文档库 最新最全的文档下载
当前位置:文档库 › 周期信号画出单边幅度谱和相位谱

周期信号画出单边幅度谱和相位谱

周期信号画出单边幅度谱和相位谱

周期信号画出单边幅度谱和相位谱

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

MATLAB仿真实现经典谱估计(采用周期图法)

数字信号处理 课程实验报告 实验指导教师:黄启宏 实验名称 MATLAB 仿真实现经典谱估计(采用周期图法) 专业、班级 电子与通信工程 姓 名 张帅 实验地点 仿古楼301 实验日期 2013.11.17 一、实验内容 采用周期图法(直接法)实现经典谱估计。 二、实验目的 (1)掌握周期图法(直接法)估计出功率谱的步骤和方法; (2)在实验的过程中找到影响经典谱估计的因素; (3)了解周期图法(直接法)估计功率谱的缺陷。 三、实验原理 把随机信号()x n 的N 点观察数据()N x n 视为一能量有限信号,直接取得()N x n 傅里叶变换,得()jw N x e ,然后再取其幅值的平方,并除以N ,作为对()x n 真实的功率谱()jw P e 的估计。即为: ^ 21()|()|PER N P X N ωω= ^ 21()|()|PER N P k X k N = 四、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 一台安装MATLAB 软件的电脑

五、实验记录 程序、相关的图形、相关数据记录及分析)( %采用直接法(周期图法)估计功率谱; clear Fs = 1000;%采样频率 n = 0:1 /Fs: .3;%产生含有噪声的序列 xn = cos(200*pi*n)+0.1*randn(size(n)); subplot(311);%输出随机信号xn; plot(n,xn);xlabel('时间');ylabel('幅度');title('输入信号x(n)'); axis([0 0.3 -2 2]); grid on; window = boxcar( length( xn) ) ;%矩形窗 nfft = 512; [Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法 subplot(312) plot( f,10* log10( Pxx) ) ; title('直接法经典谱估计,512点'); xlabel('频率(Hz)'); ylabel('功率谱密度'); grid on; window = boxcar( length( xn) ); nfft = 1024;

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

功率谱图应用

1.基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

功率谱估计介绍(介绍了matlab函数)

功率谱估计介绍 谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。在matlab中,周期图法可以用函数periodogram实现。 周期图法估计出的功率谱不够精细,分辨率比较低。因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。 种称为分段平均周期图法,一般后者比前者效果好。加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT 等技术来计算功率谱。与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。matlab中,welch法用函数psd实现。调用格式如下: [Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP) X:输入样本数据 NFFT:FFT点数 Fs:采样率 WINDOW:窗类型 NOVERLAP,重叠长度 现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。可以分为参数模型谱估计和非参数模型谱估计。参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。由于涉及的问题太多,这里不再详述,可以参考有关资料。matlab中,现代谱估计的很多方法都可以实现。music方法用pmusic命令实现;pburg函数利用burg法实现功率谱估计;pyulear函数利用yule-walker算法实现功率谱估计等等。 另外,sptool工具箱也具有功率谱估计的功能。窗口化的操作界面很方便,而且有多种方法可以选择 在海杂波抑制的研究中,对海杂波谱分析一定要用到谱估计理论,一定得花时间学好!

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 2.1 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

功率谱

A.信号与谱的分类 注:功率谱计算的方法之一是由FFT后的谱线平方来得到。 由于时域信号有不同的分类, 变换后对应的频域也有不同的谱 信号可分为模拟(连续)信号和数字(离散)信号, 连续信号变换后称为谱密度, 离散信号变换 后称为谱. 连续信号又可分为绝对可积,平方可积(能量有限),均方可积(功率有限) 绝对可积信号有傅里叶谱(线性谱)和傅里叶谱密度(线性谱密度),如时域信号单位为电压V, 则前者单位为V,后者单位为V/Hz. 均方可积信号有功率谱PS(单位为V2)和功率谱密度PSD(单位为V2/ Hz.). 平方可积信号有能量谱密度ESD(单位为V2 s / Hz.). 注1平方量称为功率,平方量乘秒称为能量,谱分量除以频率称为谱密度. 注2功率谱密度另一定义(离散信号的功率谱密度)见下述, 连续信号的功率谱密度. 为连续(光滑)曲线, 离散信号的功率谱密度为不连续的阶梯形.. 注3随机信号求功率谱密度时为减少方差,可采用平均,重叠和加窗处理(Welch法). 数字信号又可分为绝对可和,平方可和,均方可和.

B.各种谱计算 1. 线性谱Linear Spectrum:对时域离散信号作DFT(离散傅里叶变换)得到, 采用方法为FFT(快速傅里叶变换)法.X(f)=FFT(x(t)) 2. 自功率谱APS=Auto Power Spectrum:离散信号的线性谱乘其共轭线性谱APS(f)=X(f)*conj(X(f)), conj=conjugate共轭(实部不变,虚部变符号). 3. 互功率谱CPS=Cross Power Spectrum::x(t)的线性谱乘y(t)的共轭线性谱互功率谱是复数,可表示为幅值和相位或实部和虚部等. CPS(f)=X(f) *conj(Y(f)) Y(f)=FFT(y(t)) 4. (自)功率谱密度PSD(=Power Spectrum Density):

计算功率谱密度

功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 一、直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 二、间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx); 三、改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

功率谱密度机器实现

1. 基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要内容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其内容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N -1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ??? ? ????+=∑-=∞ →2 j j e )(121lim )e (N N n n N xx n x N E P ωω ∑--=+= 1||0 *) ()(1 )(?m N n xx m n x n x N m r

用matlab实现功率谱仿真

功率谱估计性能分析及其MATLAB实现 一、经典功率谱估计分类简介 1.间接法 根据维纳-辛钦定理,1958年Blackman和Turkey给出了这一方法的具体实现,即先由N个观察值,估计出自相关函数,求自相关函数傅里叶变换,以此变换结果作为对功率谱的估计。 2.直接法 直接法功率谱估计是间接法功率谱估计的一个特例,又称为周期图法,它是把随机信号的N 个观察值直接进行傅里叶变换,得到,然后取其幅值的平方,再除以N,作为对功率谱的估计。 3.改进的周期图法 将N点的观察值分成L个数据段,每段的数据为M,然后计算L个数据段的周期图的平均,作为功率谱的估计,以此来改善用N点观察数据直接计算的周期图的方差特性。根据分段方法的不同,又可以分为Welch法和Bartlett法。 Welch法 所分的数据段可以互相重叠,选用的数据窗可以是任意窗。 Bartlett法 所分的数据段互不重叠,选用的数据窗是矩形窗。 二、经典功率谱估计的性能比较 1.仿真结果 为了比较经典功率谱估计的性能,本文采用的信号是高斯白噪声加两个正弦信号,采样率Fs=1000Hz,两个正弦信号的频率分别为f1=200Hz,f2=210Hz。所用数据长度N=400. 仿真结果如下:

(a)(b) (c)(d) (e)(f) Figure1经典功率谱估计的仿真结果 Figure1(a)示出了待估计信号的时域波形; Figure2(b)示出了用该数据段直接求出的周期图,所用的数据窗为矩形窗; Figure2(c)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为矩形窗,长度M=128,数据没有加窗; Figure2(d)是用BT法(间接法)求出的功率谱曲线,对自相关函数用的平滑窗为Hamming 窗,长度M=64,数据没有加窗; Figure2(e)是用Welch平均法求出的功率谱曲线,每段数据的长度为64点,重叠32点,使用的Hamming窗; Figure2(f)是用Welch平均法求出的功率谱曲线,每段数据的长度为100点,重叠48点,使用的Hamming窗;

周期图法估计功率谱

随机信号谱估计方法的Matlab实现 摘要: 功率谱估计是随机信号分析中的一个重要内容。从介绍功率谱的估计原理入手分析经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。经典功率谱估计的方差大、谱分辨率差,分辨率反比于有效信号的长度,但现代谱估计的分辨率不受此限制。给出了功率谱估计的应用。 关键词:功率谱估计;周期图法;AR参数法; 1 引言 在一般工程实际中,随机信号通常是无限长的,例如,传感器的温漂,不可能得到无限长时间的无限个观察结果来获得完全准确的温漂情况,即随机信号总体的情况,一般只能在有限的时间内得到有限个结果,即有限个样本,根据经验来近似地估计总体的分布。有时,甚至不需要知道随机信号总体地分布,而只需要知道其数字特征,如均值、方差、均方值、相关函数、功率谱的比较精确的情况即估计值。功率谱估计(PSD)是用有限长的数据估计信号的功率谱,它对于认识一个随机信号或其他应用方面都是重要的,是数字信号处理的重要研究内容之一。功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。 2 .平均周期图法和平滑平均周期图法 对于周期图的功率谱估计, 当数据长度N 太大时, 谱曲线起伏 加剧, 若N 太小, 谱的分辨率又不好,因此需要改进。两种改进的估

计法是平均周期图法和平滑平均周期图法。 (1)Bartlett 法: Bartlett 平均周期图的方法是将N 点的有限长序列x(n)分段求周期图再平均。 Matlab 代码示例1: fs=600; n=0:1/fs:1; xn=cos(2*pi*20*n)+3*cos(2*pi*90*n)+randn(size(n)); nfft=512; window=hamming(nfft); %矩形窗 noverlap=0;%数据无重叠 p=0.9;%置信概率 [Pxx,Pxxc]=psd(xn,nfft,fs,window,noverlap,p); index=0:round(nfft/2- 1); k=index*fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot_Pxxc=10*log10(Pxxc(index+1)); figure(1) plot(k,plot_Pxx); figure(2) plot(k,[plot_Pxx plot_Pxx- plot_Pxxc

周期图估计法

一种信号功率谱密度估计方法。它的特点是:为得到功率谱估值,先取信号序列的离散傅里叶变换,然后取其幅频特性的平方并除以序列长度N,即 (1) (2) 由于序列x(n)的离散傅里叶变换X()具有周期性,因而这种功率谱也具有周期性, 常称为周期图。早期的统计学者曾利用这种方法从大量的数据中寻找隐藏的周期性的规律。周期图是信号功率谱的一个有偏估值;而且,当信号序列的长度增大到无穷时,估值的方差不趋于零。因此,随着所取的信号序列长度的不同,所得到的周期图也不同,这种现象称为随机起伏。由于随机起伏大,使用周期图不能得到比较稳定的估值。一些学者对此作了改进。 为了减小随机起伏,M.S.巴特利特提出平均周期图法,即先把信号序列分为若干段,对每段分别计算其周期图,然后取各个周期图的平均作为功率谱的估值。平均周期图可以减小随机起伏,但是,如果信号序列不是足够长,由于每段序列长度变短,功率谱估值对不同频率成分的分辨能力也随之下降。另一种改进方法是将周期图与一个适当的频域窗函数相褶积,从而对周期图产生平滑作用,以减小随机起伏。加窗处理的结果虽然可以使随机起伏减小,但也会使周期图的分辨能力下降。 P.O.韦尔奇提出一种把加窗处理与平均处理结合起来的方法。先把分段的数据乘以窗函数(进行加窗处理),分别计算其周期图,然后进行平均。韦尔奇方法是较常用的一种计算方法。为了得到较好的功率谱估值,加窗和平均处理均应兼顾减小随机起伏和保证有足够的谱分辨率两个方面。 周期图法的优点是能应用离散傅里叶变换的快速算法来进行估值。对利用式(1)、(2)得到的功率谱估值进行傅里叶反变换,可以得到信号的自相关函数估值。这种方法适用于长信号序列的情况,在有足够的序列长度时,应用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。

随机信号的功率谱估计方法12页

数字信号处理II ——随机信号的功率谱估计方法 一、实验目的 1.利用自相关函数法和周期图法实现对随机信号的功率谱估计。 2.观察数据长度、自相关序列长度、信噪比、窗函数、平均次数等对谱估计的分辨率、稳 定性、主瓣宽度和旁瓣效应的影响。 3.学习使用FFT 提高谱估计的运算速度。 4.体会非参数化功率谱估计方法的优缺点。 二、实验原理与方法 假设信号()x n 为平稳随机过程,其自相关序列定义为: {}*()()()m E x n x n m φ+@ (0.1) 其中{}E ?表示取数学期望,{}*?表示取共轭。 根据定义,()x n 的功率谱密度()P w 与自相关序列()m φ存在如下关系: ()()j m m P m e ωωφ+∞-=-∞= ∑ (0.2) 1()()2j m m P e d πωπφωωπ-=? (0.3) 然而,实际中我们很难得到准确的自相关序列()m φ,只能通过随机信号的一段样本序列来估计信号的自相关序列,进而得到信号的功率谱估计。目前常用的线性谱估计方法有两种:自相关函数法和周期图方法,本实验将对这两种方法分别予以讨论。 1.自相关函数法 假设已知随机信号()x n 的N 个观测样本,则其自相关序列可以用下式进行估计:

||1*01?()()()||1||N m n m x n x n m m N N m φ--==+≤--∑ (0.4) 当仅使用长度为2M -1的自相关序列时,对其进行傅立叶变换即可得到功率谱估计如下: 1 1 ??()()M j m m M P m e ωωφ--=-+=∑ (0.5) 其中M 为加窗长度,Re ()c M W m 为矩形窗函数,定义如下: Re 1,||()0,||c M m M W m m M

周期图法功率谱估计------频谱泄漏及改进

周期图法功率谱估计——频谱泄漏及改进 刘兆田 1 简介 功率谱估计是随机信号处理的重要内容,功率谱估计的方法很多,一般分成经典谱估计(非参数估计)和现代谱估计(参数估计)。经典谱估计是建立在传统的傅里叶变换基础上的,经典谱估计又分为相关图法和周期图法。相关图法中,先由有限个观测数据估计自相关函数,然后计算自相关序列的傅里叶变换得到功率谱。周期图法直接对观测数据进行傅里叶变换,取模的平方,再除以N 得到功率谱。周期图法比相关图法简单,可用FFT 进行计算,得到了广泛的应用。 在周期图谱估计中,我们取一段有限长的数据进行傅里叶变换,相当于对原始信号作了矩形窗运算。输入数据通过一个窗函数相当于原始数据的频谱与窗函数频谱的卷积。窗函数的频谱由一个主瓣和几个旁瓣组成,主瓣以时域信号的每个频率成份为中心。旁瓣在主瓣的两侧以一定的间隔衰减至零。FFT 产生离散的频谱,出现在FFT 每个谱线的是在每个谱线上的连续卷积频谱。如果原始信号的频谱成份与FFT 中的谱线完全一致,这种情况下采样数据的长度为信号周期的整数倍,频谱中只有主瓣。没有出现旁瓣的原因是旁瓣正处在窗函数主瓣两侧采样频率间隔处的零分量点。如果时间序列的长度不是周期的整数倍,窗函数的连续频谱将偏离主瓣的中心,频率偏移量对应着信号频率和FFT 频率分辨率的差异,这个偏移导致了频谱中出现旁瓣,所以,窗函数的旁瓣特性直接影响着各频谱分量向相邻频谱的泄漏宽度。因此,周期图法功率谱估计中频谱泄露的改进办法既是选择合适的窗函数,尽量减少频谱泄露,改善功率谱估计的性能。 2 常用窗函数特性 运用matlab 编制程序绘制了常用窗函数及其频谱函数图,如图1所示。 n w/pi 幅度(d B ) n w/pi 幅度(d B ) n w/pi 幅度(d B ) n w/pi 幅度(d B ) n w/pi 幅度(d B ) n w/pi 幅度(d B ) 图1 常用窗函数及相应频谱特性 从图1可以看出,矩形窗主瓣宽度较窄,但旁瓣电平较高。 3 周期图功率谱估计中的频谱泄露改进 考虑如下随机过程,对其进行功率谱估计。其中1?,2?,3?为均匀分布的随机初始相

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换, 是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意:?1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)?2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。?功率谱与自相关函数是一个傅氏变换对。?功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。?1. 用相关函数的傅立叶变换来定义谱密度;?2.用随机过程的有限时间傅立叶变换来定义谱密度;?3. 用平稳随机过程的谱分解来定义谱密度。?三种定义方式对应于不同的用处,首先第一种方

信号的谱估计_周期图法

2007/2008年第二学期本科课程设计2-周期图法功率谱估计 一、 基本概念 在电子信息工程领域,有许多问题的解决需要我们估计一个随机过程在频率域上的功率分布,这样的问题有很多,譬如:设计滤波器消除噪声,信号的回波抵消,信号的特征抽取与表示等等。 谱估计的分类,通常分为两类,一类是参数法谱估计,一类是非参数法谱估计。参数法谱估计通常对数据进行建模,如把数据建模成滑动平均模型(Moving Average),或者自回归(Autoregressive)模型,而非参数法除了要求信号满足广义平稳之外,没有其它的统计假设。与非参数法相比较,参数法的优点是在一个给定的数据集合上能够有较少的偏差(Bias)与方差(Variance). 对于非参数法谱估计,常用的方法有: ? 周期图法 ? Bartlett 法(平均多个周期图, 采用不同数据块) ? 自相关法 (Blackman-Tukey 法) 在本课程设计中,我们将实现采用周期图法和Bartlett 法来对功率谱进行估计. 周期图的定义是: (1) 其中X (f )为随机信号的一次实现的频谱表示。 Bartlett 法(平均周期图)是对周期图法的改进。它是平均多个不同数据块的周期图估计结果. 平均周期图法的定义: (2) 22102|)(|1)(1)(?f X N e m x N f P N m fm j xx ==∑?=?π∑==K i i XX B xx f K f P P 1)()(1)(

图1:平均周期图法示意图 二.设计要求: 1.技术要求: 1)基本要求: 根据实验大纲,分别用周期图法和Bartlett法对给定的信号进行功率谱估计。 2) 提高要求: 实现周期图法中的Welch方法 2.报告要求 报告要求字迹工整,条理清楚,报告格式符合学术论文规范,包括论文名称、中英文摘要、引言/概述、正文、结束语,参考文献,最后给出本次课程设计总结,包括设计的创新点、现有不足与需要改进的地方及改进的建议和意见,鼓励和提倡创新。 三.成绩评定标准 完成(1)及格-中等-良好 完成(2)优秀 四.参考文献 [1]、《数字信号处理》——理论、算法与实现,清华大学胡广书编著,北京:清华大学出版社, 1997。 [2]、《现代谱估计原理与应用》[美]S.M.凯依著,黄建国等译,北京:科学出版社,1994。

burg算法和周期图法的比较

burg 算法和周期图法的比较 一、原理方法 1.burg 算法 burg 算法确定AR 模型的参数不需要估算自相关序列,这种方法是建立在线性预测基础上的,并用格型结构实现预测误差滤波器。在输入信号x(n)自左向右的传递过程中,可以同时得到不同阶次时的前向与后向预测误差,由此求出各阶反射系数,然后利用Levinson 关系即可由反射系数求得AR 参数。 2.周期图法 周期图法谱估计先由获得的N 点数据构成的有限长序列直接求出傅里叶变换,得到频谱,再取其频谱幅度的平方,并除以N ,以此作为对信号真实功率谱的估计。 3.matlab 知识 产生一个随机分布的指定均值和方差的矩阵:将randn 产生的结果乘以标准差,然后加上期望均值即可。例如,产生均值为0.6,方差为0.1的一个5*5的随机数方式如下: x=0.6+sqrt(0.1)*randn(5) 二、算法 1.burg 算法 1)步骤: ● 已知条件)()()(00n x m e m e b f == ● 求km 。∑∑-=--=---+-- =1 11 11)]} 1([)]({[)]1()([2N m n b m f m N m n b m f m m n e n e n e n e k ● 求)(m e f m 、)(m e b m )1()()(11-+=--n e k n e n e b m m f m f m ,)1 ()()(11-+=--n e k n e n e f m m b m b m ● 求)(i a m :1,...,2,1),()()(11-=-+=--m i i m a k i a i a m m m m ● 求m ρ:)1(2 1m m m k -=-ρρ,其中2σρ=p ● 计算功率谱)(jw e S 2 12 1)(∑=-+= p k jwk k jw e a e S σ 2.周期图法 1)步骤: ● 由获得的N 点数据构成的有限长序列xN(n)直接求傅里叶变换,的频谱)(jw N e X ,即

相关文档
相关文档 最新文档