文档库 最新最全的文档下载
当前位置:文档库 › 机器视觉-实验5

机器视觉-实验5

机器视觉-实验5
机器视觉-实验5

2.离线模式

图5.4 三维匹配演示界面

机器视觉系统设计五大难点

机器视觉系统设计五大难点 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明

Halcon机器视觉实验指导书

机器视觉软件HALCON 实验指导书 目录 实验1 HALCON 概述,应用范例 实验2 HDevelop介绍,操作编程范例 实验3 HALCON编程接口,高级语言编程 实验4 HALCON数据结构,采集硬件接口 实验5 HALCON采集硬件配置,图像采集 实验6 HALCON二维测量,配准测量与识别定位 实验7 HALCON一维测量,尺寸测量 实验8 HALCON三维测量,3D重建测量 实验1 HALCON 概述,应用范例 实验2 HDevelop介绍,操作编程范例 1 邮票分割 文件名: stamps.dev 第一个例子进行文件分析任务。图5.1展示了部分邮票目录页。它描述了两种不同的邮票:以图形描述为主和以文字描述为主。 为了使用这个例子,必须把文字描述转化为计算机所能理解的形式。你可能使用OCR编程方式,你很快发现由于邮票的图形描述会导致大多数的可使用模块产生错误。于是另一项任务必须要进行预处理:对所有的邮票进行转化(例如,把邮票转化为灰色有价值的纸),这样就可以使用OCR处

理邮票的剩余部分了。 当创造一个应用程序来解决这种问题,对要处理的对象进行特征提取是非常有帮助的。这个任务可以为新手提供解决的这类问题一些的经验。 ●一般而言,特征提取有如下步骤:邮票比纸要黑。 ●邮票包含图像的部分不重叠。 ●邮票具有最大最小尺寸。 ●邮票是长方形的。

图 5.1: Mi c he l图表的部分页. 如果直接使用属性清单而非编程,任务会变得很简单。可惜由于语言的含糊,这是不可能的。所以你需要建构具有精确的语法和语义的语言,尽可能接近非正式的描述。使用HDevelop语法,一个通常的程序看起来如下: dev_close_window () read_image (Catalog, ’swiss1.tiff’) get_image_pointer1 (Catalog, Pointer, Type, Width, Height) dev_open_window (0, 0,Width/2, Height/2, ’black’, WindowID) dev_set_part (0, 0,Height-1, Width-1) dev_set_draw (’fill’)

2018年机器视觉实验报告-范文模板 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 机器视觉实验报告 实验报告 课程名称: 班级: 姓名: 学号: 实验时间: 实验一 一.实验名称 Matlab软件的使用 二.实验内容 1.打开MATLAB软件,了解菜单栏、工具栏、状态栏、命令窗口等; 2.了解帮助文档help中演示内容demo有哪些; 3.找到工具箱类里面的Image Processing工具箱,并进行初步学习,为后续实验做准备。 三.实验原理: 通过matlab工具箱来进行图像处理 四.实验步骤 1. 双击桌面上的matlab图标,打开matlab软件 2. 了解菜单栏、工具栏、状态栏、命令窗口等

如下图1-1所示 图 1-1 3. 了解帮助文档help中演示内容demo有哪些; 步骤如下图1-2 图1-2 打开help内容demo后,里面的工具箱如图所示。 图1-3 4. 找到工具箱类里面的Image Processing工具箱,并进行初步学习,为后续实验做准备。找到并打开Image Processing工具箱,窗口如图1-4 ,图1-5所示 图 1-4 图 1-5 五.实验总结和分析 通过实验前的理论准备和老师的讲解,对matlab有了一定认识,在实验中,了解了实际操作中的步骤以及matlab中的图像处理工具箱及其功能,为后续的学习打下了基础,并把理论与实际相结合,更加深入的理解图像处理。 实验二 一.实验名称 图像的增强技术 二.实验内容 1.了解图像增强技术/方法的原理; 2.利用matlab软件,以某一用途为例,实现图像的增强; 3.通过程序的调试,初步了解图像处理命令的使用方法。 三.实验原理: 通过matlab工具箱来进行图像处理,通过输入MATLAB可以识别的语言命令来让MATLAB执行命令,实现图像的增强。

机器视觉简介

机器视觉概述 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 【应用领域】 机器视觉广泛应用于各个方面,广泛应用于微电子、PCB生产、自动驾驶、印刷、科学研究和军事等领域。 【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯/ 输入输出单元等。系统可再分为、主端电脑(Host Computer)、影像获取卡(Frame Grabber)与影像处理器、影像摄影机、CCTV镜头、显微镜头、照明设备、Halogen光源、LED光源高周波萤光灯源、闪光灯源、其他特殊光源、影像显示器、LCD、机构及控制系统、PLC、PC-Base控制器、精密桌台、伺服运动机台。 以上涵盖大部分的机器视觉系统组成部分,在本实验室中机器视觉的主要系统组成为:光源、工控机、工业相机、镜头;其中在进行算法设计时尽量的减少对于光源条件的依赖(实验室的光源性能一般,光照条件良好)。 图1 典型的机器视觉系统

图2 本实验室的机器视觉的主要组成 尽量以本实验室现有的实验条件为主,其他需要的部分按实际要求也可以添加。 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/ 不合格、有/ 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。

机器视觉系统模块的原理分析及设计

机器视觉系统模块的原理分析及设计 一、概述 视觉技术是近几十年来发展的一门新兴技术。机器视觉可以代替人类的视觉从事检验、目标跟踪、机器人导向等方面的工作,特别是在那些需要重复、迅速的从图象中获取精确信息的场合。尽管在目前硬件和软件技术条件下,机器视觉功能还处于初级水平,但其潜在的应用价值引起了世界各国的高度重视,发达国家如美国、日本、德国、法国等都投入了大量的人力物力进行研究,近年来已经在机器视觉的某些方面获得了突破性的进展,机器视觉在车辆安全技术、自动化技术等应用中也越来越显示出其重要价值。本文根据最新的CMOS 图像采集芯片设计了一种通用的视觉系统模块,经过编制不同的图像处理、模式识别算法程序本模块可以应用到足球机器人,无人车辆等各种场合。 二、设计原理 系统原理框图如图1所示。 系统包含5个主要芯片:图像采集芯片OV7620,高速微处理器SH4,大规模可编程阵列FPGA,和串口通讯控制芯片MAX232。FPGA内部编程设立两个双口RAM,产生图像传感器所需的点频,行场同步等信号,以及控制双口RAM的存储时序。SH4负责对OV7620通过I2C进行配置,读取双口RAM的图像数据,进行处理,并通过串口实现图像资料的上传或控制步进电机等其他设备。 三、图像采集模块 系统模块以CMOS图像传感器OV7620为核心,还包括一个聚光镜头和其他一些辅助

元器件比如27MHZ的晶振,电阻电容等。 COMS图像传感器是近几年发展较快的新型图像传感器,由于采用了相同COMS技术,因此可以将像素阵列与外围支持电路集成在同一块芯片上,是一个完整的图像系统(Camera on Chip)。本系统采用的是Ommnvision公司推出的一块CMOS彩色图像传感器OV7620,分辨率为640x480。它能工作在逐行扫描方式下,也能工作在隔行扫描方式下。它不仅能输出彩色图像,也可用作黑白图像传感器。这块芯片支持的图像输出格式有很多种: 1)YCrCb4:2:2 16 bit/8 bit格式;2)ZV端口输出格式;3)RGB原始数据16 bit/8 bit; 4)CCIR601/CCIR656格式。其功能包括有对比度、亮度、饱和度、白平衡及自动曝光、同步信号位置及极性输出,帧速率和输出格式等都可以通过I2C 总线进行编程配置片内寄存器控制。 聚光镜头选用桑来斯公司生产的DSL103镜头。此镜头体积小,适合嵌入式视觉传感器的应用场合。 四、FPGA接口模块 FPGA采用Xilinx公司的XC2S100,这款芯片内部集成了10000个逻辑门。接口程序采用VHDL(Very High Speed Integrated Circuit Hardware Description Language)书写。为了提高数据的传输速率,在XC2S100 内部分配了2个双口RAM缓冲区,其大小为127KB,每个双口RAM存储1行的图像数据。两组双口RAM进行奇偶行计数器进行切换。当一行存储完毕后,立即向SH4传生一个读取该行数据的中断的申请信号。FPGA内部结构如图2所示。 这里主要问题在于FPGA内部的双口RAM读写操作共用同一数据总线和地址总线,当同时进行读写操作的时候就会产生时序问题导致写入或读出的数据错误。在这两个过程中为了防止数据和地址总线冲突,在FPGA内部设计了一个中央总线仲裁器。根据公共数据传输的先后顺序,中央仲裁器先接受图像传感器的总线请求,当图像存储到RAM之中后,中央仲裁器才响应单片机系统的读信号请求。

二维影像测量仪实验报告

一、实验目的 采用影像测量仪验收印刷电路板。 要求: (1)学习并掌握影像测量仪的构成和工作原理; (2)通过实践,掌握影像测量仪的操作使用,包括仪器的调节、标定、瞄准、测量;(3)掌握仪器软件的使用,测量数据采集,数据处理,误差评定; (4)采用投射/反射照明测量,测量印刷电路板,要求测量BGA封装(至少测量10个焊盘)焊盘的尺寸、焊盘间距;至少测量十条引线的线宽和间距;至少测量10 个过孔的尺寸。 (5)对照设计图纸,给出合格性结论,形成测量报告。 (6)撰写实验报告,包括原理、步骤、数据与处理、结论等。 二、影像测量仪的构成和工作原理 (1)构成 影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。 图1总体结构

加工定制:否分辨率:0.001(mm)测量行程:250*150*200(mm) 品牌:贵阳新天型号:JVB250 放大倍率:光学0.7-4.5X 影像28-180X 操作方式:手动测量精度:(3+L/200)um 外形尺寸(长*宽*高):1000*650*1650(mm) JVB250的规格参数: ①测量范围: X坐标: 250mm Y坐标: 150mm 调焦行程: Z坐标: 200mm ②X、Y、坐标分辨率: 0.0005mm ③仪器准确度:(3+L/200)μm 其中L为被测长度,单位mm ④CCD摄像机:1/3″彩色摄像机,象素数:795(H)×596(V) ⑤物镜放大率: 0.7 ~ 4.5×连续变倍,影像放大28~ 180倍。 ⑥与放大率对应的物镜工作距离:75mm~90mm ⑦与放大率对应的物面最大高度:150mm~130mm ⑧工作台承重:30kg ⑨金属工作台尺:450mm×300mm ⑩主机外形尺寸:580mm×750mm×660mm (2)工作原理 影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。 被测工件置于工作台上,在投射或反射光照明下,工件影像被摄像头摄取并传送到计算机,此时可使用软件的影像、测量等功能,配合对工作台的坐标采集,对工件进行点、线、面全方位测量。 影像测量仪是利用表面光或轮廓光照明后,经变焦距物镜通过摄像镜头,摄取影像再通过S端子传送到电脑屏幕上,然后以十字线发生器在显示器上产生的视频十字线为基准对被测物进行瞄准测量。并通过工作台带动光学尺,在X、Y方向上移动由DC-3000多功能数据处理器进行数据处理,通过软件进行演算完成测量工作。影像测量主要是利

嵌入式机器视觉系统设计

嵌入式机器视觉系统设计 熊 超 田小芳 陆起涌 (复旦大学电子工程系 上海 200433) 摘要 机器视觉系统是智能机器人的一个重要标志,也是近年来的一个研究热点,现有研究成果在系统复杂度、价格和性能之间很难达到平衡。针对此问题,设计了一个CM O S摄像头为图像采集设备、DM CU为核心处理器的嵌入式机器视觉系统,并实现了实时双目测距。该系统简单、实时性好。 关键词 嵌入式系统 DM CU 机器视觉 双目测距 The Design of Embedded Machine Vision System Xiong Chao Tian Xiaofang Lu Qiyo ng (E.E.D ep ar tment,F udan U niv er sity,Shanghai200433,China) Abstract M achine vision is an act ive research area in recent years,which is an import ant symbol of intelligent robot,but t he present research product ion has not f ound a balance among the system complexit y,cost and per-formance.T o solve the problem,a new embedded machine vision system is proposed,which t akes t he CM OS sense as the image acquisit ion unit and DM CU as cent ral processor,and real-time depth measurement is realized. T he system is simple and st able,and has a good perf ormance in real-time operation. Key words Embedded syst em DM CU M achine vision Binocular dept h measurement 1 引 言 机器视觉系统是智能机器人的一个重要标志,其模拟了人的感知功能,具有探测范围宽、目标信息完整等优势,因此越来越受到人们的关注。其中,机器视觉测量障碍物距离是近年来的研究热点,并取得了一定的效果[1~3]。但这些视觉测距系统往往比较复杂、价格高,或者实时性差。在此设计了一个以CM OS摄像模块为图像采集设备、DM CU为核心处理器的嵌入式机器视觉系统,并实现了双目视觉实时测距。该系统集成度高、功耗低、实时性好,还有丰富的外围接口,可以广泛应用于智能机器人导航、目标定位等领域。 2 嵌入式系统设计 系统采用的摄像模块为台湾原相公司的CM OS 图像传感器PAS109B,工作电压2.4~3.6V,分辨率164×124,像素大小7.25 m×7.25 m,图像帧率最高60fps(frame per second),支持I2C接口。处理器采用台湾俊亿公司提供的DM CU处理器KBD0001B。DM-CU是为了适应现代便携设备发展而出现的一种全新体系结构,整合了DSP高效的运算能力和M CU强大的控制能力。K BD0001B字长16位,内部有RO M 32kW,有两种RA M:XRA M(16kW)和YRA M (8kW),可在一个时钟周期内分别从这两个RA M中得到两个操作数。K BD0001B运算速度最高可达25M IPS,采用了4级流水线结构,每条指令执行时间均为一个时钟周期。K BD0001B提供48个通用I/O接口,支持SPI、I2C、U A RT、PWM,内嵌了LCD控制器。 这里设计的机器视觉系统以K BD0001B为核心处理器,CM OS摄像模块为图像采集设备,大大降低该系统的复杂度。将该系统安装于一个移动小车上,通过双目视觉的方法测量障碍物的距离,实现了小车自主行驶和避障,如图1所示。 嵌入式机器视觉系统框图如图2所示。 为实时地测量障碍物距离,系统利用外极线约束[4]重整图像,这样每次只需分别从两图像传感器中 第26卷第8期增刊 仪 器 仪 表 学 报 2005年8月

机器视觉实验报告3

实验五图像的分割与边缘提取 一、实验内容 1.图像阂值分割 实验代码: clear all, close all; I=imread('flower.tif'); figure(1),imshow(I) figure(2); imhist(I) T=120/255; Ibw1=im2bw(I,T); figure(3); subplot(1,2,1), imshow(Ibw1); T=graythresh(I); L=uint8(T*255) Ibw2=im2bw(I,T); subplot(1,2,2), imshow(Ibw2); help im2bw; help graythresh; 运行结果:

实验代码: clear all, close all; I=imread('flower.tif'); figure(1),imshow(I) figure(2); imhist(I) T=240/255; Ibw1=im2bw(I,T); figure(3); subplot(1,2,1), imshow(Ibw1); T=graythresh(I); L=uint8(T*255) Ibw2=im2bw(I,T); subplot(1,2,2), imshow(Ibw2); help im2bw; help graythresh; 运行结果:

2.边缘检测 实验代码: clear all, close all; I=imread('flower.tif'); BW1=edge(I,'sobel'); BW2=edge(I,'canny'); BW3=edge(I,'prewitt'); BW4=edge(I,'roberts'); BWS=edge(I,'log'); figure(1), imshow(I), title('Original Image'); figure(2), imshow(BW1), title('sobel'); figure(3), imshow(BW2), title('canny'); figure(4), imshow(BW3), title('prewitt'); figure(5), imshow(BW4), title('roberts'); figure(6), imshow(BWS), title('log'); %在完成上述试验后,查看函数edge()使用说明。help edge 运行结果:

机器视觉在线检测详解

广东省东莞市莞城区莞太路34号东莞市创意产业中心园区8座502 Unit 502, Building 8, Creative Industry Center Park, No. 34 Guantai Road, Guancheng District, Dong Guan 523000, P.R.China 机器视觉在线检测详解 机器视觉的一个重要应用就是进行在线检测。这个与物体静止时的视觉检测系统不同,最起码图像摄取的速度要足够快才行,不然就不可能在被测物体运动时获取足够清晰的图像,再一个就是机器视觉软件的图像处理能力也要足够强,分析判断周期要够短,不然等反应过来了,产品可能都已经走出次品剔除系统的工作范围了。这样的机器视觉在线检测就是不合格的。 1 机器视觉在线检测的基本原理 基于机器视觉的在线检测系统的基本原理:首先通过视觉传感器获取高速流水线上运动待检测物体图像,图像传送到计算机后,计算机调用专用的图像处理软件来对检测物体进行检测、测量、分析、判断。多功能检测实验平台的硬件结构如图1所示,机器视觉在线检测系统的基本模块包括:传动装置、专用LED光源、图像采集模块、电气控制模块。 2 多功能检测实验平台运动控制部分设计 在这套系统中,运动控制部分选用工业PC+运动控制卡+步进电机的控制模式。运动控制卡是步进电机公司的MPC01。它配备了许多功能强大、内容丰富的运动控制软件工具和函数库。MPC01运动函数库用于二次开发,用户只要用C/C++或Visual Basic等编制所需的用户界面程序,并把它与MPC01

运动库链接起来,就可以开发出自己的控制系统。 3 专用LED光源 光源对图像质量的影响是至关重要的,考虑到本套试验平台将要进行各种物品的检测实验,开发设计了多种专用LED照明方案以适应各种不同的待检物体。直环型用于各种具有稳定照度和清晰图像的工件;狭角型用于各种透明工件或低对比度工件;棒型用于透明、光滑、镀金表面;圆顶型用于不平整或弯曲的表面检测,金属包片上的印刷字体或弯曲表面的孔穴;背光型用于透明材料或液体的检测;同轴型用于光滑、电镀、低反射表面。 4 高速图像采集系统 图像采集部分将完成流水线上的运动图像获取,采集图像质量的好坏将直接影响整个检测效率。图像采集部分主要由CCD摄像机完成。CCD摄像机摄取图像信号,由图像采集卡将图像信号采集进来。本套实验装置选用两个方位的摄像机对待检测物体进行检测,一个俯拍位一个侧拍位,对有些待检测物体可以进行多方位的检测。摄像机采用的是Pulnix公司的TM6703,采集卡选用Matrox 公司的Comora2。 4.1 图像采集卡 Matrox Corona Ⅱ是Matrox Graphics Inc.生产的图像控制器,可采集隔行扫描/逐行扫描的分量RGB信号和单/双路黑白模拟视频信号;3路10bit A/D转换器;24-bit RS-422/LVDS数字接口;模拟情况下采集率达到30MHz,RS-422数字模式下达25MHz,LVDS数字模式下达40MHz;连接2个RGB 或6个模拟黑白视频信号;32-bit/33MHz PCI总线主模式;扩展板上实时采

机器视觉教学大纲

《机器视觉》教学大纲 课程编码:08241059 课程名称:机器视觉 英文名称:MACHINE VISION 开课学期:7 学时/学分:36/2 (其中实验学时:4 ) 课程类型:专业方向选修课 开课专业:机械工程及自动化 选用教材:贾云得编著《机器视觉》科学出版社 2002年 主要参考书: 1.ROBOTICS: Control, Sensing, Vision, and Intelligence, K. S. Fu,McGraw-Hill Publishing Company, 1987 2.张广军编著,机器视觉,科学出版社,2005年 执笔人:孔德文 本课程主要内容包括:二值图像分析、图像预处理、边缘检测、图像分割、纹理分析、明暗分析、彩色感知、深度图与立体视觉。通过本课程的学习,学生应掌握机器视觉的基础理论、基本方法和实用算法。 一、课程性质、目的与任务 机器视觉课程是机械工程及自动化专业在智能机器方向的一门专业方向选修课。机器智能化是机械学科的重要发展方向,也是国际上跨学科的热门研究领域。而机器视觉是智能机器的重要组成部分,它与图象处理、模式识别、人工智能、人工神经网络以及神经物理学及认知科学等都有紧密的关系。本课程对于开阔学生视野、使学生了解本专业的发展前沿,把学生培养成面向二十一世纪的复合型人才具有重要的地位和作用。通过本课程的学习,学生也能掌握一定的科学研究方法与技能,为有潜力成为研究型人才的学生打下一定基础。 二、教学基本要求 本课程主要内容包括:二值图像分析、图像预处理、边缘检测、图像分割、纹理分析、明暗分析、深度图与立体视觉。通过本课程的学习,学生应掌握机器视觉的基础理论、基本方法和实用算法。 本大纲仅列出达到教学基本要求的课程内容,不限制讲述的体系、方式和方法,列出的内容并非要求都讲,有些内容,可以通过自学达到教学基本要求。 使用CAI课件作为辅助教学手段可以节省大量时间,传递更多的信息量,所以本课程建议使用CAI课件。 作业是检验学生学习情况的重要教学环节,为了帮助学生掌握课程的基本内容,培养分析、运算的能力,建议布置作业5-8次,并在期末前安排一次综合作业作为主要考查环节。实验是教学的一个主要环节,实验时间共4学时,每次实验每小组4-6人,使每个学生均有亲自操作的机会。 三、各章节内容及学时分配 1.人类视觉与机器视觉 (4学时) : 人类视觉原理与视觉信息的处理过程;机器视觉理论框架与应用;成像几何学基础。

人工智能课程大纲课程体系:《机器视觉技术》课程产品白皮书(2019V1.0)

《机器视觉技术》产品白皮书

目录 1引言........................................................................ - 3 -2产品概述.................................................................... - 4 - 2.1产品体系............................................................ - 4 - 2.2产品资源............................................................ - 5 -3产品介绍.................................................................... - 8 - 3.1机器视觉技术........................................................ - 8 - 3.1.1课程说明........................................................ - 8 - 3.1.2教学大纲....................................................... - 12 - 3.1.3教学指导....................................................... - 16 -4配套产品................................................................... - 19 - 4.1实验设备........................................................... - 19 - 4.2软件平台........................................................... - 24 -5技术支持................................................................... - 28 - 5.1.1升级服务....................................................... - 28 - 5.1.2师资培训....................................................... - 28 -

机器视觉系统设计五大难点【详解】

机器视觉系统设计五大难点 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的

软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS 其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号 1、照明 照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 过去,许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。但是,这些光源的一个最大缺点是光能不能保持稳定。以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。 另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

机器视觉与智能检测相关课题创新实践-实验报告

《机器视觉与智能检测相关创新实践》 课外实验报告 实验一、图像融合 1.实验内容: 对同一场景的红外图像和可见光图像进行融合,采用图1中的参考图形,以及自己 的手掌图像(可见光图像和红外光图像),并对结果进行简要分析,融合方法可采 用以下方法中的一种或多种:直接加权融合方法,傅里叶变换融合方法,小波变换 融合方法; 2.实验目标: 1). 了解融合的概念; 2). 比较融合方法中不同参数的效果(如直接加权融合中权值的分配) 3.参考图像: (a)红外图像(b)可见光图像 图1 待融合图像 4.实验内容 1)直接加权融合方法: 线性混合操作也是一种典型的二元(两个输入)的像素操作:

通过在范围内改变。 核心代码:image((Y1+Y2)/2); %权值相等 图2 直接融合图像1 图3 直接融合图像2 改变参数的影响:那个图的参数比例高,那个图在融合图像中的影响就越高。2)傅里叶变换融合:

对一张图像使用傅立叶变换就是将它分解成正弦和余弦两部分。也就是将图像从空间域(spatial domain)转换到频域(frequency domain)。然后通过在频域的处理来实现融合。 图4傅里叶变换融合图像1 图5 傅里叶变换融合2 3)小波融合: 小波变换(Wavelet Transform)是一种新型的工程数学工具,由于其具备的独特数学性质与视觉模型相近,因此,小波变换在图像处理领域也得到了广泛的运用。用在图像融合领域的小波变换,可以说是金字塔方法的直接拓展。

图6 小波融合1 图7 小波融合2 5.实验完整代码 1.直接融合 addpath('E:\学习\课件\机器视觉创新实践\曾东明') Y1=imread('1.PNG'); subplot(1,3,1); imshow(Y1); title(' 直接融合1.PNG');

实训一 机器视觉技术

实训一机器视觉技术 (一)机器视觉技术 1.目标→图像摄取装置(CMOS和CCD)→图像信号→图像处理系统→数字化信号 2.机器视觉系统组成部分:光源、镜头、相机、图像处理单元、图 象处理软件、监视器、输入/输出控制单元。 3.特点:提高生产的柔性和自动化程度。 4.应用:生产流水线的检测系统(汽车零件、纸币印刷质量)、智能 交通管理系统、金相分析、医疗图象分析、无人机、机器人等。 (二)机器视觉实训系统 大恒DHLAB-BASE-PY-AF型平移式机器视觉教学实验平台 组成部分:相机安装模块、光源安装模块、平台方形载板、运动控制面板 由组成部分可推测,在机器视觉系统识别物体时,相机的焦距、光源的种类、光圈的大小、曝光时间的长短、载板移动速度的大小都将会对获取图像产生不同的影响。 平台:速度可调;手动或自动运动模式; 摄像头:紧凑型数字摄像机 感光元件:1/1.8”CCD;分辨率为1628(H)x 1236(V);像素尺寸4.4um x 4.4um。

(三)实训内容 【1】一维条码检测 1. 条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符,在商品流通、图书管理、邮政管理、银行系统等许多领域都得到广泛的应用。 2. 摄像机位置离检测平面大概47cm,光源离检测平面约36cm。 3. 实验步骤如下: ①放置条形码在载物平台上,使其处于镜头正下方; ②调整焦距、改变光圈大小,使物体清晰,对比度高、明暗适中; ③利用计算机软件控制相机对物体成像; ④通过改变曝光量、增益、光源、载物台移动速度,观察成像结果并加以比较。 ⑤结果如下: 条形码A 不开光圈、无速度曝光量增益识别结果 1000 0 没有图像 2500 0 不能识别 60000 0 正确识别 60000 5 正确识别 60000 6.4 错误识别 60000 7 没有图像条形码B 不开光圈、无速度曝光量增益识别结果 60000 2 没有图像 60000 6.4 正确识别 60000 20 错误识别 35000 6.4 不能识别 40000 6.4 正确识别 开光圈曝光量增益识别结果 60000 6.4 没有图像 2000 6.4 正确识别 速度曝光量增益识别结果 小60000 6.4 正确识别

视觉检测实验报告1

视觉检测技术试验 题目:MV-BDP2000S视觉皮带传送试验台功能认识试验 学院:信息科学与工程学院 专业班级:测控技术与仪器1401 学号:14040110X 学生姓名:李二狗 指导教师:宋辉 设计时间:2017.11.06

目录 一、试验台介绍 (1) 1.1试验台主要构成 (1) 1.1.1机柜部分 (2) 1.1.2传送部分 (2) 1.1.3视觉检测部分 (2) 1.1.4分选机构部分 (2) 1.2主要器件的关键指标 (2) 1.2.1工业数字相机 (2) 1.2.2光源 (3) 二、仪器操作及配置流程 (4) 2.1视觉检测部分的调试 (4) 2.1.1调节相机前后位置的方法 (4) 2.1.2调节相机高度的方法 (5) 2.1.3调节光源高度的方法 (5) 2.2设备性能的调试 (6) 2.2.1运动性能调试的参数 (6) 2.2.1视觉检测性能调试的步骤 (6) 三、仪器主要测量指标分析 (7) 3.1OCR&OCV字符识别指标分析 (7) 3.3.1 OCR检测的参数 (7) 3.2 尺寸测量指标分析 (8) 3.2.1 尺寸测量的参数 (8) 四、仪器采集或测量的试样 (9) 4.1字符识别试验结果 (9) 4.2 尺寸测量试验结果 (10) 4.3 实验总结 (11)

一、试验台介绍 本次试验中以维视数字图像技术有限公司(MICROVISION)推出MV-BDP200S机器视觉皮带传送实验开发平台(高级型)作为主要的实验设备,主要针对小型电子产品的外形和外观检测等,应用于提供高效的产品质量控制系统。本设备采用MV-MVIPS机器视觉图像处理控制器软件,该软件具有强大的缺陷识别功能、测量功能、色差检测、OCR&OCV识别检测,主要针对检测各类小型机械或电子产品的外观和外形,对于OK和NG产品实施分类管理放置。同时硬件上设计了组合式的照明及控制系统,创造了一个最优的光照系统及相对封闭的工作环境,有效的解决了环境对检测精度的影响,同时满足了待检产品对光照条件的要求。运用强大的检测及分析软件工具对被测产品进行定位、测量、分析。 1.1试验台主要构成 从整体外观来看,设备可以分为以下几个部分:机柜部分、传送部分、视觉检测部分、分选机构部分。设备的整体视图如图1所示: 图1整体设备部分视图

基于机器视觉的表面缺陷检测系统设计

编号 本科生毕业设计 基于机器视觉的表面缺陷检测系统设计 Surface defect detection system design based on machine vision 学生姓名 专业电子信息工程 学号 指导教师 学院电子信息工程学院 二〇一三年六月

毕业设计(论文)原创承诺书 1.本人承诺:所呈交的毕业设计(论文)《基于机器视觉的表面缺陷检测系统设计》,是认真学习理解学校的《长春理工大学本科毕业设计(论文)工作条例》后,在教师的指导下,保质保量独立地完成了任务书中规定容,不弄虚作假,不抄袭别人的工作内容。 2.本人在毕业设计(论文)中引用他人的观点和研究成果,均在文中加以注释或以参考文献形式列出,对本文的研究工作做出重要贡献的个人和集体均已在文中注明。 3.在毕业设计(论文)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。 4.本人完全了解学校关于保存、使用毕业设计(论文)的规定,即:按照学校要求提交论文和相关材料的印刷本和电子版本;同意学校保留毕业设计(论文)的复印件和电子版本,允许被查阅和借阅;学校可以采用影印、缩印或其他复制手段保存毕业设计(论文),可以公布其中的全部或部分内容。 以上承诺的法律结果将完全由本人承担! 作者签名:年月日

中文摘要 为了不断提高产品质量和生产效率,金属工件表面缺陷在线自动检测技术在生产过程中显得日益重要。针对金属工件表面的多种缺陷,本文设计了一套基于机器视觉能够实现对金属工件表面缺陷进行实时在线、无损伤的自动检测系统。该系统采用面阵CCD和多通道图像采集卡作为图像采集部分,提高了检测系统的速度并降低了对CCD的性能要求,使系统在现有的条件下比较容易实现实时在线检测;采用自动选取图像分割阈值,根据实际应用的阈值把工件信息从图像中提取出来并扫描工件图像中的信息,实现了系统的自动测量;根据扫描得到的工件信息去除掉工件边缘的光圈,利用自动选取的阈值对金属工件表面的图像进行二值化分割,从而实现各种缺陷的自动提取及识别。 关键词:机器视觉表面缺陷CCD 图像处理缺陷检测

相关文档
相关文档 最新文档