文档库 最新最全的文档下载
当前位置:文档库 › 04初高中衔接数学(一元二次函数)(师)

04初高中衔接数学(一元二次函数)(师)

04初高中衔接数学(一元二次函数)(师)
04初高中衔接数学(一元二次函数)(师)

NO04:一元二次函数教学设计(师)

一、正比例函数:

形式:y=kx (作图分析)

性质:(1)过原点;(2)当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小。

二、一次函数:

形式:y=kx+b (作图分析)

性质:

(1)过点(0,b ),b 叫截距

(2)当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小。

三、反比例函数:

形式:y=

1x

(作图分析) 四、二次函数y =ax 2+bx +c (a ≠0) y =ax 2

+bx +c =a (x 2+b x a )+c =a (x 2+b x a +224b a )+c -24b a 224()24b b ac a x a a -=++, 性质:

(1)当a >0时,函数y =ax 2

+bx +c 图象开口向上;顶点坐标为2

4(,)24b ac b a a

--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a

-时,函数取最小值y =2

44ac b a

-. (2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为2

4(,)24b ac b a a

--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a

-时,函数取最大值y =2

44ac b a -.

例1 求二次函数y =-3x 2-6x 图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.

解:∵y =-3x 2-6x =-3(x +1)2+3,

∴函数图象的开口向下;

对称轴是直线x =-1;

顶点坐标为(-1,3);

当x =-1时,函数y 取最大值y =3;

当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;

采用描点法画图,选顶点A (-1,3)),与x 轴交于点B (-2,0)和C (0,0),与y 轴的交点为D (0,0),过这五点画出图象(如图2-5所示).

说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.

变式训练1:通过配方,画出函数2286y x x =-+的图象,并求出它们的最大值或最小值。

五、二次函数的三种表示方式

我们知道,二次函数可以表示成以下两种形式:

1.一般式:y =ax 2+bx +c (a ≠0);

2.顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ).

除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交点个数.

当抛物线y =ax 2+bx +c (a ≠0)与x 轴相交时,其函数值为零,于是有

ax 2+bx +c =0. ①

并且方程①的解就是抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:

(1)当Δ>0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则Δ>0也成立.

(2)当Δ=0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点(抛物线的顶点);反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点,则Δ=0也成立.

(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.

于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以

x 1+x 2=b a -

,x 1x 2=c a , 即 b a =-(x 1+x 2), c a =x 1x 2.

所以,y =ax 2+bx +c =a (2b c x x a a ++) = a [x 2-(x 1+x 2)x +x 1x 2]

=a (x -x 1) (x -x 2).

由上面的推导过程可以得到下面结论:

若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1) (x -x 2) (a ≠0).

这样,也就得到了表示二次函数的第三种方法:

3.交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.

今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.

例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.

分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于

是可以将函数的表达式设成交点式.

解法一:∵二次函数的图象过点(-3,0),(1,0),

∴可设二次函数为y =a (x +3) (x -1) (a ≠0),

展开,得 y =ax 2+2ax -3a ,

顶点的纵坐标为 22

12444a a a a

--=-, 由于二次函数图象的顶点到x 轴的距离2,

∴|-4a |=2,即a =12

±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322

x x -+. 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.

解法二:∵二次函数的图象过点(-3,0),(1,0),

∴对称轴为直线x =-1.

又顶点到x 轴的距离为2,

∴顶点的纵坐标为2,或-2.

于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,

由于函数图象过点(1,0),

∴0=a (1+1)2+2,或0=a (1+1)2-2.

∴a =-12,或a =12

. 所以,所求的二次函数为y =-

12(x +1)2+2,或y =12(x +1)2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.

变式训练2:已知二次函数的图象过点(2,-1),(-1,-1),且它的最大值是8,求此二次函数的表达式.

巩固作业:

A 组:

1.选择题:

(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( )

(A )0个 (B )1个 (C )2个 (D )无法确定

(2)函数y =-12

(x +1)2+2的顶点坐标是 ( ) (A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2)

2.根据下列条件,求二次函数的解析式,并作出图象。

(1)图象经过点(1,-2),(0,-3),(-1,-6);

(2)当x =3时,函数有最小值5,且经过点(1,11);

(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).

3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象.

(1)y =x 2-2x -3; (2)y =1+6 x -x 2.

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

初高中数学衔接的必要性

初高中数学教材衔接的必要性与措施 近几年,随着我国教育体制改革步代加大,素质教育理念不断深入人心,课改新教材在我省大多数中小学已经实施。仙桃市初中是率先使用课改新教材的县市之一,经过两届学生实验,结果表明:使用课改新教材的学生学习的自主性,思维的广阔性,师生的互动性明显增强,但思维的严谨性,推理的逻辑性显得有些不足。加上我市高中教材未与课改新教材接轨,教学内容上有明显“脱节”。学生从初中进入高中出现明显“不适应”现象。因此解决初高中数学教材衔接问题势在必行。 一、初高中数学知识“脱节”点 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。 6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。 7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。 8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。 另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。 二、“脱节”知识点掌握情况调查 高一新生入学不久,在已进行“乘法公式”与“因式分解”讲授后,我们对学生初高中“脱节”知识点作了全面调查,统计情况如下: 1.代数部分:

高中数学《一元二次函数方程和不等式》公开课优秀教学设计

课题:一元二次函数、方程和不等式(衔接课) 一、教学设计 1.教学内容解析 在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好. 本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡. 三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面. 根据以上分析,本节课的教学重点确定为 教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用. 2.学生学情诊断 本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律. 教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式. 3.教学目标设置 (1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系; (2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性; (3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养. 4.教学策略分析 本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆

2019初高中数学衔接知识点及习题

数学 亲爱的2019届平冈学子: ?恭喜你进入平冈中学!你们是高中生了,做好了充分的准备吗?其实学好高中数学并不难,你只要有坚韧不拔的毅力,认真做题,善于总结归纳,持之以恒,相信你一定能成功。 从2016年开始,广东省高考数学试题使用全国I卷,纵观今年高考数学试题,我们发现它最大的特点就是区分度特别大,选拔性很明显,难度相比以前广东自主命题难度大大提升。打铁还需自身硬,因此,让自己变强大才是硬道理。假期发给你们的这本小册子,是为了使你们在初高中数学学习上形成较好的连续性,能有效地克服知识和方法上的跳跃,利于激发你们学习数学的兴趣。你们一定要利用好暑假,做好充分的准备工作。 这里给大家几个学数学的建议: 1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。记录本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 3、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 4、经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 5、阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 6、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 7、学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 8、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 9、无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 初高中数学衔接呼应版块 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容, 6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。 7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。 8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。 9.角度问题,三角函数问题。在初中只涉及360°范围内的角,而高中是任意角。三角函数在初中也只是锐角三角函数,高中是任意角三角函数,定义的范围大大不同。同时,度量角也引进了弧度制这个新的度量办法。 10.高中阶段特别注重数学思维,数学思想方法的培养。 另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

北师大版数学高一必修1练习 二次函数的性质

[A 基础达标] 1.函数f (x )=-x 2+4x +5(0≤x <5)的值域为( ) A . (0,5] B .[0,5] C .[5,9] D .(0,9] 解析:选D.f (x )=-x 2+4x +5=-(x -2)2+9(0≤x <5),当x =2时,f (x )最大=9;当x >0且x 接近5时,f (x )接近0,故f (x )的值域为(0,9]. 2.已知函数y =x 2-6x +8在[1,a )上为减函数,则a 的取值范围是( ) A .a ≤3 B .0≤a ≤3 C .a ≥3 D .10时,f (x )的对称轴为x =12a ,在????-∞,12a 上是递减的,由题意(-∞,2)?? ???-∞,12a , 所以2≤12a ,即a ≤14 ,综上,a 的取值范围是????0,14. 4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图像的对称轴为x =12 ,又函数图像开口向上,自变量离对称轴越远函数值越大,故选D. 5.设二次函数f (x )=-x 2+x +a (a <0),若f (m )>0,则f (m +1)的值为( )

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 一、二次函数知识点回顾 (一)二次函数的概念: 一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. (二)二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. (三)二次函数基本形式: 1、2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 二、二次函数闭区间上的最值解题思路分析 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 如设: f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 方法思路分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f x ()的最值:

初高中数学衔接数学校本课程教材

课程名称 初高中数学衔接 年级:九年级 学科:初中物理 姓名:

目录 总论...........................................................................2 第一讲:垂径定理.........................................................8. 第二讲:直径所对的圆周角.............................................10 第三讲:因式分解(部分)与解方程(组)........................12 第四讲:函数图像的平移................................................14 第五讲:一元二次方程的根与系数的关系...........................18 第六讲:二次函数c bx ax y ++=2(c b a ,,是常数,0≠a (20)

总论 经过紧张的中考,暑期之后初三的同学们就要迎接紧张充实的高中生活。为了迎接高中的数学学习应该做些什么?良好的开端是成功的一半。我们今天主要谈一下从初中到高中的数学学科的衔接问题。很多同学还没有接触高中知识,我们既不谈那一个个知识点,也不谈那一个个大家耳熟能详的学习方法,主要讲讲为什么要做好衔接以及从精神上、认识上如何去准备。 一、为何要做好初高中衔接? 从初中升入高中,大家普遍觉得上升了一个门槛。教学实践证明,踏好这个门槛,实现这个转折确实需要衔接。其原因是: 1.环境的改变对学生有影响。初中学校与高中学校的教学理念不完全相同,学校之间的差异或大或小,高一新生来自不同的学校,差异性较大。大家熟悉以前的校园、以前的人际关系、以前的各项规章制度及纪律要求。但进入新校园后,校园环境不同了,同学不同了,新学校有新学校的规章制度及具体纪律要求。对于这些变化,要使学生尽快融入新的集体、新的学校,这就必须做好衔接工作。对高一新生来讲,各方面可以说是全新的,新的同学、新的老师、新的管理措施与教育理念……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生“松口气”想法,如初三辛苦了,在高一休息一下,待高二认真一些、高三冲刺,使得高中入学后无紧迫感。

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

高中数学-二次函数的性质与图象练习

高中数学-二次函数的性质与图象练习课时过关·能力提升 1函数y=x2-2x+m的单调递增区间为() A.(-∞,+∞) B.[1,+∞) C.(-∞,1] D.[-2,+∞) 解析因为二次函数的图象开口向上,且对称轴为x=1, 所以单调递增区间为[1,+∞). 答案B 2函数f(x)=x2-mx+4(m>0)在(-∞,0]上的最小值是() A.4 B.-4 C.与m的取值有关 D.不存在 解析因为函数f(x)的图象开口向上,且对称轴x=>0, 所以f(x)在(-∞,0]上为减函数, 所以f(x)min=f(0)=4. 答案A 3二次函数y=4x2-mx+5的对称轴为x=-2,则当x=1时,y的值为() A.-7 B.1 C.17 D.25 解析由已知得-=-2,解得m=-16, 故y=4x2+16x+5.当x=1时,y=4×12+16×1+5=25. 答案D 4已知二次函数f(x)=x2-ax+7,若f(x-2)是偶函数,则a的值为()

A.4 B.-4 C.2 D.-2 解析由已知得f(x-2)=(x-2)2-a(x-2)+7=x2-(a+4)x+2a+11. 因为f(x-2)是偶函数, 所以其图象关于y轴对称, 即=0,所以a=-4. 答案B 5已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是() 答案D 6已知函数y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则实数m的取值范围是() A.[1,+∞) B.[1,2) C.[1,2] D.(-∞,2] 解析由于y=x2-2x+3=(x-1)2+2,其图象如图所示,且f(0)=3,f(1)=2,f(2)=3.结合图象可知m的取值 范围是[1,2]. 答案C 7已知二次函数f(x)=ax2+bx-1(a≠0).若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于() A.- B.- C.-1 D.0 解析由f(x1)=f(x2)可得f(x)图象的对称轴为x=, 故=-,即x1+x2=-,

1二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1. 当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 例2. 当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3. 当0x ≥时,求函数(2)y x x =--的取值范围. 例4. 当1t x t ≤≤+时,求函数215 22 y x x =--的最小值(其中t 为常数). 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系. (1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式; (3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值. 例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式. (2)为了投资少而利润大,每间包房提高 x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.

初高中数学衔接知识点总结

初高中数学衔接读本 数学是一门重要的课程,其地位不容置疑,同学们在初中已经学过很多数学知识,这是远远不够的,而且现有初高中数学知识存在以下“脱节”: 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

目录 数与式的运算 绝对值 乘法公式 二次根式 .4分式 分解因式 一元二次方程根的判别式

根与系数的关系(韦达定理) 2.2 二次函数 二次函数y=ax2+bx+c的图像和性质二次函数的三种表示方式 二次函数的简单应用 方程与不等式 一元二次不等式解法

数与式的运算 1.1.1.绝对值 1.绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0,||0,0,,0.a a a a a a >?? ==??-

新教材高中数学第二章一元二次函数、方程和不等式2.1等式性质与不等式性质讲义新人教A版必修第一册

新教材高中数学第二章一元二次函数、方程和不等式2.1等式性质与不等式性质讲义新人教A版必修第一册 2.1 等式性质与不等式性质 最新课程标准:梳理等式的性质,理解不等式的概念,掌握不等式的性质. 知识点一实数大小比较 1.文字叙述 如果a-b是正数,那么a>b; 如果a-b等于0,那么a=b; 如果a-b是负数,那么a0?a>b; a-b=0?a=b; a-b<0?ab?bb,b>c?a>c 3可加性a>b?a+c>b+c 可逆 4可乘性 } a>b c>0?ac>bc c的符 号 } a>b c<0?acb c>d?a+c>b+d 同向 6同向同正a>b>0c>d>0?ac>bd 同向

状元随笔 (1)性质3是移项的依据.不等式中任何一项改变符号后,可以把它从一边移到另一边.即a +b>c ?a>c -b.性质3是可逆性的,即a>b ?a +c>b +c. (2)注意不等式的单向性和双向性.性质1和3是双向的,其余的在一般情况下是不可逆的. (3)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.要克服“想当然”“显然成立”的思维定势. [教材解难] 教材P 40思考 等式有下面的基本性质: 性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0,那么a c =b c . [基础自测] 1.大桥桥头竖立的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T 满足关系( ) A .T <40 B .T >40 C .T ≤40 D.T ≥40 解析:“限重40吨”是不超过40吨的意思. 答案:C 2.设M =x 2 ,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M 0,所以M >N .

(人教版)初高中数学衔接教材:第八节 一元二次方程实根分布

第八节 一元二次方程实根分布 1. 讲清二次函数与一元二次方程的关系; 2. 讨论二次函数)0(2>++=a c bx ax y (1)当方程)0(02≠=++a c bx ax 有且只有一个实根属于),(n m 时0)()(>≥?20)(0 )(0 (3)当方程)0(02≠=++a c bx ax 两根分别在),(n m 两侧时: ⅰ.21,0x n m x a <<<<; ⅱ.21,0x n m x a <<<>; 0)(0 )(<≥?-≥?->m af a b m

例1:已知二次方程04)32(2=+-+x m x 有且只有一根在(0,1)内,求实数m 的取值范围; 例2:已知方程0)2()12(222=++--m x m x 两根在)1,1(-之间,求m 的取值范围; 例3:已知二次方程0)25()1(22=+--+m x m x 的一根小于,另一根大于1,求m 的取值范围; 0)1(0)1(<<-f f 7 1>?m ; 例4:已知:方程0)1(2)23(2=+++-m x m x 的两实根都大于1,求m 的取值范围; 1200 )1(>-≥?>a b f ; 练习: 1. 已知方程0)1(22=-+-m mx x 有且仅有一个根属于(1,2),且2,1==x x 都不是 方程的解,求m 的范围; 2. 已知:方程022)23(2+-+-+m x m x 有一个大于2-的负根,一个小于2的正 根,求m 的范围; 3. 已知方程0)1(3)43(2 =++++m x m x 两个根都属于)2,2(-,求m 的范围; 4. 已知方程0)4()13(22=++++m x m x 两根都大于1-,求m 的范围; 5. 已知方程0)4()13(22=++++m x m x 一根小于1,一根大于1,求m 的范围; 变式:若抛物线m x x y -+-=32与直线x y -=3在)3,0(∈x 内只有一个交点,求m 的范围; 补充: 1.b x a x x f +++=)1()(2,且3)3(=f ,又x x f ≥)(恒成立,求b a -的值; 2.对任意的2≤m ,函数m x mx y -+-=122 恒为负,则x 的取值范围为________;

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

二次函数在闭区间上的最值 (经典)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为- -?? ???b a ac b a 2442 ,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是 f b a ac b a f x -?? ???=-2442 ,()的最大值是f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-< b a m 2,由f x ()在[] m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[] m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1. 函数y x x =-+-2 42在区间[0,3]上的最大值是_________,最小值是_______。 练习. 已知232 x x ≤,求函数f x x x ()=++2 1的最值。 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的 最值”。 例2. 如果函数f x x ()()=-+112 定义在区间[] t t ,+1上,求f x ()的最值。 例3. 已知2 ()43f x x x =--+,当[1]()x t t t ∈+∈R ,时,求()f x 的最值. 对二次函数的区间最值结合函数图象总结如下: 当a >0时??? ???? +<-+≥-=) )((212)())((2 12)()(21max 如图如图,,n m a b n f n m a b m f x f ?? ? ? ? ? ??? <-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f

如何做好小学数学与初中数学的衔接

如何做好小学数学与初中数学的衔接 孩子从小学进入初中后,数学教学的要求和环境都发生了质的变化,刚入初中的学生一般都不同程度地存在学习习惯不良的问题,认为学数学就是做作业,多做练习,课本成了“习题集”,学习往往仍是听完课做完作业便了事.有部分学生会感到不适应,从而对数学的学习失去兴趣,成绩也不像小学那么优秀,久而久之,在数学上掉下队来,尤其到了八年级情况更是严重.有些家长和小学老师都反应说:有些孩子在小学数学成绩很优秀的,到初中怎么下滑那么快呀?初中老师更是迷茫:现在的小学生数学基础怎这么弱?进入初中以后根本就不会学习呀!另一种现象是:初、高中学生的学习的衔接问题普遍受到了学者、老师、家长的关注,有的高中在新生录取报到时,就发放了许多初、高中衔接的教材,要求学生在暑假期间学习,帮助他们尽快地度过学习的困难期.而小学与初中学生学习的衔接问题就没有那么令人关注了: 1、教材内容上衔接不够 小学的课程内容较少,要求掌握的程度较低,书面作业大多是抄写的内容,需要动脑思考解决的问题较少.而到了初中,课程内容多,教学进度较快,学习时间延长,难度加大,运用知识解决问题成了学习的基本能力,很多问题无法从书本找到现成的答案,不会动脑和懒于动脑的学生就无法完成作业.例如:小学数学中数的部分只涉及了关于自然数和分数的知识,而学生在升入初中后,在代数方面遇到的第一个困难就是增加了“负数”,有理数的计算有了符号的变化,对学生注意力的分配要求明显变高了.接踵而至的绝对值、相反数、数轴有了一些抽象思维的要求,部分学生更是丢三拉四,无从下手.进入八年级又引入了无理数、实数概念,与其相关的综合题也越来越复杂.另外一个明显的变化是,在初中,除了数的概念扩充到了实数外,还有了式的运算.从小学学习用字母表示数开始,到中学进一步研究数字与字母的运算,以及在此基础上研究代数式的运算及其关系(相等与不等),由此逐步推进到方程、不等式、函数等,这个阶段变化较大,由具体到抽象,学生比较难适应.因此,在小学高年级和初中低年级阶段,要积累一些“半形式化的运算”的经验,以便顺利完成这一转变.值得一提的是,现在的小学数学教材在注重中小学衔接方面也是作了一定努力的,如解方程的处理,原来完全按四则运算的关系来解,现在改为按等式性质来解,这对学生的后继学习是有利的. 2、思维方式的差异

高中数学二次函数教案人教版必修一

二次函数 一、考纲要求 1、掌握二次函数的概念、图像特征 2、掌握二次函数的对称性和单调性,会求二次函数在给定区间上 的最值 3、掌握二次函数、二次方程、二次不等式(三个二次)之间的紧 密关系,提高解综合问题的能力。 二、高考趋势 由于二次函数与二次方程、二次不等式之间有着紧密的联系,加上三次函数的导数是二次函数,因此二次函数在高中数学中应用十分广泛,一直是高考的热点,特别是借助二次函数模型考查考生的代数推理问题是高考的热点和难点,另外二次函数的应用问题也是2010年高考的热点。 三、知识回顾 1、二次函数的解析式 (1)一般式: (2)顶点式: (3)双根式: 求二次函数解析式的方法: ○1已知时,宜用一般式○2已知时,常使用顶点式○3已知时,用双根式更方便

2、 二次函数的图像和性质 二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。 (1)当0>a 时,抛物线的开口 ,函数在 上递减,在 上递增,当a b x 2- =时,函数有最 值为 (2)当0x f , 当 时,恒有 ()0.-=?ac b 时,图像与 x 轴有两个交点,.),0,(),0,(21212211a x x M M x M x M ?=-= 四、基础训练 1、已知二次函数())0(2≠++=a c bx ax x f 的对称轴方程为x=2,则在f(1),f(2),f(3),f(4),f(5)中,相等的两个值为 ,最大值为 。 2函数()322+-=mx x x f ,当]1,(-∝-∈x 时,是减函数,则实数m 的取值范围是 。 3函数()a ax x x f --=22的定义域为R ,则实数a 的取值范围是

相关文档
相关文档 最新文档