文档库 最新最全的文档下载
当前位置:文档库 › 传感器误差的分析

传感器误差的分析

传感器误差的分析

对杠杆表和正弦规的使用和测量方法的几点浅见

对杠杆表和正弦规的使用和测量方法的几点浅见 摘要:杠杆表和正弦规是钳工实习中对工件进行测量时常用的量具,对其正确的使用和选择正确的测量方法,对保证工件质量起着至关重要的作用.用杠杆表结合正弦规对工件进行测量的方法与钳工其它常规量具来比,具有精度高,方便,快捷,误差位置反映准确等优点,尤其在复杂工件的测量中更具有不可替代的作用. 关键词; 正弦规杠杆表量块测量角度 作为一名钳工实习教师多年来的主要工作就是指导学生进行钳工实习课题的加工,而测量方法是保证工件质量的重要环节.杠杆表和正弦规在对复杂工件的测量和保证工件的加工质量方面比其它常规量具有较大的优势.杠杆表可以对一般工件的几何形状进行测量,还可以对一些小孔,槽,孔距等百分表难以测量的尺寸进行测量.杠杆表可细分为杠杆百分表和杠杆千分表.在钳工实习工件的加工中,可以根据测量精度的不同进行相应的选择.正弦规是根据直角三角形中正弦函数原理进行角度间接测量的一种量具.一般来说,正弦规只适合测量精度较高的小角度工件.因为这种间接测量角度方法的误差传递系数随着被测量角度的增大而增大,角度45度以上测量误差急剧增大,一般角度在30度以下使用正弦规较为适合.另外标准正弦规有100mm(两圆柱中心距离)和200mm两种规格.在此就杠杆表,正弦规的使用方法和在角度测量,对称度的控制以及复杂工件的尺寸检验方面谈几点浅见. 一,杠杆表的正确使用 1,测量时,应尽可能使测量杆轴线与工件被测量表面保持平行(如图一所示) 图一杠杆百分表的正确使用 2,测量时如无法使测量杆轴线图一杠杆表的正确使用 2,测量时如无法使测量杆与工件被测量表面保持平行时,测量的读数应乘以修正系数.(图二所示) 图二杠杆百分表读数的修正 即: H=Hcosα 式中: H—被测量表面实际变动量(mm) H—测量读数(mm) α—测量杠轴线与工件表面的夹角 二,正弦规的正确使用 在平板工作面与正弦规圆柱之间安放一组尺寸为H的量块,使正弦规工作面相对平板工作面倾斜一个角度α.α为被测角度的标称值,所用量块尺寸为H=Lsinα.L为已知,即两圆柱的中心距离( 如图三所示). 如被测工件表面角度与正弦规所垫起的角度相等,杠杆表在工件两端的读数相等.如杠杆表 测量工件两端的高低差为Δa,则被测量角度差Δα=〃. 例:两点的高度误差为:Δa=0.008mm ,L=70mm,则Δα= =23.6〃 如测量表面反映示值是被测件左方读数大于右方读数;则被测零件的实际角度α=30°00′23.6〃.如左方读数小于右方读数,则α=29°59′36.4〃.为了消除安装误差,在一次测量之后可将正弦规旋转180°再测一次,取两次测量的平均值为最后测量结果. 在量块的研合时,要有一定的要求和技巧,正确的方法是将两量块成30° 角交叉贴合在一起,用手前后微量地错动上面的一块,同时旋转,使两工作面转到相互平行的方向.然后沿工作面长边方向平行向前推进量块,直到两工作面全部贴合在一起. 在正常情况下,在研合过程中,手指能感到研合力,两量块不必用力就能贴附在一起.如研合力不大,可在旋转和推进研合时加一些压力.但压力不要太大,以免小尺寸量块变形.另外尺寸小于5mm的量块与大尺寸量块组合时,应将小尺寸量块放在下面,将大尺寸量块往小尺寸量块

压力传感器测量误差不确定度分析

线性压力传感器(静态)基本误差不确定度评定 吉林省计量科学研究院:张攀峰 李德辉 韩晓飞 孙俊峰 1、评定依据:JJG 860-1994 《压力传感器(静态)》 JJF 1059-1990 《测量不确定度评定与表示》 JJF 1094-2002 《测量仪器特性评定》 2、测量方法: 检定/校准、检测装置由标准器(在此为0.02级活塞式压力计)、压力源、三通接头用导压管连接起来而组成,导压管另一端与压力传感器(以下简称传感器)连接起来,连接处不得泄漏,外加对传感器供电电源,并由数字电压表读取传感器输出。通过采用多次循环测量确定被测传感器工作直线方程的方法进行检定/校准、检测。 3、数学模型 依据JJG 860 — 1994 压力传感器(静态)检定规程可知,线性压力传感器的基本误差公式为: A =±(ξS +ξLH )------(1) 式中:A ——传感器各检定/校准、检测点的基本误差(以绝对误差表示) ξLH ——传感器各检定/校准、检测点系统标准不确定度分量 3 方差和灵敏度系数 ()()() () 22 222212------+=LH S u C u C A u ξξ

式中:灵敏度系数C 1=C 2=1 则: 4 标准不确定度一览表 5 标准不确定度分量的计算 5.1 由被检定/校准、检测传感器重复性引起的标准不确定度u (ξS ): 用0.02级活塞压力计检定/校准、检测由北京中航机电技术公司生产CYB —IOS 型,编号为2H2883,测量范围为0—80MPa,0.25级传感器的0MPa 、10MPa 、20MPa 、30MPa 、40MPa 、50MPa 、60MPa 、70MPa 、80MPa 点,分别读取被检定/校准、检测传感器各点四个循环读数如下表所示: 传感器在整个测量范围内的标准偏差为s : ()()() () 3222------+=LH S u u A u ξξ) 4(21 2 1 2------+= ∑∑==m S S s m i Di m i Ii

6电容式传感器习题及解答

第6章电容式传感器 一、单项选择题 1、如将变面积型电容式传感器接成差动形式,则其灵敏度将()。 A. 保持不变 B.增大一倍 C. 减小一倍 D.增大两倍 2、差动电容传感器采用脉冲调宽电路作测量电路时,其输出电压正比于()。 A.C1-C2 B. C1-C2/C1+C2 C. C1+C2/C1-C2 D. ΔC1/C1+ΔC2/C2 3、当变隙式电容传感器的两极板极间的初始距离d0增加时,将引起传感器的() A.灵敏度K0增加B.灵敏度K0不变 C.非线性误差增加D.非线性误差减小 4、当变间隙式电容传感器两极板间的初始距离d增加时,将引起传感器的()。 A.灵敏度会增加 B.灵敏度会减小 C.非线性误差增加 D.非线性误差不变 5、用电容式传感器测量固体或液体物位时,应该选用()。 A.变间隙式 B.变面积式 C.变介电常数式 D.空气介质变间隙式 6、电容式传感器通常用来测量()。 A.交流电流 B.电场强度 C.重量 D.位移 7、电容式传感器可以测量()。 A.压力 B.加速度 C.电场强度 D.交流电压 8、电容式传感器等效电路不包括()。 A. 串联电阻 B. 谐振回路 C. 并联损耗电阻 D. 不等位电阻 9、关于差动脉冲宽度调制电路的说法正确的是()。 A. 适用于变极板距离和变介质型差动电容传感器 B. 适用于变极板距离差动电容传感器且为线性特性 C. 适用于变极板距离差动电容传感器且为非线性特性 D. 适用于变面积型差动电容传感器且为线性特性 10、下列不属于电容式传感器测量电路的是() A.调频测量电路 B.运算放大器电路 C.脉冲宽度调制电路 D.相敏检波电路 11、在二极管双T型交流电桥中输出的电压U的大小与()相关 A.仅电源电压的幅值和频率

互换性实验指导

实验8 普通螺纹中径尺寸测量和螺纹几何参数的综合检测 一、用螺纹千分尺测量螺纹中径 螺纹千分尺如图8-1所示。螺纹千分尺 主要用于测量螺纹的中径尺寸,其结构与外 径千分尺基本相同,只是砧座与测量头的形 状有所不同。其附有各种不同规格的测量 头,每一对测量头用于一定的螺距范围,测 量时可根据不同的螺距选取不同规格的测 量头。测量时,V形测量头与螺纹牙型的凸 起部分相吻合,锥形测量头与螺纹牙型沟槽图8-1 螺纹千分尺 部分相吻合,从固定套管和微分筒上可读出螺纹的中径尺寸。 二、用“三针法”测量外螺纹单一中径 在生产中,该测量具有方法简单、测量精度高的优点,应用广泛(测量原理见图8-2)。 根据被测螺纹的螺距选取合适直径的三根精密量针,按图示位置放在被测螺纹牙槽内, 再夹放在千分尺的两测头之间。外螺纹单一中径:d s 2=M-3d +0.866P(见教材P199)。 三、用螺纹塞规、环规综合检验内、外螺纹的合格性 图8-3所示为用环规检验外螺纹的图例,用卡规先检验外螺纹顶径的合格性,再用螺纹环规的通规检验,如能与被检测螺纹顺利旋合,则表明该外螺纹的作用中径合格。若被检测螺纹的单一中径合格,则螺纹环规的止规不能通过被检外螺纹(最多允许旋进2~3牙)。 用螺纹塞规检验内螺纹的的原理同上。 图8-2 用“三针法”测量外螺纹单一中径图 8-3用螺纹环规和光滑极限量规检验外螺纹实验9 圆锥锥角偏差测量和圆锥几何参数的综合检测 一、正弦规的工作原理和使用方法 正弦规结构简单,主要由主体工作平板和两个直径相同的精密圆柱组成,如图9-1所示。为了便于被测工件在工作平板的工作面上定位和定向,装有侧挡板和后挡板。 正弦规上两个精密圆柱的中心距尺寸精度很高,中心距有100、200mm等规格,如:中心距为100mm的极限偏差为土0.003或±0.002mm,同时,工作平板工作面的平面度精度以及两个精密圆柱的形状精度和它们之间的相互精度都很高,可以用作精密测量。

传感器和检测技术试题(卷)与答案解析

1.属于传感器动态特性指标的是(D ) A 重复性 B 线性度 C 灵敏度 D 固有频率 2 误差分类,下列不属于的是(B ) A 系统误差 B 绝对误差 C 随机误差D粗大误差 3、非线性度是表示校准(B )的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B ) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A 工作频率宽 B 线性范围宽 C 单位输入量引起的输出量大 D 允许输入量大 6 下列不属于按传感器的工作原理进行分类的传感器是(B) A 应变式传感器 B 化学型传感器 C 压电式传感器D热电式传感器 7 传感器主要完成两个方面的功能:检测和(D) A 测量B感知 C 信号调节 D 转换 8 回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A 多次测量 B 同次测量 C 正反行程 D 不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A 相对误差 B 绝对误差 C 引用误差D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2 系统误差可消除,那么随机误差也可消除。(×) 3 对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4 平均值就是真值。(×) 5 在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 测量值 相对真值 输入输出 测量误差

传感器的种类及特性分析

一、传感器地特性 ()传感器地动态性.动特性是指传感器对随时间变化地输入量地响应特性.动态特性输入 信号变化时,输出信号随时间变化而相应地变化,这个过程称为响应.传感器地动态特性是 指传感器对随时间变化地输入量地响应特性.动态特性好地传感器,当输入信号是随时间变 化地动态信号时,传感器能及时精确地跟踪输入信号,按照输入信号地变化规律输出信号. 当传感器输入信号地变化缓慢时,是容易跟踪地,但随着输入信号地变化加快,传感器地及时跟踪性能会逐渐下降.通常要求传感器不仅能精确地显示被测量地大小,而且还能复现被测量随时间变化地规律,这也是传感器地重要特性之一.文档来自于网络搜索 ()传感器地线性度.通常情况下,传感器地实际静态特性输出是条曲线而非直线.在实际 工作中,为使仪表具有均匀刻度地读数,常用一条拟合直线近似地代表实际地特性曲线、线性度(非线性误差)就是这个近似程度地一个性能指标.拟合直线地选取有多种方法.如将零输 入和满量程输出点相连地理论直线作为拟合直线;或将与特性曲线上各点偏差地平方和为最小地理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线.文档来自于网络搜索 ()传感器地灵敏度.灵敏度是指传感器在稳态工作情况下输出量变化△ 对输入量变化△ 地比值.它是输出一输入特性曲线地斜率.如果传感器地输出和输入之间显线性关系,则灵敏度是一个常数.否则,它将随输入量地变化而变化.灵敏度地量纲是输出、输入量地量纲之比.例如,某位移传感器,在位移变化时,输出电压变化为,则其灵敏度应表示为.当传感器地输 出、输入量地量纲相同时,灵敏度可理解为放大倍数.文档来自于网络搜索 ()传感器地稳定性.稳定性表示传感器在一个较长地时间内保持其性能参数地能力.理想地情况是不论什么时候,传感器地特性参数都不随时间变化.但实际上,随着时间地推移, 大多数传感器地特性会发生改变.这是因为敏感器件或构成传感器地部件,其特性会随时间发生变化,从而影响传感器地稳定性.文档来自于网络搜索 ()传感器地分辨力.分辨力是指传感器可能感受到地被测量地最小变化地能力.也就是说,如果输入量从某一非零值缓慢地变化.当输入变化值未超过某一数值时,传感器地输出 不会发生变化,即传感器对此输入量地变化是分辨不出来地.只有当输入量地变化超过分辨 力时,其输出才会发生变化.通常传感器在满量程范围内各点地分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化地输入量中地最大变化值作为衡量分辨力地指标.上述指 标若用满量程地百分比表示,则称为分辨率.文档来自于网络搜索 ()传感器地迟滞性.迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出输入特性曲线不一致地程度,通常用这两条曲线之间地最大差值△与满量程输出地百 分比表示.迟滞可由传感器内部元件存在能量地吸收造成.文档来自于网络搜索 ()传感器地重复性.重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致地程度.各条特性曲线越靠近,说明重复性越好,随机误差就越小.如图所 示为输出特性曲线地重复特性,正行程地最大重复性偏差为.反行程地最大重复性偏差为.取 这两个最大偏差中地较大者为,再以其占满量程输出地百分数表示,就是重复误差,即一士X ()重复性是反映传感器精密程度地重要指标.同时,重复性地好坏也与许多随机因素有关,它 属于随机误差,要用统计规律来确定.文档来自于网络搜索 二、常见地传感器种类 .电阻式传感器电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样地一种器件.主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件.文档来自于网络搜索 .变频功率传感器 变频功率传感器通过对输入地电压、电流信号进行交流采样,再将采样值通过电缆、光

传感器试题

2010-2011

填空题(每空 1.5 分,共30分) 2011-2012 1.按传感机理分,传感器可以分为和两类。 2.自源型传感器又称传感器,其敏感元件具有能直接从被测对象吸取能量并转换成 电量的效应。 3.传感器的动态特性是反映传感器对于随的的响应特性。 4.光纤传感器可以分成2大类型,分别为光纤传感器和 光纤传感器。 5.变磁阻式传感器是利用磁路磁阻变化引起传感器线圈的变化来检测非电量的机 电转换装置。 6.电容式传感器可以分为变极距型、和三种。 7.压电效应可分为和,压电式传感器是一种典型的双向无源传感器,在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件起来,而当以电压作为输出的时候则一般是把压电元件起来。 8. 热电阻传感器可以分为金属热电阻式和两大类,前者简称热电阻,后者简称。 9.光电器件的灵敏度可用光照特性来表征,它反映了光电器件与 之间的关系。光敏二极管在电路中工作可处于两种状态,即状态和状态。 单项选择题(每题2分,共20 分) 1、一阶传感器的动态特征参数是它的()。 B、灵敏度S C、时间常数 D、温漂 A、固有频率 n

2、传感器能感知的输入变化量越小,表示传感器的()。 A、线性度越好 B、迟滞越小 C、重复性越好 D、分辨力越高 3、压电传感器使用()测量电路时,输出电压几乎不受联接电缆长度变化的影响。 A、调制放大器 B、电荷放大器 C、电压放大器 4、半导体NTC热敏电阻随着温度的升高,其电阻率()。 A、上升 B、迅速下降 C、保持不变 5、()的基本工作原理是基于压阻效应。 A、金属应变片 B、压敏电阻 C、光敏电阻 D、半导体应变片 6、光电管是利用()效应制成的器件。 A、内光电 B、光伏 C、外光电 D、压阻 7、对于磁电式惯性振动传感器,为了使弹簧的变形量近似等于被测体的振幅,应该满足以下条件 A、弹性系数较小的弹簧和质量较大的质量块 B、弹性系数较大的弹簧和质量较小的质量块 C、弹性系数较大的弹簧和质量较大的质量块 D、弹簧的弹性系数和质量块的质量可以任意选取 8、光纤的集光性能可用()表示。 A、功率损耗 B、有效折射率 C、色散 D、数值孔径 9、将应变片粘贴在不同的弹性元件上,可以实现对()物理参数的测量。 A、位移 B、力 C、无损探伤 D、面积测量 10. 若进行旋转齿轮的转速测量,宜选用()传感器。 A、热电式 B、电容式 C、压电式 D、磁电式 简答题(共15 分) 1.简述压电效应产生的原理,什么是纵向压电效应和横向压电效应?(7分) 2 什么叫莫尔条纹?为什么利用莫尔条纹现象可以测微小位移?(8分)

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

《机械测量技术》1-21 正弦规的使用

理论课教案首页

教学 教学内容教师活动学生活动时间环节 一、正弦规的结构 导入 新课 进入 新课 1.原理 正弦规是利用三角法测量角度的一种精密量具。一 般用来测量带有锥度或角度的零件。因其测量结果,是 通过直三角形的正弦关系来计算的,所以称为正弦规。 2.组成 它主要由一准确钢制长方体—主体和固定在其两端 的两个相同直径的钢圆柱体组成。其两个圆柱体的中心 距要求很准确,两圆柱的轴心线距离L一般为100毫米 或200毫米两种,也有500毫米的。工作时,两圆柱轴线 与主体严格平衡,且与主体相切。 3.使用方法 图为利用正弦规测量圆锥量规的情况。在直角三角 形中,sinα=H/L,式中H为量块组尺寸,按被测角度的 公称角度算得。根据测微仪在两端的示值之差可求得被 测角度的误差。正弦规一般用于测量小于45°的角度,在 测量小于30°的角度时,精确度可达3″~5″。 信息反馈:

教学 环节 教学内容教师活动学生活动时间 新课4.技术要求 a、正弦规工作面不得有严重影响外观和使用性能的 裂痕、划痕、夹渣等缺陷。 b、正弦规主体工作面的硬度不得小于664HV,圆 柱工作面的硬度不得小于712HV,挡板工作面的硬度不 得小于478HV。 c、正弦规主体工作面的粗糙度Ra的最大允许值为 0.08μm,圆柱工作面的表面粗糙度Ra的最大允许值为 0.04μm,挡板工作面的表面粗糙度Ra的最大允许值为 1.25μm。 d、正弦规各零件均应去磁,主体和圆柱必须进行稳 定性处理。 e、正弦规应能装置成0°~80°范围内的任意角度, 其结构刚性和各零件强度应能适应磨削工作条件,各零 件应易于拆卸和修理。 f、正弦规的圆柱应采用螺钉可靠地固定在主体上, 且不得引起圆柱和主体变形;紧固后的螺钉不得露出圆 柱表面。主体上固定圆柱的螺孔不得露出工作面。 二、正弦规的用途 正弦规是用于准确检验零件及量规角度和锥度的量 具。它是利用三角函数的正弦关系来度量的,故称正弦 规或正弦尺、正弦台。既是测量用的工具,又可做为夹具, 在多品种小批量生产及新产品试制中应用极为广泛。 可以测量角度和锥度。 理解 读图1-2-4 记笔记 10` 信息反馈:

传感器课后答案解析

第1章概述 1.什么是传感器? 传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。 1.2传感器的共性是什么? 传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。 1.3传感器由哪几部分组成的? 由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。 1.4传感器如何进行分类? (1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。 1.5传感器技术的发展趋势有哪些? (1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化 1.6改善传感器性能的技术途径有哪些? (1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理 第2章传感器的基本特性 2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些? 答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。 2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化? 答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。 2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa 时输出为0mV,压力为0.12MPa时输出最大且为16.50mV. 非线性误差略 正反行程最大偏差?Hmax=0.1mV,所以γH=±?Hmax0.1100%=±%=±0.6%YFS16.50 重复性最大偏差为?Rmax=0.08,所以γR=±?Rmax0.08=±%=±0.48%YFS16.5 2.4什么是传感器的动态特性?如何分析传感器的动态特性? 传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。 传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。

温度传感器在测量中的四大误差

1、安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性。 热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2、绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3、热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。 当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。 4、热阻误差 高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断

正弦规

中华人民共和国机械行业标准—正弦规 JB/T7973-1999 正弦规代替JB/T7973-95 Sine bar 范围 本标准规定了精度等级为0级、1级正弦规的型式与尺寸、技术要求、检验方法、标志与包装等。 本标准适用于两圆柱中心距为100mm和200mm的正弦规。 定义 本标准采用下列定义。 正弦规 根据正弦函数原理,利用量块的组合尺寸,以间接方法测量角度的测量器具。 样式与尺寸 正弦规的型式见图1所示(图示仅作图解说明,不表示详细结构)。

图1完 正弦规的其本尺寸见表1的规定。 技术要求 1正弦规工作面不得有严重影响外观和使用性能的裂痕、划痕、锈迹、夹渣等缺陷。 2正弦规主体工作面的硬度不得小于664HV,圆柱工作面的硬度不得小于713HV,挡板工

作面的硬度不得小于478HV。 3正弦规主体工作面的表面粗糙度Ra的最大允许值为0.08μm,圆柱工作面的表面粗糙度Ra的最大允许值为0.04μm,挡板工作面的表面粗糙度Ra的最大允许值为1.25μm。 4正弦规的尺寸偏差、形位公差和综合误差见表2的规定 5正弦规各零件均应去磁,主体和圆柱必须进行稳定性处理 6正弦规应能装置成0°~80°范围内的任意角度,其结构刚性和各零件强度应能适应磨削工作条件,各零件应易于拆卸和修理。 7正弦规的圆柱应采用螺钉可靠地固定在主体上,且不得引起圆柱和主体变形;紧固后的螺钉不得露出圆柱表面。主体上固定圆柱的螺孔不得露出工作面。 检验方法 1圆柱工作面的圆柱度 如图2a)所示,以0级V型架支承圆柱,用分度值为0.001mm的测微仪在圆柱全长的中间及两端A、B、C三个截面上公别测理出转动一周时的最大值和最小值之差。 按图2b)放置圆柱,用分度值为0.001mm的测微仪在圆柱上相隔90°的四条母线(1,2,3,4)上,分别测出中间及两端A、B、C三个位置上的最大值和最小值之差。 两种测理差值中,取最大值,即为圆柱的圆柱度误差。

传感器作业——非线性误差分析

学生:XXX 学号:XXXXXXXXXXX 传感器的非线性误差 仪器仪表等测量工具的输入、输出(测量、结果)分别作为直角坐标系的纵轴、横轴,选择适合的坐标轴,并将理想的输入输出对应点标入坐标,可以得到一条理想输入输出关系曲线。将实际的输入输出对应点标入坐标,可以得到一条实际输入输出关系曲线。最理想的情况下这两条曲线应该重合,实际上是不可能做到的,这时两条曲线之间的距离就是非线性误差。 一、输入输出曲线的拟合方式: 1)直线拟合: 直线拟合大致想到以下几种方式: 1.以最大△y值判断最佳拟合直线: 由于只需要在传感器工作范围内拟合,故只在其工作范围内进行输入输出直线的拟合。用直线段在其范围内对其拟合,每段拟合直线段都将对应得到一个最大△y值,拟合直线不同,各自最大△y值也不同。其中最大△y值最小的直线,即为此种拟合方式下对应的最佳拟合直线。 2.以最小二乘法的方式得到最佳拟合直线: 以最小二乘方式拟合即为用其误差的平方和判断。在传感器工作范围内,用直线段对其进行拟合,每段拟合直线段都将对应得到一个误差的平方和值,拟合直线不同,各自误差的平方和也不同。其中误差的平方和最小的直线,即为此种拟合方式下对应的最佳拟合直线。 2)离散的方式拟合: 用阶梯型的曲线在工作范围内对其进行拟合。每两个阶梯之间的距离即为所用硬件计算的最小时间(或最小时间的2N倍),则最大误差△y由硬件的运算速度决定。 二、常用的非线性传感器的误差补偿方法: 非线性传感器的误差补偿方法从硬件方面讲,有补偿电路;从软件方面讲,有神经网络法、数据融合法等;此外也有将软件硬件技术结合起来的方法。 1)硬件补偿: 采用传感器电桥电路非线性误差的反馈补偿法。

水质检测化验的误差分析与数据处理

水质检测化验的误差分析与数据处理 对于废水水质监测误差,现在的实验室以往所运用的方法在准确性方面有所欠缺,本文采用直接测量数据、对间接误差进行检测、实测数据、检验结果处理等方式处理误差,通过分析,可以有效得出误差存在原因,并进行解决。现阶段的废水测量,一般是以第三方监测实验室与环保系统为主,为了保证检测数据的准确性,了解误差形成的原因以及能够造成的影响,将其中存在的无效数据排除,优化检测计划。由此可见,废水水质检测化验误差与处理方式的分析十分必要。 标签:水质检测;化验;误差;数据处理 现阶段水质检测存在的问题主要以误差为主,水质检测的误差存在于水质检测的各个方面,因而不受到检测条件的制约,需要相关技术人员具备误差分析与处理的能力,通过对数据信息的优化,使其符合区域水质的基本情况,进一步提升水质检测数据结果的可靠性。 1 水质检测过程中的误差 1.1 废水水质检测误差 所谓误差,即测量值和真实值二者之间所存在的差异。现阶段的水质检测工作地点为实验室,而检测人员利用不同的理化反应对水质进行定量、定性与分析,从而确定水质。废水真实值与固定值之间存在一定的差距,虽然已经进行了较为精确的预处理,测量取样时依然有差异存在,对其进行检查检测时,需要用到的仪器设备状态与实验室环境等也有相应的差异性,所以检测出现误差在所难免。然而这并不代表误差可以忽略,进行检测主要是为了最大程度的反映待测样品水质,所以对误差进行分析十分必要。 1.2 误差以及误差类别 1.2.1 绝对误差 绝对误差在水质检测过程中是不可避免,在任何的水质检验中绝对误差必然出现,其原因主要是受到差值的影响,检测值与真值之间形成的间隔即会形成绝对误差。通常情况下检测器皿与设备均无法做到绝对完美,因而在检测过程中,必然会有一定的误差存在,所以也就促成了检测值与真值的间隔存在。虽然绝对误差的产生无法避免,但绝对误差却难以对检测数据结果产生影响,通常情况下,检测结果需通过数据核准运算的方式进行计算,绝对误差可有效的被抛除在检测数据之外,因此绝对误差的存在并不会对水质的检测产生威胁。 1.2.2 随机误差 随机误差含有过多的不确定因素,因而随机误差的产生并非必然。在多数的

电容传感器测量纸张厚度..

精心整理 摘要 本次课程设计主要讲解电容式传感器的使用中的一部分,传感器技术是现代信息技术的主要内容之一。传感器是将能够感受到的及规定的被测量按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成,其中敏感元件是指传感器中能直接感受或响应被测量(输入量)的部分;转换元件是指传感器中能将敏感元件感受的或响应的被探测量转换成适于传输和测量 可以把 根据实 很小, 根 1.1 1.2 1.3简述设计的整体思路 (4) 第二章电容测厚装置的介绍 (6) 2.1详细介绍电容测厚装置 (6) 2.2设计匹配电路 (8) 第三章仿真设计及分析 (9) 3.1仿真电路的建立 (9) 3.2仿真结果的分析 (13)

第四章对课程设计进行试验 (15) 4.1实验过程 (15) 4.2分析仿真与试验结果的差异 (15) 第五章设计体会 (16)

第一章对布料厚度测量装置所做的调研 1.1厚度测量装置在工业环境下的意义 在现代高科技社会中,发展一些厚度测量装置具有非常重大的意义,厚度测量装置的使用将会大大的减少人力的投入,更加方便快捷的得到高精度,高质量的产品,此次我们研究得课题是布料厚度的测量,我们很容易联想到我们身边的各种丝质,棉质等布匹,但是如何在生产时得到等厚度的布料呢。这里就会用到厚度测量装置,运用电容式传感器对布料厚度进行测量,将会非常快捷, 1.2经过查微波,1.3当忽略边缘效应时,平板电容器的电容为 图1-1平板电容器简图 δ εεδεS S C O r ==(1.3-1) 式中:S ——极板面积; δ——极板间距离; o ε——真空介电常数,o ε=8.851-12-m 10F ?; r ε——相对介电常数;

零件的质量检测与分析课程标准10.8

无锡工艺职业技术学院 《零件的质量检测与分析》课程标准 1前言 1.1课程的性质 本课程是数控技术专业的一门专业技术课程。本课程是在学习《机械工程图的识读与绘制》、《工程材料的选用及热处理》的基础上开设的,为后续课程《零件的普通机床加工》、《零部件的手工制作与拆装》、《机械零件及传动的认识与选用》、《机械加工工艺文件识读与编制》、《零件的数控车削加工》等课程学习提供支撑,为今后职业能力和职业素质的培养打下良好的基础。 本课程通过任务驱动的项目化教学,培养学生掌握零件测量和产品检测的专业技能,同时养成“一丝不苟、精益求精”的职业素养;同时具有较强分析解决问题和创新能力;使学生获得典型机械零件的几何量公差控制标准的有关知识,以及掌握通用量具和有关精密测量仪器所必须的知识结构;从生产实际出发,重点培养学生针对检测任务,能正确选用计量器具对机械零件几何量进行检测、数据处理、合格性判断,能胜任质检工作岗位,并对机械加工、设计作技术基础。 1.2设计思路 本课程标准的总体设计思路:本课程的课程结构设置为项目引领型,以企业岗位职业能力为依据,培养学生的职业能力和可持续发展能力为出发点,围绕典型机械零件测量项目的需要来选择课程内容,变知识学科本位为职业能力本位,打破传统的学科型课程目标,从“项目与职业能力”分析出发,设定职业培养目标;变书本知识的传授为动手能力的培养,打破了传统知识传授方式的框架,以“工作项目”为主线,创设工作情景,培养学生的实践动手能力。 本课程标准以数控技术专业学生的就业为导向,根据数控行业专家对专业群

所涵盖的岗位群进行的任务和职业能力分析,以相应的岗位能力为依据,遵循学生认知规律,确定本课程的项目和课程内容。本课程以技能训练为主线,学做合一。按照常见几何量传统测量和精密测量等实践过程安排学习项目,使学生掌握通用量具和最新精密计量仪器的测量技能。为了充分体现任务引领、实践导向的课程思路,将本课程的教学活动分解设计成九个项目,以项目为单位组织教学,以典型零件为载体,其内容按照“操作从简单到复杂、被测零件精度从低级到高级、测量任务从单一到综合”思路设计教学过程,将有关国家标准等理论知识融合到项目中去,按照“做中学、学中做、教学做为一体”,推行理实一体化,在学习中设计学习情境,按照任务→信息→计划→实施→检查→评估六步实施教学。通过案件,让学生掌握有关互换性和检测技术的标准、标注、查表,掌握常用几何量测量技术的基本知识,具备正确选择计量器具、正确测量典型零件几何量的技能,培养学生的综合职业能力,满足学生职业生涯发展的需要。 该门课程的总学时为48课时,3个学分。 2课程目标 通过任务引领型的项目活动,掌握典型零件几何量测量技能及互换性相关理论知识,能完成本专业有关的检测岗位的工作任务,具有诚实、害信、善于沟通和合作的品质、具有“一丝不苟、精益求精”的职业素养,为发展职业能力奠定良好的基础。 职业能力培养目标 ●能掌握有关尺寸、公差制度知识和国家计量标准 ●能熟练使用游标卡尺、千分尺、内径百分表等通用量具测量尺寸误差并 分析 ●能使用百分表、磁性表座、平板、角尺、V型铁、厚薄规等测量平行度、 垂直度、圆跳动、同轴度等形位误差并分析 ●能使用螺纹千分尺、三针法、工具显微镜、螺纹量规等测量螺纹中径、 螺距、牙型角和综合检测并分析 ●能使用万能角尺、正弦规等测量角度、锥度误差并分析 ●能使用公法线千分尺、齿圈径向跳动仪、万能测齿仪等测量齿轮精度等 评定参数误差并分析 ●能使用三坐标测量仪测量几何量误差 ●能用计量器具对零件进行加工误差的综合测量并分析

电容传感器的误差分析

电容传感器的误差分析 摘要: 电容传感器具有高灵敏度、高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点,在测量荷重、位移、振动、角度、加速度的工业领域有着广泛的应用,随着新材料、新材料的应用,电容式传感器在我们日常生活中广泛的使用,如现在手机的电容式触摸屏,凭借其多点触控、不易误触等优点取代了电阻触摸屏;最近Apple公司推出的最新款手机Iphone5s的HOME键的指纹识别功能,也是使用电容传感器实现指纹采集的。电容传感器的高灵敏度、高精度的优点离不开精细的加工技术、正确的选材以及正确的设计。本文从不同方面考虑以发扬优点、克服缺点。 1、减小环境温度、湿度变化所产生的误差 温度变化使传感器内各零件的几何尺寸和相互位置及某些介质的介电常数发生改变,从而改变电容传感器的电容量,产生温度误差。湿度也影响某些介质的介电常数和绝缘电阻值。因此必须从选材、材料加工工艺等方面来减小温度等误差以保证绝缘材料具有高的绝缘性能。 电容传感器的金厲电极材料以选用温度系数低的铁镍合金为好,但较难加工也可釆用在陶瓷或石英上喷镀金或银的工艺,这样电极可以做得极薄,对减小边缘效应极为有利。 传感器内电极表面不便经常淸洗,应加以密封,用以防尘、防潮。若在电极表面镀以极薄的惰性金属(如铑等)层,则可代替密封件而起保护作用,可防尘、防湿、防腐蚀,并且可以在高温下减少表面损耗,降低温度系数,但成本较高。 传感器内电极的支架除要有一定的机械强度外还要有稳定的性能。因此选用温度系敷小和几何尺寸长期稳定性好,并具有髙的绝缘电阻、低的吸潮性和高的表面电阻的材料作为支架。例如,可以采用石英、云母、入造宝石及各种陶瓷,虽然它们较难加工,但性能远高于塑料、有机玻璃等材料。在温度不太高的环境下,聚四氟乙烯具有良好的绝缘性能,选用时也可予以考虑。 尽量采用空气或云母等介电常数的温度系数近似为零的电介质作为电容传

高程测量误差分析

水准测量误差分析 3.5.1水准测量的误差分析 水准测量误差包括仪器误差,观测误差和外界条件的影响三个方面。 (一) 仪器误差 ① 仪器校正后的残余误差 例如水准管轴与视准轴不平行,虽经校正仍然残存少量误差等。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 ② 水准尺误差 由于水准尺刻划不正确,尺长变化、弯曲等影响,会影响水准测量的精度,因此,水准尺须经过检验才能使用。至于尺的零点差,可在一水准测段中使测站为偶数的方法予以消除。 (二) 观测误差 ①水准管气泡居中误差 设水准管分划道为τ″,居中误差一般为±0.15τ″,采用符合式水准器时,气泡居中精度可提高一倍,故居中误差为 m =ρτ' '?'''±215.0·D 3-35 式中 D —水准仪到水准尺的距离。 ② 读数误差 在水准尺上估读数毫米数的误差,与人眼的分辨力、望远镜的放大倍率以及视线长度有关,通常按下式计算 m v =ρ' '?''D V 06 3-36 式中 V —望远镜的放大倍率; 60″—人眼的极限分辨能力。 ③ 视差影响 当存在视差时,十字丝平面与水准尺影像不重合,若眼睛观察的位置不同,便读出不同的读数,因而也会产生读数误差。 ④ 水准尺倾斜影响 水准尺倾斜将尺上读数增大,如水准尺倾斜033'?,在水准尺上1m 处读数时,将会产生2mm 的误差;若读数大于1m ,误差将超过2mm 。 (三)外界条件的影响 ① 仪器下沉 由于仪器下沉,使视线降低,从而引起高差误差。若采用“后、前、前、后”观测程序,可减弱其影响。 ② 尺垫下沉 如果在转点发生尺垫下沉,使下一站后视读数增大,这将引起高差误差。采用往返观测的方法,取成果的中数,可以减弱其影响。 ③ 地球曲率及大气折光影响 如式3-25所示 地球曲率与大气折光影响之和为 R D f 2 43.0?= 3-37

相关文档
相关文档 最新文档