文档库 最新最全的文档下载
当前位置:文档库 › 上海 解析几何综合测试题附答案

上海 解析几何综合测试题附答案

上海 解析几何综合测试题附答案
上海 解析几何综合测试题附答案

1.12F F 、是椭圆2

214

x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 .

2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;

以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +3

2

y =1的公共点有_______个.

3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2

=1的动点,则|PQ |的最小值为 .

4.若圆012222=-+-+a ax y x 与抛物线x y 2

1

2

=有两个公共点。则实数a 的范围为 .

5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围

是 .

6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.

7.经过两圆(x+3)2

+y 2

=13和x+2

(y+3)2

=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________

8.双曲线x 2

-y 2

=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________.

9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________.

10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =

x

1

上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线

y =-x +b 的距离等于

2

2

|MP 1|.其中所有正确命题的序号是____________. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( )

A.椭圆

B.AB 所在直线

C.线段AB

D.无轨迹

12.若点(x ,y )在椭圆4x 2+y 2=4上,则2

-x y

的最小值为( ) A.1

B.-1

C.-

3

23

D.以上都不对

13已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n

y 2

=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2=

3

π

2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3 B.m =24,n =6 C.m =6,n =

2

3

D.m =12,n =6

14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12.

A.直线

B.圆

C.椭圆

D.双曲线

三、解答题

15.(满分10分)如下图,过抛物线y 2=2px (p >0)上一定点P (x 0,y 0) (y 0>0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2).

(1)求该抛物线上纵坐标为2

p

的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求0

2

1y y y 的值,并证明直线AB 的斜率是非零常数.

16.(满分10分)如下图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b (a >0,b ≠0),且交抛物线y 2=2px (p >0)于M (x 1,y 1),N (x 2,y 2)两点.

(1)证明:11y +21y =b

1

;(2)当a =2p 时,求∠MON 的大小

.

(15题图) (16题图)

17.(满分10分) 已知椭圆C 的方程为22a x +22b y =1(a >b >0),双曲线22

a x -22b

y =1的两条渐近线

为l 1、l 2,过椭圆C 的右焦点F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B .(如下图)

(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;

(2)当FA =λAP 时,求λ的最大值.

(17题图) (18题图)

18.(满分10分)在平面直角坐标系xOy 中,抛物线2

y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如上图).

(Ⅰ)求AOB ?得重心G(即三角形三条中线的交点)的轨迹方程;

(Ⅱ)AOB ?的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

19.(满分12分)抛物线y 2=4px (p >0)的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.

(1)若线段AB 的垂直平分线交x 轴于N (x 0,0),求证:x 0>3p ;

(2)若直线l 的斜率依次为p ,p 2,p 3,…,线段AB 的垂直平分线与x 轴的交点依次为N 1,

N 2,N 3,…,当0

1110N N 的值.

20.(满分12分)设A 、B 是椭圆λ=+2

2

3y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.

(Ⅰ)确定λ的取值范围,并求直线AB 的方程;

(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.

解析几何综合题

1.12F F 、是椭圆2

214

x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 .

1答案:4

简解: 12||||PF PF ?≤2

212||||(

)42

PF PF a +== 2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,

n )为点P 的坐标,过点P 的一条直线与椭圆72x +3

2

y =1的公共点有____________个.

2答案:0

简解:将直线mx +ny -3=0变形代入圆方程x 2+y 2=3,消去x ,得

(m 2+n 2)y 2-6ny +9-3m 2=0. 令Δ<0得m 2+n 2<3. 又m 、n 不同时为零, ∴0

由0

3.P 是抛物线y 2

=x 上的动点,Q 是圆(x-3)2

+y 2

=1的动点,则|PQ |的最小值

为 . 3.答案:

2

11-1 简解:将问题转化为圆心到抛物线一上的动点的最小值

4.若圆0122

22=-+-+a ax y x 与抛物线x y 2

1

2

=

有两个公共点。则实数a 为 . 4.答案:8

17

=

a 或11<<-a 简解:将圆0122

22=-+-+a ax y x 与抛物线 x y 2

1

2

=

联立,消去y , 得 ).0(01)2

12(2

2

≥=-+--x a x a x

要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。

????

???>->-=?.

01021202a a 或???<->?.0102

a 解之 5

.若曲线y =

与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围

是 . 5.答案:314

k -<≤ 简解:

将曲线y =

转化为224x y -=时考虑纵坐标的范围;另外没有看清过点(2,-3)且与

渐近线y x =平行的直线与双曲线的位置关系。

6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.

6.答案:(x -2)2+(y+3)2=5 5.

简解:∵圆C 与y 轴交于A (0,-4),B (0,-2),

∴由垂径定理得圆心在y=-3这条直线上. 又已知圆心在直线2x -y -7=0上, y=-3,

2x -y -7=0.

∴圆心为(2,-3),

半径r=|AC|=2

2)]4(3[2---+=5.

∴所求圆C 的方程为(x -2)2+(y+3)2

=5.

7.经过两圆(x+3)2

+y 2

=13和x 2

+(y+3)2

=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________.. 7.答案:(x +

21)2+(y +27)2= 2

89

简解:因为所求的圆经过两圆(x+3)2+y 2=13和x+2(y+3)2=37的交点, 所以设所求圆的方程为(x+3)2+y 2-13+λ[x 2+(y+3)2-37]=0.

展开、配方、整理,得(x+λ+13)2+(y+λλ+13)2=λλ++1284+2

2)

1()1(9λλ++. 圆心为(-

λ+13,-λ

λ

+13),代入方程x -y -4=0,得λ=-7. 故所求圆的方程为(x+21)2+(y+27

)2= 2

89.

8.双曲线x2-y2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________. 8.答案:(-∞,0)∪(1,+∞)

简解:解析:数形结合法,与渐近线斜率比较.

9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________.

9.答案:.y 2

-48

2

x =1(y ≤-1)

简解:由题意|AC |=13,|BC |=15,

|AB |=14,又|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2.

故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c=7,a=1,b 2=48,所以轨迹方程为

∴联立

解得x =2,

y 2

-48

2

x =1(y ≤-1).

10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =

x

1

上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线y =-x +b 的距离等于2

2

|MP 1|.其中所有正确命题的序号是____________. 10答案:①②③

简解:由双曲线定义可知①正确,②画图由题意可知正确,③由距离公式及|MP 1|可知正确. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段AB

D.无轨迹

11.答案:C

简解:数形结合易知动点的轨迹是线段AB :y =3

4

x ,其中0≤x ≤3. 12.若点(x ,y )在椭圆4x 2+y 2=4上,则2

-x y

的最小值为( ) A.1

B.-1

C.-

3

23

D.以上都不对

12.答案:C

简解:

2-x y

的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y =k (x -2)代入椭圆方程(4+k 2)x 2-4k 2x +4k 2-4=0. 令Δ=0,k =±

3

23.∴k min =-

3

23.

13..已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n

y 2

=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2

3

π

2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3 B.m =24,n =6 C.m =6,n =

2

3

D.m =12,n =6

13.答案:A

简解:由条件求出椭圆方程即得m =12,n =3.

14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12.

A.直线

B.圆

C.椭圆

D.双曲线

14.答案:B

简解:延长F 1Q 与PF 2相交点R ,根据双曲线的定义,R 在以F 2为圆心的圆上, 利用代入法得

15.如下图,过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2).

(1)求该抛物线上纵坐标为

2

p

的点到其焦点F 的距离;

(2)当PA 与PB 的斜率存在且倾斜角互补时,求0

2

1y y y +的值,并证明直线AB 的斜率是非零常数.

解:(1)当y =

2p 时,x =8

p . 又抛物线y 2=2px 的准线方程为x =-2

p

, 由抛物线定义得 所求距离为

8p -(-2p )=8

5p . (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 由y 12=2px 1,y 02=2px 0,

相减得(y 1-y 0)(y 1+y 0)=2p (x 1-x 0), 故k PA =0101x x y y --=012y y p

+(x 1≠x 0).

同理可得k PB =

22y y p

+(x 2≠x 0).

由PA 、PB 倾斜角互补知k PA =-k PB ,

即012y y p +=-022y y p +,所以y 1+y 2=-2y 0, 故

2

1y y y +=-2. 设直线AB 的斜率为k AB . 由y 22=2px 2,y 12=2px 1,

相减得(y 2-y 1)(y 2+y 1)=2p (x 2-x 1),

所以k AB =1212x x y y --=212y y p

+(x 1≠x 2).

将y 1+y 2=-2y 0(y 0>0)代入得

k AB =212y y p +=-0

y p

,所以k AB 是非零常数.

16.如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b (a >0,b ≠0),且交抛物线y 2=2px (p >0)于M (x 1,y 1),N (x 2,y 2)两点.

(1)证明:

11y +21y =b

1

(2)当a =2p 时,求∠MON 的大小.

16证明:(1)直线l 的截距式方程为

a x +b

y

=1.①,由①及y 2=2px 消去x 可得by 2+2pay -2pab =0. ②解: 点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=b

pa

2-,y 1y 2=-2pa .

所以11y +21y =2121y y y y +=pa b pa

22--=b

1

.

(2)解:设直线OM 、ON 的斜率分别为k 1、k 2, 则k 1=11x y ,k 2=22x y .

当a =2p 时,由(2)知,y 1y 2=-2pa =-4p 2, 由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2, x 1x 2=

22214)(p y y =2

2

24)4(p

p =4p 2, 因此k 1k 2=2121x x y y =2

2

44p p -=-1.

所以OM ⊥ON ,即∠MON =90°.

17.已知椭圆C 的方程为22a x +22b y =1(a >b >0),双曲线22

a x -22b

y =1的两条渐近线为l 1、l 2,过椭

圆C 的右焦点F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B .(如下图)

(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程; (2)当=λ时,求λ的最大值. 17解:(1)∵双曲线的渐近线为y =±

a

b

x ,两渐近线夹角为60°,

a

b

<1, ∴∠POx =30°,即a

b

=tan30°=33.

∴a =3b . 又a 2+b 2=4, ∴a 2=3,b 2=1.

故椭圆C 的方程为3

2x +y 2

=1.

(2)由已知l :y =b a (x -c ),与y =a b x 解得P (c a 2,c

ab

),

由FA =λAP 得A (

λ

λ+?

+12

c a c ,λλ+?1c ab ). 将A 点坐标代入椭圆方程得 (c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2. ∴(e 2+λ)2+λ2=e 2(1+λ)2. (令a

c

e =

) ∴λ2

=2

22

4--e e e =-[(2-e 2)+222e -]+3≤3-22.

∴λ的最大值为2-1.

18.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如图4所示).

(Ⅰ)求AOB ?得重心G(即三角形三条中线的交点)的轨迹方程;

(Ⅱ)AOB ?的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

18解:(I )设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则???

????

+=+=33

21

21y y y x x x (1)

∵OA ⊥OB ∴1-=?OB OA k k ,即12121-=+y y x x , (2)

又点A ,B 在抛物线上,有2

2

2211,x y x y ==,代入(2)化简得121-=x x ∴3

2332)3(31]2)[(31)(31322212212

22121+=+?=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3

232

+=x y

(II )2

221212222212221222221212

1))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==?

由(I )得

1

22

12)1(221222122166

2616261=?=+-=+?≥++=

?x x x x S AOB 当且仅当6

2

61x x =即121-=-=x x 时,等号成立。 所以△AOB 的面积存在最小值,存在时求最小值1;

19.抛物线y 2=4px (p >0)的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.

(1)若线段AB 的垂直平分线交x 轴于N (x 0,0),求证:x 0>3p ;

(2)若直线l 的斜率依次为p ,p 2,p 3,…,线段AB 的垂直平分线与x 轴的交点依次为N 1,

N 2,N 3,…,当0

1110N N 的值.

19证明:设直线l 方程为y =k (x +p ),代入y 2=4px .

得k 2x 2+(2k 2p -4p )x +k 2p 2=0. Δ=4(k 2p -2p )2-4k 22k 2p 2>0, 得0

令A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=-2

242k p p k -,y 1+y 2=k (x 1+x 2+2p )=k p

4, AB 中点坐标为(2

22k p k p -,k p

2).

AB 垂直平分线为y -k p 2=-k 1

(x -2

22k p k p -).

令y =0,得x 0=2

22k

p

p k +=p +22k p . 由上可知0p +2p =3p . ∴x 0>3p .

(2)解:∵l 的斜率依次为p ,p 2,p 3,…时,AB 中垂线与x 轴交点依次为N 1,N 2,N 3,…(0

-n p ,0).

|N n N n +1|=|(p +

1

22-n p )-(p +

1

22+n p )|=1

22)1(2+-n p p ,

||1

1+n n N N =)

1(2212p p n -+,

所求的值为)1(212p -[p 3+p 4+…+p 21

]=)

1()1(2)1(2193p p p p +--

20.设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.

(Ⅰ)确定λ的取值范围,并求直线AB 的方程;

(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. 20解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得

.0)3()3(2)3(222=--+--+λk x k k x k ①

设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,

0])3(3)3([422>--+=?∴k k λ ②

)3,1(.3

)

3(22

21N k k k x x 由且+-=

+是线段AB 的中点,得 .3)3(,12

22

1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞).

于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A

.0))(())((33,

3212121212

2222121=+-++-??????=+=+y y y y x x x x y x y x λ

λ 依题意,.)

(3,2

12121y y x x k x x AB ++-

=∴≠

.

04),1(3).

,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ

(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分

代入椭圆方程,整理得

.04442=-++λx x ③

是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,

).

2

3

,21(,2

32,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且

于是由弦长公式可得

).3(2||)1

(1||432-=-?-+=λx x k

CD ④

将直线AB 的方程代入椭圆方程得,04=-+y x

.016842=-+-λx x ⑤

同理可得

.)12(2||1||212-=-?+=λx x k AB ⑥

.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当

假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为

.2232

|

423

21|2|4|00=-+-=-+=y x d ⑦

于是,由④、⑥、⑦式和勾股定理可得

.|2

|2321229|2|

||||2

2222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2|

|CD 为半径的圆上.

(注:上述解法中最后一步可按如下解法获得:

A 、

B 、

C 、

D 共圆?△ACD 为直角三角形,A 为直角即|,|||||2

DN CN AN ?=?

).2

|

|)(2||()2||(

2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212

-λ 由④和⑦知,⑧式右边=)2

2

32)3(2)(2232)3(2(--+-λλ ,2

12

292

3

-=-

-=

λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆 解法2:由(II )解法1及12>λ.

,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得

.04442=-++λx x ③

将直线AB 的方程,04=-+y x 代入椭圆方程,整理得 .016842=-+-λx x ⑤

解③和⑤式可得 .2

3

1,2122,4,321-±-=-±-

λλx x

不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A

∴)2

12

33,23123(

---+-+-+=λλλλ

)2

12

33,23123(

-------+=λλλλDA

计算可得0=?DA CA ,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

近四年上海高考解析几何试题

近四年上海高考解析几何试题 近四年上海高考解析几何试题一(填空题:只要求直接填写结果,每题填对得4分,否则一律得零分. 5221 ( 2005春季7 ) 双曲线的焦距是 . 9x,16y,162 (2005年3) 直角坐标平面中,若定点与动点满足,则点P的A(1,2)P(x,y)xoyOP,OA,4轨迹方程是 __________。解答:设点P的坐标是(x,y),则由知OP,OA,4 x,2y,4,x,2y,4,0 3 (2005年5) 若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是,,y,,3x10,0 b__________。解答:由双曲线的渐近线方程为,知,它的一个焦点是,知,,y,,3x,310,0a 2y222,因此双曲线的方程是 a,1,b,3x,,1a,b,109 ,,,x12cos,4 (2005年6) 将参数方程(为参数)化为普通方程,所得方程是 __________。 ,,y,2sin,, 22解答: (x,1),y,4 2225 (2006春季5) 已知圆和直线. 若圆与直线没l:3x,y,5,0C:(x,5),y,r(r,0)Cl有公共 r 点,则的取值范围是 . (0,10) 6 (2006春季11) 已知直线过点,且与轴、轴的正半轴分别交于两点,为坐 P(2,1)yxlA、BO标原 点,则三角形面积的最小值为 . 4. OAB 227 (2006年2) 已知圆,4,4,,0的圆心是点P,则点P到直线,,1,0的距离yxxyx

是 ; |201|,,2 解:由已知得圆心为:,由点到直线距离公式得:; P(2,0)d,,211,8 (2006年7) 已知椭圆中心在原点,一个焦点为F(,2,0),且长轴长是短轴长的2倍,则3 该椭圆的标准方程是 ; 2b,4, 2,abc,,2,23,2y,,x2解:已知为所 求; ,,,,,,a161,,222164abc,,,,,F(23,0),,, ,5,9 (2006年8)在极坐标系中,O是极点,设点A(4,),B(5,,),则?OAB的面积是 ; 36 ,,,55 解:如图?OAB中, ,,,,,,,,OAOBAOB4,5,2(()),366 15, (平方单位); ,,,S45sin5,AOB26 210 (2006年11) 若曲线,||,1与直线,,没有公共点,则、分别应满足的条件yyxkxbkb

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是_______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→ b 的坐标是 ________________. 3. 已知向量{}{}3,2,,1,1,1x b a ==→→, 如果→ →b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+=-3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线1 23z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线???=-+-=-+0 201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线? ??+==-+1022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的

方程分别是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是 ________________(请用x y x ,,的一个方程表示). 10.曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面. 二、单项选择题(本大题共10小题,每小题3分,共30分) 1. 若=?-+=+-=→ →→→→→→→→→b a k j i b k j i a 则,23,532( ) A. 7 B. -7 C. -1 D. 0 2. 已知→→b a ,不共线, 与→→b a ,同时垂直的单位向量是( ) A. →→?b a B. →→?a b C. ||→→→ →??±b a b a D. ||→→→→??b a b a 3. 在空间右手直角坐标系下,点P(-1,2,-3)在第( )卦限. A. II B. III C. V D. VI 4. 若两个非零向量→→b a ,满足|→→+b a |=|→→-b a |,则一定有( ) A. →→⊥b a B. →→b a // C. →→b a 与同向 D. → →b a 与反向 5. 点M(1,-3,-2)关于y 轴的对称点N 的坐标是( )

上海_解析几何综合测试题附答案

1.12F F 、是椭圆2 214 x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 . 2.若直线mx +ny -3=0与圆x 2+y 2 =3没有公共点,则m 、n 满足的关系式为____________; 以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +3 2 y =1的公共点有_______个. 3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2 =1的动点,则|PQ |的最小值为 . 4.若圆0122 2 2 =-+-+a ax y x 与抛物线x y 2 1 2 = 有两个公共点。则实数a 的围为 . 5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值围 是 . 6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 7.经过两圆(x+3)2 +y 2 =13和x+2 (y+3)2 =37的交点,且圆心在直线x -y -4=0上的圆的方程为____________ 8.双曲线x 2 -y 2 =1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化围是___________. 9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________. 10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y = x 1 上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2 +y 2 =2相切;③存在常数b ,使得M 到直线y = -x +b 的距离等于 2 2 |MP 1|.其中所有正确命题的序号是____________. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段AB D.无轨迹 12.若点(x ,y )在椭圆4x 2 +y 2 =4上,则2-x y 的最小值为( ) A.1 B.-1 C.- 3 23 D.以上都不对 13已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2= 3 π 2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3 B.m =24,n =6 C.m =6,n = 2 3 D.m =12,n =6 14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12. A.直线 B.圆 C.椭圆 D.双曲线 三、解答题 15.(满分10分)如下图,过抛物线y 2 =2px (p >0)上一定点P (x 0,y 0)

2019年上海市高三数学一模分类汇编:解析几何

2(2019黄浦一模). 双曲线2 2 12 y x -=的渐近线方程为 2(2019奉贤一模). 双曲线22 13y x -=的一条渐近线的一个方向向量(,)d u v =u r ,则u v = 2(2019金山一模). 抛物线24y x =的准线方程是 2(2019浦东一模). 抛物线24y x =的焦点坐标为 3(2019杨浦一模). 已知双曲线221x y -=,则其两条渐近线的夹角为 4(2019静安一模). 若直线22(273)(9)30a a x a y -++-+=与x 轴平行,则a 的值是 4(2019普陀一模). 若直线l 经过抛物线2 :4C y x =的焦点且其一个方向向量为(1,1)d =u r , 则直线l 的方程为 5(2019徐汇一模). 已知双曲线22221x y a b -=(0a >,0b >) 的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是 6(2019崇明一模). 在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 6(2019松江一模). 已知双曲线标准方程为2 213 x y -=,则其焦点到渐近线的距离为 7(2019闵行一模). 已知两条直线1:4230l x y +-=和2:210l x y ++=,则1l 与2l 的距离 为 7(2019崇明一模). 圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 8(2019虹口一模). 双曲线22 143 x y -=的焦点到其渐近线的距离为 8(2019奉贤一模). 椭圆2214x y t +=上任意一点到其中一个焦点的距离恒大于1,则t 的取值范围为 9(2019静安一模). 以两条直线1:20l x y +=和2:350l x y ++=的交点为圆心,并且与直线315x y ++相切的圆的方程是 12(2019徐汇一模). 已知圆22:(1)1M x y +-=,圆22 :(1)1N x y ++=,直线1l 、2l 分 别过圆心M 、N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是 椭圆22 194 x y +=上任意一点,则PA PB PC PD ?+?u u u r u u u r u u u r u u u r 的最小值为 12(2019黄浦一模). 如图,1l 、2l 是过点M 夹角为 3 π 的两条直线,且与圆心 为O ,半径长为1的圆分别相切,设圆周上一点P 到1l 、2l

2020年上海市高三数学二模分类汇编:解析几何(16区全)

3(2020闵行二模). 若直线10ax by ++=的方向向量为(1,1),则此直线的倾斜角为 3(2020松江二模). 已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点 P 的轨迹方程为 4(2020黄浦二模). 若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 4(2020宝山二模). 已知双曲线22 22:1x y C a b -=(0,0)a b >>的实轴与虚轴长度相等,则C 的渐近线方程是 4(2020奉贤二模). 已知P 为双曲线22 :1412 x y Γ+=上位于第一象限内的点,1F 、2F 分别 为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为 5(2020闵行二模). 已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为 5(2020青浦二模). 双曲线22 144x y -=的一个焦点到一条渐近线的距离是 6(2020金山二模). 已知双曲线2 221x y a -=(0)a >的一条渐近线方程为20x y -=,则实 数a = 7(2020黄浦二模). 已知双曲线22 221x y a b -=(0a >,0b >)的一条渐近线平行于直线 :210l y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 8(2020徐汇二模). 已知直线(2)(1)30a x a y ++--=的方向向量是直线 (1)(23)20a x a y -+++=的法向量,则实数a 的值为 8(2020浦东二模). 已知双曲线的渐近线方程为y x =±,且右焦点与抛物线24y x =的焦点重合,则这个双曲线的方程是 9(2020闵行二模). 已知直线1:l y x =,斜率为q (01q <<)的直线2l 与x 轴交于点A ,与y 轴交于点0(0,)B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B , 再过1B 作x 轴的平行线交1l 于点2A ,???,这样依次得线 段01B A 、11A B 、12B A 、22A B 、???、1n n B A -、n n A B , 记n x 为点n B 的横坐标,则lim n n x →∞ = 9. 一个水平放置的等轴双曲线型的拱桥桥洞如图所示,已知当 前拱桥的最高点离水面5米时,量得水面宽度30AB =米,则 当水面升高1米后,水面宽度为 米(精确到0.1米)

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

高中数学立体几何解析几何常考题汇总

新课标立体几何解析几何常考题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又 1111 D B AD D ?= A 1 E D 1 C 1 B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔 题目及参考答案 1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5 ,求双曲线方程. 解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =4 5 , 所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 2 12 =1. 2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为 CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF , 又BC ∩BF =B ,∴AE ⊥平面BCE . (2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD . 3、设椭圆的中心在原点,焦点在x 轴上,离心率e = 3 2 .已知点P ????0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程. 解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =3 2 得a =2b . |PM |2=x 2+????y -322=-3????y +1 22+4b 2+3(-b ≤y ≤b ), 若b <1 2,则当y =-b 时,|PM |2最大,即????b +322=7, 则b =7-32>1 2 ,故舍去. 若b ≥12时,则当y =-1 2时,|PM |2最大,即4b 2+3=7, 解得b 2=1. ∴所求方程为x 24 +y 2 =1. 4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB

向量代数与空间解析几何复习题

第七章 向量代数与空间解析几何 (一) 空间直角坐标系、向量及其线性运算 一、判断题 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量, =.则a =b 同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若+=+,则= ( ) 6. 向量b a , b a ,同向。 ( ) 7.若={ z y x a a a ,,},则平行于向量的单位向量为| |a a x a | |a z }。( ) 8.若一向量在另一向量上的投影为零,则此二向量共线。 ( ) 二、填空题 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量a 与b 有共同的始点,则与,共面且平分a 与b 的夹角的向量为 5. 已知向量与方向相反,且||2||a b =,则由表示为= 。 6. ,与轴l 的夹角为 6 π,则a l prj = 7. 已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。 以及它的对角线 交点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。 8. 设向量与坐标轴正向的夹角为α、β、γ,且已知α =ο 60,β=ο 120。则γ= 9. 设a 的方向角为α、β、γ,满足cos α=1时,a 垂直于 坐标面。 三、选择题

1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 2 . 已 知 梯 形 OABC 、 2 12 1 -21--2121-, ⊥ b + + - + < - +>-yoz 2AOB ∠42222)(b a b a ?=?a ?b a ???2 a b ??a ??b ωc a ρρ?0??≠a c b ??=b a ??=b a ?? ?22 2b b a a +?+??a b b a ???ρ?=?c b a ???、、a c b c b a ???????=?=,c b a ???、、b a ??,111,,γβα2 22,,γβαb a ∧ (2 12121cos cos cos cos cos cos γγββαα++) (b a ?∧3 π,8,5==b a ??b a ??-24,19,13=+==b a b a ??ρ?a b -v v 32)(π=∧b ?2 ,1==b a ??a b ?v v 72,26,3=?==b a b a ????b a ???}1,2,2{},4,3,4{=-=b a ??a }4,6,4{},2,3,2{--=-=b a ?? )(b ?∧b a ??,λb a P ???5+=λb a Q ???-=3MNP ∠π 4 3π2π 4π2a =0=?b a ??0??=a 0??=b c a b a c b a ???????-=-)(0??≠a c a b a ????=c b ??=}. 4,4,1{},2,3,{-==b x a ?? b a ??//}1,3,1{1},1,1,2{-=-= b a ?? b a ??、}2,1,2{}3,2,1{}1,3,2{=-=-=c b a ? ??、、d ?b a ??,. 14d c ?? ,求向量上的投影是312123 a a a b b b == 2222222 123123112233()()()a a a b b b a b a b a b ++++=++?..a C B c A B ????= =c a c a S ABD ρ?????= ?l l πππ⊥πππθ2 π πππ5πd 2 2212C B A D D ++-5 1 232-==-z y x { 7 421 253=+--=-+z y x z y x 1 3241z y x =+=-300 { x y z x y z ++=--={ 1240 322=+--=+-+z y x z y x 2 33211+=+=-z y x 1 0101z y x =-=+{ 0440 4=--=--y x z x ?? ? ??==+=4321z t y t x { 7 27 2=-+=++-z y x z y x

解析几何测试题

解析几何测试题 一、选择题 1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 2.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或- 2 3 D 、1或-3 3.直线经过点A (2,1),B (1,m 2 )两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4, 0[πππ ? C .]4 ,0[π D .),2 ()2,4[ ππ π π? 4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、0 53=-+y x 5.若直线42y kx k =++ k 的取值范围是 A .[1,+∞) B . [-1,-. .(-∞,-1] 6.椭圆1322=+ky x 的一个焦点坐标为)10(,, 则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 7.一动圆与圆O :x 2 +y 2 =1外切,与圆C :x 2 +y 2 -6x +8=0内切,那么动圆的圆心的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 8.如右图双曲线122 22=-b y a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P 点,且2130PF F ∠=?,则双曲线的渐近线是( ) A x y ±= B x y 2±= C x y 2±= D x y 4±= 9.设抛物线 x y 82 =的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

2019年高考数学分类汇编:专题九解析几何

第九篇:解析几何 一、选择题 1.【2018全国一卷8】设抛物线C :y 2 =4x 的焦点为F ,过点(–2,0)且斜率为 23 的直线与 C 交于M ,N 两点,则FM FN = A .5 B .6 C .7 D .8 2.【2018全国一卷11】已知双曲线C : 2 2 13 x y ,O 为坐标原点,F 为C 的右焦点,过 F 的直线与C 的两条渐近线的交点分别为 M 、N.若△OMN 为直角三角形,则 |MN |= A .32 B .3 C .23 D .4 3.【2018全国二卷5】双曲线2 2 2 21(0,0)x y a b a b 的离心率为 3,则其渐近线方程为 A .2y x B .3y x C .22 y x D .32 y x 4.【2018全国二卷12】已知1F ,2F 是椭圆2 2 2 21(0)x y C a b a b :的左、右焦点,A 是C 的 左顶点,点P 在过A 且斜率为36 的直线上,12PF F △为等腰三角形, 12120F F P , 则C 的离心率为 A .23 B .12 C . 13 D . 14 5.【2018全国三卷 6】直线2 0x y 分别与x 轴,y 轴交于A ,B 两点,点P 在圆 2 2 2 2x y 上,则 ABP △面积的取值范围是 A .26, B .48 ,C . 232 ,D .2232 ,6.【2018全国三卷11】设12F F ,是双曲线2 2 221x y C a b : (00a b ,)的左,右焦点, O 是坐标原点.过 2F 作C 的一条渐近线的垂线,垂足为 P .若1 6PF OP ,则C 的离

第六章 空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB u u u r 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB u u u r 的模;(3)AB u u u r 的方向余弦;(4)AB u u u r 方向上的单位向量. 解:(1)()3,8,2AB =-u u u r ,AB u u u r 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k r ;(2)AB =u u u r ;(3)AB u u u r (4)AB u u u r 382) i j k -++r r r . 2、设向量a r 和b r 夹角为60o ,且||5a =r ,||8b =r ,求||a b +r r ,||a b -r r . 解:||a b +==r r ||a b -= =r r =7. 3、已知向量{2,2,1}a =r ,{8,4,1}b =-r ,求 (1)平行于向量a r 的单位向量; (2)向量b r 的方向余弦. 解(1)3a = =r 平行于向量a r 的单位向量221{,,}333 ±; (2)9b ==r ,向量b r 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB u u u r =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0);

2019-2020年高考备考:2018年高考数学试题分类汇编----解析几何

见微知著,闻弦歌而知雅意 2019-2020届备考 青霄有路终须到,金榜无名誓不还! 2019-2020年备考 2018试题分类汇编---------解析几何 一、填空题 (1)直线与圆 1.(天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 1.2220x y x +-= 2.(全国卷I 文15)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.22 3.(全国卷III 理6改).直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上, 则ABP △面积的取值范围是__________. 3.[]26, 4.(天津理12)已知圆2220x y x +-=的圆心为 C ,直线2 1, 2232 x t y t ? =-+ ??? ?=-?? (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 4.1 2 5.(北京理7改)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变 化时,d 的最大值为__________. 5.3 6.(北京文7改)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如 图),点P 在其中一 段上,角α以OA 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是__________.

6.EF 7.(江苏12)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点, (5,0)B ,以AB 为直径的 圆C 与直线l 交于另一点D .若0AB CD ?=,则点A 的横坐标为__________. 7.3 8.(上海12)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y +=,则 11221 1 2 2 x y x y +-+-+ 的最大值为_________. 8.32+ (2)椭圆抛物线双曲线基本量 9.(浙江2 改)双曲线2 21 3 =x y -的焦点坐标是__________. 9.(?2,0),(2,0) 10.(上海2)双曲线2 214 x y -=的渐近线方程为_________. 10.12 y x =± 11.(上海13)设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离 之和为__________. 11.25 12.(北京文12)若双曲线2221(0)4x y a a -=>的离心率为5 2 ,则a =_________. 12.4 13.(北京文10)已知直线l 过点(1,0)且垂直于ε,若l 被抛物线24y ax =截 得的线段长为4,则抛物线 的焦点坐标为_________. 13.(1,0) 14.(全国卷II 理5 改)双曲线22 221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程 为_________. 14.2y x =± (3)圆锥曲线离心率

上海解析几何综合测试题附答案

2 2 — 13已知F 1 (— 3, 0)、F 2 (3, 0)是 椭圆 —+^ = 1的两个焦点,P 是椭圆上的点,当/ F PR = 2 n 时,△ F i PF 2的面积最大,则有( =12, n=3 =6, n= — 2 为双曲线C 上一点, 垂线,设垂 足为 Q F i 、F 2是双曲线 则Q 点的轨迹是 A.直线 三、解答题 15.(满分10分)如下图,过抛物线 B.圆 =24 , n=6 =12 , n=6 C 的两个焦点,过双曲线 ()12. C 的一个焦点F i 作/ F i PF 2的平分线的 C.椭圆 D.双曲线 y 2 =2px (p > 0)上一定点 P (x o , y o ) — 1. F 1、F 2是椭圆 y 2 1的左、右焦点,点P 在椭圆上运动,则I PF 1 I I PF 2 I 的最大值是 4 2 .若直线mxmy — 3=0与圆x 2 +y 2 =3没有公共点,贝U m n 满足的关系式为 ________________ 2 2 以(m n )为点P 的坐标,过点P 的一条直线与椭圆 —+^ =1的公共点有 __________________ 7 3 是抛物线y 2 =x 上的动点,Q 是圆(x-3) 2 +y 2 =1的动点,则丨PQI 的最小值为 . 1 x 有两个公共点。则实数a 的范围为 2 8. 双曲线X 2 — y 2 = 1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点) ,则直线PF 的斜率的 变化范围是 ____________ . 9. ______________________ 已知A ( 0, 7)、B ( 0, — 7 )、C (12, 2),以C 为一个焦点作过 A 、B 的椭圆,椭圆的另一个焦 点F 的轨迹方程是 . 1 10. 设P 1( 72, 4—)、R (― V 2,— V —), M 是双曲线y =」上位于第一象限的点,对于命题① x IMP — | MP=2,—:②以线段 MP 为直径的圆与圆 x 2 +y 2 =2相切;③存在常数 b ,使得M 到直线y= —x+b 的距离等于 —|MP.其中所有正确命题的序号是 ___________________ . — 11. 到两定点 A (0, 0) , B (3, 4) 距离之和为5的点的轨迹是( ) A.椭圆 所在直线 C.线段AB D.无轨迹 12 .若点(x , y )在椭圆4x 2 +y 2 =4上,则—的最小值为( ) x — B. — 1 C. — — -.;3 3 4.若圆x 2 2ax a 2 1 0与抛物线y 2 5 .若曲线 ■. x 2 4与直线y k(x 2)+3 有两个不同的公共点,则实数 k 的取值范围 是 _____ ? 6.圆心在直线 2x — y — 7=0上的圆 C 与y 轴交于两点 A (0,- 4)、B (0, - 2),则圆C 的方程为 7.经过两圆( x+3) 2 +y 2 =13 和 x+2 (y+3) 2 =37的交点,且圆心在直线 x — y — 4=0上的圆的方程为 D.以上都不对

相关文档
相关文档 最新文档