所赵忠贤领导的科研小组报告,氟掺杂镨氧铁砷化合物的高温超导临界温度可达52开尔文(零下221.15℃)。4月13日该科研小组又有新发现:氟掺杂钐氧铁砷化合物假如在压力环境下产生作用,其超导临界温度可进一步提升至55开尔文(零下218.15℃,将这场追求铁基高临界温度的竞争推向高潮,并保持着目前为止铁基超导体的临界温度最高纪录。 新的超导机制有望取得突破

高温超导材料1.29

高温超导材料 高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。 1.结构 高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性。 已发现的高温超导材料按成分分为含铜的和不含铜的。含铜超导材料有镧钡铜氧体系(Tc=35~40K)、钇钡铜氧体系(按钇含量不同,T发生复化。最低为20K ,高可超过90K)、铋锶钙铜氧体系(Tc=10~110K)、铊钡钙铜氧体系(Tc=125K)、铅锶钇铜氧体系(Tc约70K)。不含铜超导体主要是钡钾铋氧体系(Tc约30K)。已制备出的高温超导材料有单晶、多晶块材,金属复合材料和薄膜。高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力 2.特性 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 2月15日美国报道朱经武、吴茂昆获得了98K超导体.2月20日,中国也宣布发现100K以上超导体.3月3日,日本宣布发现123K超导体.3月12日中国北京大学成功地用液氮进行超导磁悬浮实验.3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象.很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象.高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用.氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100.液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一. 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的

超导材料的未来应用前景

超导材料——当代科学的明珠 超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。

铁基超导体材料

[键入公司名称] 铁基超导体材料[键入文档副标题] 吕鸿燕 14园林本2 1407220221

铁基超导体材料 以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所和中国科学技术大学研究团队因为在“40K以上铁基高温超导体的发现及若干基本物理性质研究”方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。 超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 通常的低温超导材料中,电子是通过晶格各结点上的正离子振动而结合在一起的。但大多数的物理学家都认为,这一电子对结合机制并不能解释临界温度最高可达138开尔文(零下135.15℃)的铜基材料超导现象。每一种铜基超导材料都是由层状的“铜-氧”面组成,其中的电子是如何成对的,仍是未解难题。 在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。 继铜基超导材料之后,日本和中国科学家最近相继报告发现了一类新的高温超导材料——铁基超导材料。美国《科学》杂志网站报道说,物理学界认为这是高温超导研究领域的一个“重大进展”。 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点。

铁基超导体研究取得重要进展

铁基超导体研究取得重要进展 [本刊讯]近日,中国科学技术大学合肥微尺度物质科学国家实验室、中国科学院强耦合量子材料物理实验室的陈仙辉教授研究组在铁基超导研究领域取得了重大进展,成功发现了一种新的铁基超导材料(Li0.8Fe0.2)OHFeSe,其超导转变温度高达40开以上,并与美国国家标准技术研究所中子研究中心的黄清镇博士以及中科大吴涛教授等几个研究组合作,确定了该新材料的晶体结构并发现超导电性和反铁磁共存。相关研究成果在线发表在12月15日的Nature Materials上。 铁基高温超导体是目前凝聚态物理领域的研究热点,其机理还没有得到完全理解,FeSe类超导体以其诸多独特的性质被认为是研究铁基超导机理的理想材料体系。尤其是近期报道的生长于SrTiO3衬底上的FeSe单层薄膜的零电阻转变温度高达100开以上,更加激起了科学家对于这一体系的浓厚兴趣。然而,对于FeSe类超导材料,目前研究较为广泛的AxFe2Se2(A=K,Rb,Cs)体系存在严重的相分离,反铁磁绝缘相与超导相的共生导致该类材料的结构与性质非常复杂,从而使得研究其内在的物理机制变得非常困难。而FeSe 单层薄膜以及通过液氨等低温液相插层方法合成的Lix(NH2)y(NH3)1-yFe2Se2等化合物在空气中极不稳定,无法深入研究其物理性质。为了能够深入探究铁基高温超导的物理机制,亟需寻找到新的具有高的超导转变温度且空气稳定。并适合物理测量的FeSe类超导材料。 陈仙辉研究组首次利用水热反应方法成功发现了一种新的FeSe类超导材料(Li0.8Fe0.2)OHFeSe,超导转变温度高达40开以上。通过结合X射线衍射。中子散射和核磁共振三种技术手段精确确定了该新材料的晶体结构。此外,发现该结构中严重畸变的FeSe4四面体

高温超导理论

摘要 迄今(2010年)距发现高温铜氧化物超导体已25年,各派观点百家争鸣。高温氧化物超导体所涉及的物理内涵异常丰富,随着掺杂程度的变化它展现出反铁磁性、半导导电行为、超导电性、强关联电子系统以及新型金属行为等。在这里着重介绍高温超导理论中的Anderson 的空穴子(holon )和自旋子(spin )理论,Schrieffer 的自旋袋(spin bag)机制,邻近反铁磁的超导理论,以及Varma 的“边缘”费米液体理论等。并在最后介绍了一些关于高温超导的最新研究进展。 1.Anderson 非费米液体高温超导理论 主张高温铜氧化物超导体正常态是非费米液体的代表人物是P.W.Anderson 。1987年他提出:高温铜氧化物超导体的母体绝缘相是共振价键态或称量子自旋液体。这一理论是基于高温铜氧化物与反铁磁的邻近性,邻近金属-绝缘体相变,绝缘磁相为低自旋,具二维性和载流子密度低等特点提出的。该理论的基本突出点是:认为电荷和自旋自由度明显的分开,这与费米液体的基本点不同。 Pauling 于1938年首先提出金属的共振价键理论。Pauling 理论认为,在相邻原子上,自旋相反的两轨道电子形成共价键,而这些共价键可以在两个以上的位置之间共振(RVB )。1973年Anderson 在针对反铁磁体的奈耳态(Neel state)和spin-peierls 态的讨论中提出了RVB 态新的绝缘体;他认为至少在二维三角格子、自旋S=1/2的反铁磁体中的反铁磁基态,可能是Bethe 在反铁磁线链上提出的单重态配对(singlet )态类似体。Anderson 进而提出,经高阶能量修正计算表明,诸单重态配对的移动或“共振”使其状态更稳定。1987年Anderson 最为基本假设提出:母化合物La 2CuO 4的绝缘态是共振价键态(RVB 态),在共振价键态中预先存在有最近邻自旋单重态配对,在以少量二价离子(Sr 2+,Ba 2+等)掺杂后使原母化合物系统金属化,它们就对产生超导电性起作用。 对于沿格矢τ可迁移的价键中电子对可写 00 )exp ())i i i k k k b C C C C i k τττ+++↑+↓ ++ ↑-↓ ψ= ψ=ψ∑∑ (1) 对所有最近邻键的线性组合为 nn nn b b ττ ++=<> = ∑ (2) 若考虑键长分布则可写为 ()k k k b a k C C +++↑-↓ =∑ (3) 而 ()0k a k =∑ (4) 根据Hirsch 的工作,Anderson 认为对二维简单方格子也可有RVB 态。

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

超导材料发展状况综述

材料科学与工程进展课程论文 题目:超导材料发展状况综述 学院: 班级: 学号: 姓名:

目录 摘要 (2) 超导材料的特性 (2) 超导材料发展史 (4) 超导材料的制备 (5) 超导材料的应用 (7) 展望与建议 (9)

新能源材料——超导材料发展状况综述 摘要 随着人类社会的不断发展,人们对于自然能源的需求也与日俱增。然而自然资源是有限的,面对自然资源日渐紧缺、环境遭到破坏等状况的发生,在科学工作者的努力下,各种各样的新能源材料相继面世。本文将从特性、发展史、制备、应用这几个方面,对众多新能源材料中的一种材料——超导材料,做一个综述,以增进广大读者对超导材料的了解。 关键词:超导材料、特性、发展史、制备、应用。 超导材料的特性 超导材料是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有以下特性: 零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。超导现象是20世纪的重大发明之一。科学家发现某物质在温度很低时,如铅在7.20K(-265.95摄氏度)以下,电阻就变成了零。 采用“四引线电阻测量法”可测出超导体的R-T特性曲线,如图所示。

图中的R n为电阻开始急剧减小时的电阻值,对应的温度称为起始转变温度T S;当电阻减小到R n/2时的温度称为中点温度T M;当电阻减小至零时的温度为零电阻温度T0。由于超导体的转变温度还与外部环境条件有关,定义在外部环境条件(电流,磁场和应力等)维持在足够低的数值时,测得的超导转变温度称为超导临界温度。 完全抗磁性 1933年,迈斯纳(W.Meissner)发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁力线会一下子被完全排斥到超导体之外(见下图),超导体内磁感应强度变为零,这表明超导体是完全抗磁体,这个现象称为迈斯纳效应。 实验表明,超导态可以被外磁场所破坏,在低于T C的任一温度T下,当外加磁场强度H小于某一临界值H C时,超导态可以保持;当H大于H C时,超导态会被突然破坏而转变成正常态。临界磁场强度H C,其值与材料组成和环境温度等有关。超导材料性能由临界温度T C和临界磁场H C两个参数决定,高于临界值时是一般导体,低于此数值时成为超导体。 约瑟夫森效应 当在两块超导体之间存在一块极薄的绝缘层时,超导电子(对)能通过极薄的绝缘层,这种现象称为约瑟夫森(Josephson)效应,相应的装置称为约瑟夫森器件。如图所示。

铁基超导材料制备研究进展

2009年第54卷第5期:557~568《中国科学》杂志社 SCIENCE IN CHINA PRESS 评述 铁基超导材料制备研究进展 马廷灿, 万勇, 姜山 中国科学院国家科学图书馆武汉分馆情报研究部, 武汉 430071 E-mail: matingcan@https://www.wendangku.net/doc/4d16115103.html, 2008-12-24收稿, 2009-01-22接受 摘要超导现象于1911年首次被发现, 此后科学家们一直都在寻找拥有更高临界温度的超导材料, 研究重点也逐渐从金属系物质转到铜氧化物. 目前, 物理学界对高温超导机制仍未形成一致看法, 研究人员希望在铜氧化物超导材料以外再找到新的高温超导材料, 以期从新的途径来破译高温超导机理.2008年初, 日本学者发现了临界温度可以达到26 K的新型超导材料——LaO1?x F x FeAs, 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 随后, 科研人员在这一体系中展开了积极的实验和理论研究. 中国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置. 铁基超导材料的研究正在持续升温, 新的发现层出不穷. 本文按照体系分类, 以时间顺序, 分别对铁基超导材料的四大主要研究体系(“1111”体系、“122”体系、“111”体系和“11”体系)的具体材料制备研究进展进行了分析, 比较全面地介绍了各种铁基超导材料的合成方法及其关键物理参数. 关键词 铁基超导 氧磷族元素化合物临界温度 上临界磁场 固相反应法 自熔法 20世纪最后10年中, 具有ZrCuSiAs结构的稀土过渡金属氧磷族元素化合物陆续被发现, 但研究人员并未发现其中的超导现象[1,2]. 2006年和2007年, 日本东京工业大学前沿合作科学研究中心的细野秀雄教授带领的研究小组(以下简称“细野秀雄小组”)先后发现LaOFeP[3]和LaNiPO[4]在低温下展现出超导电性, 但是由于临界温度皆在10 K以下, 并没有引起特别的关注及兴趣. 2008年1月初, 细野秀雄小组发现在铁基氧磷族元素化合物LaOFeAs中, 将部分氧以掺杂的方式用氟取代, 可使LaO1?x F x FeAs的临界温度达到26 K[5], 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 我国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置: 3月初, 中国科学院物理研究所王楠林研究员领导的研究小组(以下简称“王楠林小组”)很快就合成了LaO0.9F0.1-δFeAs多晶样品, 并测量了基本物理性质[6]; 3月中旬, 中国科学院物理研究所闻海虎研究员领导的研究小组(以下简称“闻海虎小组”)成功合成出第一种空穴掺杂型铁基超导材料——La1?x Sr x OfeAs[7]; 3月25日和3月26日, 中国科学技术大学陈仙辉教授领导的研究小组(以下简称“陈仙辉小组”)[8]和中国科学院物理研究所王楠林小组[9]分别独立发现临界温度超过40 K的超导体; 3月29日, 中国科学院物理研究所赵忠贤院士领导的小组(以下简称“赵忠贤小组”)发现PrO1?x F x FeAs的超导转变温度可达52 K[10]. 4月中旬, 该小组又先后发现在压力环境下合成的SmO1?x F x FeAs[11]和REFeAsO1?δ[12]超导转变温度进一步升至55 K等. 此外, 研究人员也在不断探索新型铁基超导材料的应用. 4月下旬, 中国科学院电工研究所应用超导重点实验室马衍伟研究员领带的研究小组(以下简称“马衍伟小组”)率先成功研制出超导起始转变温度达25 K的LaO1?x F x FeAs线材[13]. 在此基础上, 该小组与闻海虎小组合作又制备出超导起始转变温度高达52 K的SmO1?x F x FeAs线材[14]. 另据报道, 细野秀雄小组已经在新型铁基超导薄膜制作上取得初步成功[15]. 目前, 根据母体化合物的组成比和晶体结构, 新 https://www.wendangku.net/doc/4d16115103.html, https://www.wendangku.net/doc/4d16115103.html,557

铁基超导

铁基超导 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 传统的解释常规超导体的超导电性的微观理论预言,超导体的最高温度不会超过麦克米兰极限的39K。在以往的研究中,只有1987年发现的铜氧化合物超导体打破了这一极限,被称为高温超导体。最近,在铁基磷族化合物中发现的超导电性其超导临界温度可达55K,同样突破了传统理论预言的麦克米兰极限。这是第一个非铜基的高温超导体,掀起了高温超导研究的又一次热潮。 铁基超导的研究进入了一个空前发展的阶段,各国都在进行这一新材料的研究,铁基超导体薄膜研究进展与铁基超导体大同位素效应就是其中的热点。 从2008年新的铁基高温超导体发现以来,铁基超导薄膜的研究进展相对缓慢。这是因为较难精确控制人们所需要的亚稳相中的多元素配比、以及多种热力学相之间的互相竞争。由于元素配比和不同热力学相竞争所导致的较少量的杂质,在块状材料的合成中有时可以接受,但对低维的薄膜材料却不能允许。迄今已发现四种主要晶体结构的铁基超导体,包括含砷或磷(chalcogens)的1111相、122相、111相,以及含氧硫族元素(pnictogens)的11相。它们都具有超导的Fe-X (X为As、P、Se、S或Te等)层,且前三类超导体中这些层由La-O等隔离层隔开,而超导的11相FeSe、Fe(Se,Te)只有Fe-X层,晶体结构最简单。目前人们只得到了11相的单相、外延、超导薄膜。而对含砷的铁基超导体而言,经过近两年的探索,仍未能得到单相的超导薄膜。 中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导实验室的曹立 新副研究员带领博士生韩烨、李位勇,与相关科研人员合作,在国际上率先制备出单相的外延FeSe超导薄膜(第十届全国超导薄膜和超导电子器件学术研讨会,大连,2008年10月11日-15日),率先发表文章(Journal of Physics: Condensed Matter 21, 235702, 2009),并申请了国家专利。 此后,他们又系统研究了FeSe 、Fe(Se,Te)以及FeTe薄膜,他们发现FeTe 母体在薄膜状态下超导,转变温度13 K,接近Fe(Se,Te)固溶体所能达到的最高值,远高于FeSe薄膜的超导转变温度。而到目前为止,FeTe块材在常压和高压状态下都没有发现超导。人们普遍认为铁基超导电性与自旋密度波密切相关,实验发现高压下自旋涨落在FeSe中明显增强而且超导转变温度提高到37 K;同时,理论计算表明FeTe比FeSe有更强的自旋涨落并可能有更高的超导转变温度。但是实验上FeTe并没有在高压下观察到预期的现象。曹立新等人注意到,在超导的FeTe薄膜中,晶格在生长平面内不是被压缩,而是被拉伸,类似于一种“负压力效应”。同时他们发现,在非超导的FeTe块材中70 K左右出现的结构和自旋涨落的一级相变,在超导薄膜中被明显弱化。 图1 在4种不同基片上沉积生长的FeTe超导薄膜的X射线衍射图谱,32个薄膜的c-轴晶格常数,以及薄膜中Fe-Te-Fe键角的变化情况。可以看出,超导的FeTe薄膜表现出较小的c-轴和较大的a-轴晶格常数以及显著增大的 Fe-Te-Fe键角。

相关文档