文档库 最新最全的文档下载
当前位置:文档库 › 影响旋风除尘器除尘效率的因素分析 BB旋风除尘

影响旋风除尘器除尘效率的因素分析 BB旋风除尘

影响旋风除尘器除尘效率的因素分析 BB旋风除尘
影响旋风除尘器除尘效率的因素分析 BB旋风除尘

影响旋风除尘器除尘效率的因素分析 BB旋风除尘发表于 2010-07-19 和 12:01:01 | 作者: 平尺量具

影响旋风除尘器除尘效率的因素分析

旋风除尘器是利用含尘气流作旋转运动孕育发生的离心力将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比,具有结构简单、没有运动部件、造价便宜、除尘效率较高、维护管理利便以及适用面宽的特点,对于收集5~10 μm 以上的尘粒,其除尘效率可达90%左右。广泛用于工业炉窑烟气除尘和工厂通风除尘,工业气力输送系统气固两相离与物料气力烘焙回收等。此外,旋风器亦可以作为高浓度除尘系统的预除尘器,能与其他类型高效除尘器串联使用。旋风除尘器在粮食行业总得到了广泛的应用,如原料输送、加工、包装等生产环节的除尘。然而,许多粮食企业的旋风除尘器运行效率并不高,排放指标未到达设计要求,研究和探讨旋风除尘器除尘效率影响因素,对提高其除尘效率具

有重要的实际意义。

1 结构与原理

旋风除尘器按气流进气方式分为切流反转式、轴流反转式、直流式等。粮食行业除尘所使用的主要是切流反转式旋风器。含尘气体通过进口起旋器孕育发生旋转气流,进人旋风除尘器后,沿外壁自上而下作螺旋形旋转运动,这股向下旋转的气流到达锥体底部后,转而向上,沿轴心向上旋转。气流作旋转运动时,尘粒在惯性离心力的作用下移向外壁,在气流和重力配合作用下沿壁面落人灰斗,去除了粉尘的气体汇向轴心地区范围由排气芯管排出。

旋风除尘器的性能凡是以其处理量、效率、阻力降3个主要技术指标来表示。处理量系指除尘装置在单元时间内所能处理的含尘气体量,它决定于于装置的型式和结构尺寸;效率是除尘装置除去的粉尘量与未经除尘前含尘气体中所含粉尘量的百分比;阻力降有时称压力降,它代表含尘气体颠末除尘装置所消耗能+量大小的一个主要指标。压力损失大的除尘装置,在工作时能+量消耗就大,运转费

用高。

2 流体流动状况分析

旋风除尘器的气流是由切向、径向及轴向构成的复杂紊流状况。其中,切向速率在内、外旋流中方向相符,并且向外,其大小不同。切向速率在内旋流中随筒体半径的减小而减小,在外旋流中随筒体半径的减小而增加,在内、外旋流的交界面处达到最大值。切向分速率使粉尘颗粒在径向方向加速率的作用下孕育发生由内向外的离心沉降速率,从而把粉尘颗粒推到圆筒壁而被分离。径向速率和轴向速率较小,但在内外旋流中的方向纷歧致。径向速率在内旋流中方向朝外,在外旋流中方向朝内,在内、外旋流的交界面处形成一个假想的圆柱面。径向分速率要得粉尘颗粒在半径方向由外向内推到中心部涡核而随上升气流排离旋风除尘器,形成了旋风分离器的主流,要得旋风除尘器中气固相物质的较好分离。径向分速率的存在也导致了内旋气流在上升过程中流动状况的极端混乱,湍动剧烈形成大量旋涡,把在沉降段(圆筒部份)已和气体分离的尘粒重新又拌和起来,而此时尘粒恰恰又作径向运动(负沉降),它们自动地跑到旋涡里来,形成部分尘粒被气体一起排离旋风除尘器的二次扬尘征象,结果使旋风分离器效率降落。旋风器的边壁处和锥体气旋的互换处是二次扬尘的主要地区范围,轴向速率在筒体外壁

附近方向朝下,靠近轴心部分方向朝上,且在轴心底部速率最大,当气流由锥筒体底部反转上升时,会将已除下的粉尘重新带走,形成返混征象,影响除尘效率。此外,因为轴向分速率和径向分速率的存在,要得通例型旋风除尘器在工作时经常形成上灰环和下灰环,其中下灰环对于粉尘颗粒捕集分离有一定的作用,而上灰环的存在要得原来已被捕集分离在圆柱体边壁的粉尘先沿外筒壁向上移动,然后沿顶盖向内移动,又沿内筒的外壁向下移,最后短路而排离旋风器,减低除尘效率。由此可见,降服分离器分离效果不好的办法,必须从3方面着手:①消除“上灰环”避免尘粒走短路;②只管即便减少气体分离段的湍流,减低二次扬尘的机会;③降服尘粒在分离段的负沉降运动(径向运动)。

3 影响除尘效果的因素

3.1 除尘器结构

旋风除尘器的各个部件都有一定的尺寸比例,每一个比例关系的变动,都能影响旋风除尘器的效率和压力损失,其中除尘器直径、进气口尺寸、排气管直径为主要影响因素。在使用时应注重,当超过某一界限时,有利因素也能转化为倒霉因素。另外,有的因素对于提高除尘效率有利,但却会增加压力损失,故而对各因

素的调整必须兼顾。

3.1.1 进气口

旋风除尘器的进气口是形成旋转气流的关键部件,是影响除尘效率和压力损失的主要因素。切向进气的进口面积对除尘器有很大的影响,进气口面积相对于筒体断面钟头,进人除尘器的气流切线速率大,有利于粉尘的分离。

3.1.2 圆筒体直径和高度

圆筒体直径是构成旋风除尘器的最基本尺寸。旋转气流的切向速率对粉尘孕育发生的离心力与圆筒体直径成反比,在相同的切线速率下,简体直径D越小,气流的旋转半径越小,粒子受到的离心力越大,尘粒越容易被捕集。因此,应适当选择较小的圆筒体直径,但若简体直径选择过小,器壁与排气管太近,粒子又容易逃逸;筒体直径太小还容易引起拥塞,尤其是对于粘性物料。当处理风量较大时,因筒体直径小处理含尘风量有限,可采用几台旋风除尘器并联运行的要领解决。并联运行处理的风量为各除尘器处理风量之和,阻力仅为单个除尘器在处理它所承担的那部分风量的阻力。但并联使用制造比力复杂,所需材料也较多,气体易在进口处被阻挡而增大阻力,因此,并联使用时台数不宜过多。筒体总高度是指除尘器圆筒体和锥筒体两部分高度之和。增加筒体总高度,可增加气流在除尘器内的旋转圈数,使含尘气流中的粉尘与气流分离的机会增多,但筒体总高度增加,外旋流中向心力的径向速率使部分细淀粉尘进入内旋流的机会也随之增加,从而又减低除尘效率。筒体总高度一般以4倍的圆筒体直径为好,锥筒体部分,因为其半径不断减小,气流的切向速率不断增加,粉尘到达外壁的间隔也不断减小,除尘效果比圆筒体部分好。因此,在筒体总高度一定的情况下,适当增加锥筒体部分的高度,有利提高除尘效率,一般圆筒体部分的高度为其直径的1.5倍,锥筒体高度为圆筒体直径的2.5倍时,可获得较为理想的除尘效率。

3.1.3 排气管

排风管的直径和插入深度对旋风除尘器除尘效率影响较大。排风管直径必须选择一个合适的值,排风管直径减小,可减小内旋流的旋转范围,粉尘不易从排风管排出,有利提高除尘效率,但同时出风口速率增加,阻力损失增大;若增大排风管直径,虽阻力损失可明显减小,但因为排风管与圆筒体管壁太近,易形成内、外旋流“短路”征象,使外旋流中部分未被清除的粉尘直接混入排风管中排出,

从而减低除尘效率。一般认为排风管直径为圆筒体直径的0.5~0.6倍为好。排风管插入过浅,易造成进风口含尘气流直接进入排风管,影响除尘效率;排风管插入深,易增加气流与管壁的磨擦面,使其阻力损失增大,同时,使排风管与锥筒体底部间隔缩短,增加灰尘二次返混排出的机会。排风管插入深度一般以略低

于进风口底部的位置为好。

3.1.4 排灰口

排灰口的大小与结构对除尘效率有直接的影响,增大排灰口直径对提高除尘效率效率有利,但排灰口直径太大会导致粉尘的重新扬起。凡是采用排灰口直径

Do=(0.5-0.1)Dc。

3.2 操作工艺参量

在旋风除尘器尺寸和结构定型的情况下,其除尘效率关键在于运行因素的影响。

3.2.1 流速

旋风除尘器是利用离心力来除尘的,离心力愈大,除尘效果愈好。在圆周运动(或曲线运动)中粉尘所受到的离心力为F=ma,式中,F——离心力,N;m——粉尘的质量,kg;a——粉尘离心加速率,m/s2。

因为,a=VT2/R,式中,VT——尘粒的切向速率,m/s;R——气流的旋转半径,m,所以,F=mVT/R。可见,在旋风除尘器的结构固定(R不变)、粉尘相同(m稳定)的情况下,增加旋风除尘器人口的气流速率,旋风除尘器的离心力就愈大。

旋风除尘器的进口气量为Q=3600BVT,式中,Q——旋风除尘器的进口气量,m3/h; B——旋风除尘器的进口截面积,m2。

所以,在结构固定(R不变,B不变)、粉尘相同(m稳定)的情况下,除尘器人口的气流速率与进口气量成正比,而旋风除尘器的进口气量是由引风机的进风量决

定的。

可见,提高进风口气流速率,可增大除尘器内气流的切向速率,使粉尘受到的离心力增加,有利提高其除尘效率,同时,也可提高处理含尘风量。但进风口气流速率提高,径向和轴向速率也随之增大,紊流的影响增大。对每一种特定的粉尘旋风除尘器都有一个临界进风口气流速率,当超过这个风速后,紊流的影响比分离作用增加更快,使部分已分离的粉尘重新被带走,影响除尘效果。另外,进风口气流增加,除尘阻力也会急剧上升,压损增大,电耗增加。综合考虑旋风除尘器的除尘效果和经济性,进风口的气流速率控制在12~20 m/s之间,最大不超

过25m/s,一般选14m/s为好。

3.2.2 粉尘的状况

粉尘颗粒大小是影响出口浓度的关键因素。处于旋风除尘器外旋流的粉尘,在径向同时受到两种力的作用,一是由旋转气流的切向速率所孕育发生的离心力,使粉尘受到向外的推移作用;另一个是由旋转气流的径向速率所孕育发生的向心力,使粉尘受到向内的推移作用。在内、外旋流的交界面上,如果切向速率孕育发生的离心力大于径向速率孕育发生的向心力,则粉尘在惯性离心力的推动下向外壁移动,从而被分离出来;如果切向速率孕育发生的离心力小于径向速率孕育发生的向心力,则粉尘在向心力的推动下进入内旋流,最后经排风管排出。如果切向速率孕育发生的离心力等于径向速率孕育发生的向心力,即作用在粉尘颗粒上的外力等于零,从理论上讲,粉尘应在交界面上不停地旋转。实际上因为气流处于紊流状况及各种随机因素的影响,处于这类状况的粉尘有50%的可能进入内旋流,有50%的可能向外壁移动,除尘效率应为50%。此时分离的临界粉尘颗粒称为支解粒径。这时候,内、外旋流的交界面就象一张孔径为支解粒径的筛网,

大于支解粒径的粉尘被筛网截留并捕集下来,小于支解粒径的粉尘,则通过筛网

从排风管中排出。

旋风除尘器捕集下来的粉尘粒径愈小,该除尘器的除尘效率愈高。离心力的大小与粉尘颗粒有关,颗粒愈大,受到离心力愈大。当粉尘的粒径和切向速率愈大,径向速率和排风管的直径愈钟头,除尘效果愈好。气体中的灰分浓度也是影响出口浓度的关键因素。粉尘浓度增大时,粉尘易于凝聚,使较小的尘粒凝聚在一起而被捕集,同时,大颗粒向器壁移动过程中也会将小颗粒挟带至器壁或撞击而被分离。但因为除尘器内向下高速旋转的气流使其顶部的压力降落,部分气流也会挟带细小的尘粒沿外壁旋转向上到达顶部后,沿排气管外壁旋转向下由排气管排出,导致旋风除尘器的除尘效率不可能为100%。

根据除尘效率计较公式η=(1- So/Si)×100%,式中,η——除尘效率;So——出口处的粉尘的流人量,kg/h;Si——进口处的粉尘的流人量,kg/h。

因为旋风除尘器的除尘效率不可能为100%,当进口粉尘流人量增加后,除尘效率虽有提高,排气管排出粉尘的绝对量也会大大增加。所以,要使排放口的粉尘浓度减低,则要减低入口粉尘浓度,可采取多个旋风除尘器串联使用的多级除尘

方式,达到减少排放的目的。

3.2.3 运行的影响

旋风除尘器下部的严密性是影响除尘效率的又一个重要因素。含尘气体进人旋风除尘器后,沿外壁自上而下作螺旋形旋转运动,这股向下旋转的气流到达锥体底部后,转而向上,沿轴心向上旋转。旋风除尘器内的压力分布,是轴向各断面的压力变化较小,径向的压力变化较大(主要指静压),这是由气流的轴向速率和径向速率的分布决定的。气流在筒内作圆周运动,外侧的压力高于内侧,而在外壁附近静压最高,轴心处静压最低。即使旋风除尘器在正压下运动,轴心处也为负压,且一直延伸到排灰口处的负压最大,稍不严密,就会孕育发生较大的漏风,已沉集下来的粉尘势必被上升气流带出排气管。所以,要使除尘效率达到设计要求,就要保证排灰口的严密性,并在保证排灰口的严密性的情况下,实时清除除尘器锥体底部的粉尘,若不能连续实时地排出,高浓度粉尘就会在底部流转,

导致锥体过度磨损。

4 除尘器结构革新

在旋风除尘器的浩繁性能指标中,压力损失和分离效率是最为重要的参量,其症结是消除“上灰环”。解决上灰环问题的要领之一是通过设置灰尘隔离室,即采用旁路式旋风除尘器,它主要是在普通旋风除尘器的基础上增加一个螺旋形的旁路分离室,在除尘器顶部形成的上涡旋粉尘环,从旁路分离室引至锥体部分。这样可使导致除尘效率减低的二次流变为能起粉尘聚集作用的上涡旋气流,提高除尘效率。除此以外,还可通过添加导向叶片、改变气流进口形状等措施来消除上灰环。为了解决边壁处的二次扬尘问题,可采用环缝气垫耐磨旋风除尘器,它是在普通旋风除尘器内侧设置环缝套圈,粉尘在旋转气流作用下向边壁靠近,然后利用靠近边壁处的下行气流将粉尘带入环缝,因为环缝的存在,不仅可以减少二次扬尘,而且使高速旋转的上、下灰环消散,提高了除尘效率。但这些要领实际使用效果并非十分理想。现提出一种新的革新要领使旋风除尘器的分离性能得到

了极大提高。

这类新式旋风除尘器在结构上主要革新如次:①进口管下斜5~10°,使气流在旋转的同时保证了向下的旋转。并且下倾斜角确保了尘粒反弹时绝对折射朝下。在传统旋风除尘器结构中,进气蜗壳底板与旋风筒轴线是垂直的,因为气流从上

部切线方向进入除尘器后向下旋转,引起除尘器顶部倒空形成上涡旋气流孕育发生顶部灰环,灰环沿着排气管道外表面旋转向下时,会在排气管入口处与已净化废气的上旋气流混合,而后经排气管排出除尘器;②进口管采用了180°的半圈螺旋管取代了传统型的直吹进筒,从而进一步保证了气流的“下旋”。传统型是含粉尘的气体进筒后才旋转,而革新式则是确保尘气高速旋转起来后才进筒;③进口螺旋道截面递减,增大了气流旋转的离心力。含粉尘的气体在螺旋道中实现1.4倍加速。提高了尘粒的惯性,减低了尘粒沉降的时间;④锥体长度加长并采用20°小锥角,增加了气流在分离器中的停留时间,有利于小颗粒的沉降纯粹,且使向下旋转的气体平缓地转变成折转向上的旋转,从而使除尘效率得以提高;

⑤除尘器下设缓冲料斗,有效改善废气在筒体内的流动工况,减少了灰斗的反混征象和下灰环可能孕育发生的二次扬尘;⑥出风管增长,直到螺旋轨道的底部,防止了内侧部分尘粒裹进出风管;⑦进口、加速段、出口的截面积之比扩大为1:0.7:2,即出口风速是进口速率的一半;出口风速是内部加速段的1/3。革新式除尘器粒子的离心力比在传统型除尘器中的离心力增大了1.4倍以上。而出口处,负压对粒子的吸力比传统型约小了1/4。因此,气流进筒后,尘粒因惯性大,要得稍小些的颗粒在气流在旋风除尘器中停留时间内也能得到分离。出风风速减低,也要得部分细小颗粒能摆脱上升气流的吸力而有机会沉降下来,从而实施分

离。

如何提高旋风除尘器除尘效率是时下粮食行业

需要解决的一个重要课题。研究和分析影响旋风除尘器除尘效率的因素,是设计、选用、管理和维护旋风除尘器的前提,也是探求提高旋风除尘器除尘效率途径的必由之路。因为旋风除尘器内气流速率及粉尘微粒的运动等都较为复杂,影响其除尘效率的因素较多,需要我们进行全面分析,综合考虑,追求最优设计方案和运行管理要领。时下,旋风除尘器许多理论还待研究和探讨,尽管如此,旋风除尘器仍以其结构简单、体积小、制造维修利便、除尘效率较为理想等长处,成为目前粮食企业主要除尘装备之一。随着对旋风除尘器熟悉的进一步的深入和完善,它势必在粮食行业除尘中发挥更大的作用。

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 编辑本段行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器 JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器

旋风除尘器性能测试实验三

旋风除尘器性能测试 一、实验目的和意义 旋风除尘器是最常用的除尘装置,它是利用设备结构形状及流体自身动力促使含尘气流高速旋转从而实现气固分离的一种中效除尘设备。通过本实验,使学生了解旋风除尘器除尘过程,掌握旋风除尘器性能测定的主要内容和方法,较全面了解影响旋风除尘器性能的主要因素,掌握旋风除尘器入口风速与阻力、全效率、分级效率之间的关系以及入口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响。 二、实验原理 1.空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.0132l05Pa,T=273K)来表示的。为了便于比较和应用,通常要将实际测定烟气状态参数,换算为标准状态下空气的参数。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: 式中:ρg一烟气密度,kg/m3; p—大气压力,Pa; T—烟气温度,K。 实验过程中,要求烟气相对湿度不大于75%。

2. 除尘器处理风量的测定和计算 测量烟气流量的仪器利用S型毕托管和倾斜压力计。 S型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图3-1所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图3-1 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s的气流中进行比较,S型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在 5~30m/s的范围内,其校正系数值约为0.84。S型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C之间,烟气绝对压力在 0.99~1.032105Pa时,可用下列公式计算烟气人口流速:

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

各类除尘器优缺点

各类除尘器优缺点

§1除尘器总论 1-1除尘器评定指标 评定除尘器工作性能的主要指标有: 除尘效率, 阻力, 经济性等. 1、除尘效率:系指除尘器捕集下来的粉尘量与进入除尘器的粉尘量之比. 根据总除尘效率, 除尘器可分为: 低效除尘器(50~80%), 中效除尘器(80~95%)和高效除尘器(95%以上)。 2、阻力:表示气流通过除尘器时的压力损失。据阻力大小除尘器可分为: 低阻除尘器(ΔP<500Pa), 中阻除尘器(ΔP=500~2000Pa)和高阻除尘器(ΔP=2000~20000Pa)。 3、经济性:是评定除尘器的重要指标之一, 它包括除尘器的设备费和运行维护费两部分. 在各种除尘器中, 以电除尘器的设备费最高, 袋式除尘器次之, 文氏管除尘器, 旋风除尘器最低。 1-2除尘机理 所谓除尘, 就是利用一定的外力作用使粉尘从空气中分离出来, 它是一个物理过程. 使粉尘从空气中分离的作用力主要有: 1、机械力: 包括重力, 离心力和惯性力; 2、阻留作用: 包括介质的筛滤作用, 尘气绕流的接触阻留作用和扩散接触阻留作用; 3、凝聚作用: 通过加湿, 蒸汽凝结, 超声波等作用, 使细尘粒凝聚而从空气中分离; 4、静电力:利用静电力使带电尘粒从空气中分离; 5、扩散:粒径小于0.3微米的粉尘。

1-3除尘器选用 机械式除尘器机械式除尘器造价比较低,维护管理方便,耐高温,耐腐蚀,适宜含湿量大的烟气,但对粒径在5μm以下的尘粒去除率较低。当气体含尘浓度高时,这类除尘器可作为初级除尘,以减轻二级除尘的负荷。 湿式除尘器湿式除尘器结构比较简单,投资少,除尘效率比较高,能除去小粒径粉尘,并且可以同时除去一部分有害气体,如火电厂烟气脱硫除尘一体化等。其缺点是用水量比较大,泥浆和废水需进行处理,设备及构筑物易腐蚀,寒冷地区要注意防冻。 过滤式除尘器过滤式除尘器以袋滤器为主,其除尘效率高,能除掉微细的尘粒,对处理气量变化的适应性强,最适宜处理有回收价值的细小颗粒物。但袋式除尘器的投资比较高,允许使用的温度低,操作时气体的温度需高于露点温度,否则不仅会增加除尘器的阻力,甚至由于湿尘黏附在滤袋表面而使除尘器不能正常工作:当尘粒浓度超过尘粒爆炸下限时,也不能使用袋式过滤器。 袋式过滤器广泛应用于各种工业生产的除尘过程。大型反吹风布袋除尘器,适用于冶炼厂、钢铁厂等的除尘;大型低压脉冲布袋除尘器,适用于冶金、建材、矿山等行业的大风量烟气净化;回转反吹风布袋除尘器,适用于建材、粮食、化工、机械等行业的粉尘净化;中小型脉冲布袋除尘器,适用于建材、粮食、制药、烟草、机械、化工等行业的粉尘净化;单机布袋除尘器,适用于各局部扬尘点如输送系统、库顶、库底等部位的粉尘净化。颗粒层除尘器适宜于处理高温含尘气体,也能处理比电阻较高的粉尘,气体温度和气量变化较大时也能适用。其缺点是体积较大,清灰装

旋风式除尘器简介

旋风式除尘器简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。 旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。 旋风除尘器结构 普通旋风除尘器是由进气管、排气管、圆筒体、圆锥体和灰斗组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。在机械式除尘器中,旋风式除尘器是效率最高的一种。它适用于非黏性及非纤维性粉尘的去除,大多用来去除5μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和腐蚀的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。因此,它属于中效除尘器,且可用于高温烟气的净化,是应用广泛的一种除尘器,多应用于锅炉烟气除尘、多级除尘及预除尘。它的主要缺点是对细小尘粒(<5μm)的去除效率较低。 优点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘器的结构与工作原理

一、旋风除尘器的结构与工作原理 浏览字体设置:- 11pt + 10pt 12pt 14pt 16pt 放入我的网络收藏夹 一、旋风除尘器的结构与工作原理 1.结构 旋风除尘器的结构由进气口、圆筒体、圆锥体、排气管和排尘装置组成,如图5-4-1所示。 图5-4-1 旋风除尘器组成结构图 2.工作原理 旋风除尘器的工作原理见动画f5-4-1所示。当含尘气流由切线进口进入除尘器后,气流在除尘器内作旋转运动,气流中的尘粒在离心力作用下向外壁移动,到达壁面,并在气流和重力作用下沿壁落入灰斗而达到分离的目的。 动画f5-4-1 3.旋风除尘器内的流场分析 (1)流场组成 外涡旋——沿外壁由上向下旋转运动的气流。 内涡旋——沿轴心向上旋转运动的气流。 涡流——由轴向速度与径向速度相互作用形成的涡流。 包括上涡流——旋风除尘器顶盖,排气管外面与筒体内壁之间形成的局部涡流,它可降低除尘效率; 下涡流——在除尘器纵向,外层及底部形成的局部涡流。 (2)旋风除尘器内气流与尘粒的运动 含尘气流由切线进口进入除尘器,沿外壁由上向下作螺旋形旋转运动,这股向下旋转的气流即为外涡旋。外涡旋到达锥体底部后,转而向上,沿轴心向上旋转,最后经排出管排出。这股向上旋转的气流即为内涡旋。向下的外涡旋和向上的内涡旋,两者的旋转方向是相同的。气流作旋转运动时,尘粒在惯性离心力的推动下,要向外壁移动。到达外壁的尘粒在气流和重力的共同作用下,沿壁面落入灰斗。 气流从除尘器顶部向下高速旋转时,顶部的压力发生下降,一部分气流会带着细小

的尘粒沿外壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,从排出管排出。这股旋转气流即为上涡旋。如果除尘器进口和顶盖之间保持一定距离,没有进口气流干扰,上涡旋表现比较明显。 对旋风除尘器内气流运动的测定发现,实际的气流运动是很复杂的。除切向和轴向运动外还有径向运动。特·林顿(T.Linden)在测定中发现,外涡旋的径向速度是向心的,内涡旋的径向速度是向外的,速度分布呈对称型。 (3)切向速度 切向速度是决定气流速度大小的主要速度分量,也是决定气流中质点离心力大小的主要因素。 切向速度的变化规律为: 外涡旋区:r↑,切向速度ut↓; 内涡旋区:r↑,切向速度ut↑。 图5-4-2所示为实测的除尘器某一断面上的速度分布和压力分布。 从该图可以看出,外涡旋的切向速度是随半径r的减小而增加的,在内、外涡旋交界面上,达到最大。可以近似认为,内外涡旋交界面的半径r0≈(0.6~0.65)r p(r p为排出管半径)。内涡旋的切向速度是随r的减小而减小的,类似于刚体的旋转运动。 旋风除尘器内某一断面上的切向速度分布规律可用下式表示: 外涡旋 v r1/n r=c (5-4-1) 内涡旋 v t/r=c' (5-4-2) 式中 v t——切向速度;

旋风除尘器的工作原理

旋风除尘器的工作原理 Revised as of 23 November 2020

旋风除尘器的工作原理 来源:华康环保发布时间:2014-12-5 13:29:42 旋风除尘器的规格型号有很多,但是他们的工作原理都是一样的。下面华康结合旋风除尘器的结构图来分享一下旋风除尘器的工作原理。 旋风除尘器的结构由进气口、圆筒体、圆锥体、排气管和排尘装置组成如图所示 1-筒体;2-锥体;3-进气管;4-排气管;5-排灰口;6-外旋流;7-内旋流;8-二次流;9-回流区 旋风除尘器的工作原理: 旋风除尘器是当含尘气流由切线进口进入除尘器后,气流在除尘器内作旋转运动,气流中的尘粒在离心力作用下向外壁移动,到达壁面,并在气流和重力作用下沿壁落入灰斗而达到分离的目的。 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 旋风除尘器的优缺点:

设计简单的旋风除尘器体积小,不需要特殊的附属设备,造价较低.阻力中等,器内无运动部件,操作维修方便等优点。它一般用于捕集5-15微米以上的颗粒,因为这种除尘效率可以高达到85%以上。相反它的缺点就是捕集微粒小于5微米的效率不高。

旋风除尘器除尘效率的分析及改进

旋风除尘器 旋风式除尘器的组成及内部气流 简介 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从业体重分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105P a的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器

JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器 特点 按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。 短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。 影响旋风除尘器除尘效率的因素分析 分析了旋风除尘器中流体流动状态及除尘效果影响因素,包括除尘器的结构、进气口、圆筒体直径和高度、排气管、排灰口及操作工艺参数。此外流速粉尘状况、气流运行也对除尘效果有影响,并提出了提高旋风除尘器除尘效率的改进措施。 旋风除尘器是利用含尘气流作旋转运动产生的离心力将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比,具有结构简单、没有运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点,对于收集5~10 μm 以上的尘粒,其除尘效率可达90%左右。广泛用于工业炉窑烟气除尘和工厂通风除尘,工业气力输送系统气固两相离与物料气力烘干回收等。此外,旋风器亦可以作为高浓度除尘系统的预除尘器,能与其他类型高效除尘器串联使用。旋风除尘器在粮食行业也得到了广泛的应用,如原料输送、加工、包装等生产环节的除尘。然而,许多粮食企业的旋风除尘器运行效率并不高,排放指标未到达设计要求,研究和探讨旋风除尘器除尘效率影响因素,对提高其除尘效率具有重要的现实意义。

旋风除尘器性能测定(精)

实验一旋风除尘器性能测定 一、实验意义和目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件. 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。下面说明不同形状烟道采样点的布置。 1.圆形烟道 采样点分布如图1(a)。将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心在线,所分的等面积圆环数由烟道的直径大小而定。 2.矩形烟道 将烟道断面分为等面积的矩形小块,各块中心即采样点,见图1(b)。不同面积矩形烟道等面积小块数见表1。 表1 矩形烟道的分块和测点数 3.拱形烟道 分别按圆形烟道和矩形烟道采样点布置原则,见图1(c)。 (a)圆形烟道(b)矩形烟道(c)拱形烟道

图1 烟道采样点分布图 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P =l.013?l05Pa ,T =273K )来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: T P T R P g ?=?= 287ρ (1) 式中:ρg 一一烟气密度,kg/m ; P —一大气压力,Pa ; T —一烟气温度,K 。 实验过程中,要求烟气相对湿度不大于75%。 (三)除尘器处理风量的测定和计算 1.烟气进口流速的计算 测量烟气流量的仪器利用S 型毕托管和倾斜压力计。 S 型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图2所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图2 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s 的气流中进行比较,S 型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在5~30m/s 的范围内,其校正系数值约为0.84。S 型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C 之间,烟气绝对压力在0.99~1.03?105Pa 时,可用下列公式计算烟气人口流速: P T K v p 1 77.2= (2) 式中:K p ——毕托管的校正系数,K p =0.84; T ——烟气底部温度,?C ; P ——各动压方根平均值,Pa ; n P P P P n +???++= 21 (3)

各种除尘器的优缺点

各种除尘器的优缺点及比较除尘器可分为两大类:①干式除尘器:包括重力沉降室、惯性除尘器、电除尘器、布袋除尘器、旋风除尘器。②湿式除尘器:包括喷淋塔、冲击式除尘器、文丘里洗涤剂、泡沫除尘器和水膜除尘器等。目前常见的运用最多的是旋风分离器、静电除尘器与布袋除尘器。 下面对各种除尘器做简要介绍: 一、干式除尘器 干式除尘器不需要用水作为除尘介质,占所有除尘系统的90%以上。干式除尘器特点:使用范围广,大多数除尘对象都可以使用干式除尘器,特别是对于大型集中除尘系统而言;粉尘排出的状态为干粉状,有利于集中处理和综合利用。其缺点是:不能去除气体中的有毒、有害成分;处理不当时容易造成二次扬尘。需要注意的是:处理相对湿度高的含尘气体或高温气体时,需采取防结露撒旦施,否则易产生粉尘黏结、堵塞管道的现象。湿式除尘器,用水作为净化介质。 1、重力除尘 原理:利用粉尘与气体的比重不同的原理,使扬尘靠本身的重力从气体中自然沉降下来的净化设备,通常称为沉降室。它是一种结构简单、体积大、阻力小、易维护、效率低的比较原始的净化设备,只能用于粗净化。重力降尘室的工作流程:含尘气体从一侧以水平方向的均匀速度V进入沉降室,尘粒以沉降速度V0独立沉降,运行t时间后,使尘粒沉降于室底。净化后的气体,从另一侧出口排出。 2、惯性除尘

惯性除尘器也叫惰性除尘器。它的原理是利用粉尘与气体在运动中惯性力的不同,将粉尘从气体中分离出来。一般都是在含尘气流的前方设置某种形式的障碍物,使气流的方向急剧改变。此时粉尘由于惯性力比气体大得多,尘粒便脱离气流而被分离出来,得到净化的气体在急剧改变方向后排出。这种除尘器结构简单,阻力较小,净化效率较低(40-80%),多用于多段净化时的第一段,捕集10-20m 以上的粗尘粒。压力损失依类型而定,一般为100-1000Pa。 3、旋风分离器 工作原理:含尘气体从入口导入除尘器的外壳和排气管之间,形成旋转向下的外旋流。悬浮于外旋流的粉尘在离心力的作用下移向器壁,并随外旋流转到除尘器下部,由排尘孔排出。净化后的气体形成上升的内旋流并经过排气管排出。应用范围:旋风除尘器适用于净化大于5-10微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较低的净化设备,旋风除尘器在净化设备中应用得最为广泛。旋风除尘器它具有结构简单,体积较小,不需特殊的附属设备,造价较低.阻力中等,器内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器.其除尘效率可达85%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。 4、布袋除尘 工作原理:含尘气流从下部孔板进入圆筒形滤袋内,在通过滤料

旋风除尘器试验报告

旋风除尘器性能测定 组员:戚锎1020320215 朱鹏志1020320219 彭文林1020320220 汪超1020320222 谢显宇1020320224 肖林峰1020320226 杨合详1020320235 向强1020320134 杨斌1020320126 欧琳1020320102 指导老师:赵素芬

旋风除尘器性能测定实验 一、实验目的 1、了解除尘器性能测定实验台的结构及工作原理,掌握除尘器性能测试的基本方法。 2、了解除尘器运行工况及其效率和阻力的影响。 3、掌握旋风除尘器的除尘机理以及使用方法。 4、测定旋风除尘器处理风量、压力损失和除尘效率 二、实验原理 如图所示为一个旋风除尘器,废气从(1)进入,然后经过(4)旋风除尘器作用除去粉尘颗粒,再从出气口排出净化后的气体。经过旋风除尘器除去的粉尘颗粒由(5)灰斗收集。 旋风除尘器除沉机理是使含尘气流作旋转运动,借助于离心力降

尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。废气在旋风除尘器中的运动如下图所示 1.气体流速的测定:本实验用毕托管和微压计测定管道中各测点 的动压Pd,从而可求得气体的流速。由于气体流速在风管断面上的分布式不均匀的,可在同一断面上进行多点测量,求出该断面的平均流速。毕托管所测得的断面Φ90mm,故可以分为两环。微压计测出动压平均值,相应的空气流速为 式中Pd——测得的平均动压值,ρ——空气密度kg/m3, 2.风量的测定:根据断面的气流速度确定风量Q=A 3.除尘器压力损失测定:除尘器的压力损失(Hz)即除尘器入排 风侧的全能量差,依下式求出:

各种除尘器的优缺点

各种除尘器的优缺点及比较 除尘器可分为两大类:①干式除尘器:包括重力沉降室、惯性除尘器、电除尘器、布袋除尘器、旋风除尘器。②湿式除尘器:包括喷淋塔、冲击式除尘器、文丘里洗涤剂、泡沫除尘器和水膜除尘器等。目前常见的运用最多的是旋风分离器、静电除尘器与布袋除尘器。 下面对各种除尘器做简要介绍: 一、干式除尘器 干式除尘器不需要用水作为除尘介质,占所有除尘系统的90%以上。干式除尘器特点:使用范围广,大多数除尘对象都可以使用干式除尘器,特别是对于大型集中除尘系统而言;粉尘排出的状态为干粉状,有利于集中处理和综合利用。其缺点是:不能去除气体中的有毒、有害成分;处理不当时容易造成二次扬尘。需要注意的是:处理相对湿度高的含尘气体或高温气体时,需采取防结露撒旦施,否则易产生粉尘黏结、堵塞管道的现象。湿式除尘器,用水作为净化介质。 1、重力除尘 原理:利用粉尘与气体的比重不同的原理,使扬尘靠本身的重力从气体中自然沉降下来的净化设备,通常称为沉降室。它是一种结构简单、体积大、阻力小、易维护、效率低的比较原始的净化设备,只能用于粗净化。重力降尘室的工作流程:含尘气体从一侧以水平方向的均匀速度V进入沉降室,尘粒以沉降速度V0独立沉降,运行t时间后,使尘粒沉降于室底。净化后的气体,从另一侧出口排出。 2、惯性除尘

惯性除尘器也叫惰性除尘器。它的原理是利用粉尘与气体在运动中惯性力的不同,将粉尘从气体中分离出来。一般都是在含尘气流的前方设置某种形式的障碍物,使气流的方向急剧改变。此时粉尘由于惯性力比气体大得多,尘粒便脱离气流而被分离出来,得到净化的气体在急剧改变方向后排出。这种除尘器结构简单,阻力较小,净化效率较低(40-80%),多用于多段净化时的第一段,捕集10-20m 以上的粗尘粒。压力损失依类型而定,一般为100-1000Pa。 3、旋风分离器 工作原理:含尘气体从入口导入除尘器的外壳和排气管之间,形成旋转向下的外旋流。悬浮于外旋流的粉尘在离心力的作用下移向器壁,并随外旋流转到除尘器下部,由排尘孔排出。净化后的气体形成上升的内旋流并经过排气管排出。应用范围:旋风除尘器适用于净化大于5-10微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较低的净化设备,旋风除尘器在净化设备中应用得最为广泛。旋风除尘器它具有结构简单,体积较小,不需特殊的附属设备,造价较低.阻力中等,器内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器.其除尘效率可达85%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。 4、布袋除尘 工作原理:含尘气流从下部孔板进入圆筒形滤袋内,在通过滤料的孔

旋风除尘器和其他除尘器的串联使用

旋风除尘器和其他除尘器的串联使用 1.旋风除尘器的除尘效率一般是随着灰尘负荷的增加而提 高的,而且如果设计得好,可以用旋风除尘器来收集能够以气流输送的任意数量的物料。因此,常常把旋风除尘器作为第一级除尘器,以利用其处理高灰尘负荷的能力。最普通的配置是在旋风除尘器后面接织物除尘器、电除尘器或湿式除尘器的。 2.旋风除尘器作预除尘器是用它来防止块状物料或能够引 起火灾的物料进入第二级除尘器。还有一种作用,是将物料分级:旋风除尘器收集粗粒子,第二级除尘器收集细粒子。 用旋风除尘器和袋式除尘器串联,可以减少织物的灰尘负荷,从而减少织物和清灰频率。也有人反对这种串联方式,认为这样入织物过滤器的细灰尘比例大了,结果常常使织物上面附着的一层灰尘充填层减少多孔性,造成清灰困难,达不到清灰频率的减少和减轻灰尘负荷所能减少的目的。 有些不能够保持阻力恒定的过滤器,当阻力增加时气体流量就要减少,这时旋风除尘器的性能会有不利影响。特别是有些系统使用了“过大的”风机就更严重,因为这时风机会在压力-风量特性曲线较平的部分工作。 处理工业烟气,有时在电除尘器面前设置旋风除尘器,这是因为:灰尘负荷小,为电除尘器创造了有利的工作条件,

灰尘负荷减轻,电除尘器震打减少,因震打而引起的灰尘重返气流的数量也减少;在吹除烟灰期间,从锅炉吹出的烟灰可以由旋风除尘器收集,从而使电除尘器工作更有效。 旋风除尘器和湿式除尘器串联使用,主要是为了减轻处理泥浆的工作量。 1、https://www.wendangku.net/doc/4617320092.html, 仓顶除尘器 2、https://www.wendangku.net/doc/4617320092.html, 仓顶除尘器 3、https://www.wendangku.net/doc/4617320092.html, 贺德克滤芯 4、https://www.wendangku.net/doc/4617320092.html, 替代贺德克滤芯 5、https://www.wendangku.net/doc/4617320092.html, 唐纳森滤芯 6、https://www.wendangku.net/doc/4617320092.html, 颇尔滤芯 7、https://www.wendangku.net/doc/4617320092.html, 钢厂滤芯 8、https://www.wendangku.net/doc/4617320092.html, 高仿滤芯 9、https://www.wendangku.net/doc/4617320092.html, 液压滤芯 10、https://www.wendangku.net/doc/4617320092.html, 颇尔滤芯 11、https://www.wendangku.net/doc/4617320092.html, 除尘滤芯 12、https://www.wendangku.net/doc/4617320092.html, 仓顶除尘器 13、https://www.wendangku.net/doc/4617320092.html, 矿山布袋除尘器 14、https://www.wendangku.net/doc/4617320092.html, 空气滤芯 15、https://www.wendangku.net/doc/4617320092.html, 威埃姆除尘器 16、https://www.wendangku.net/doc/4617320092.html, 聚结滤芯 17、https://www.wendangku.net/doc/4617320092.html, 汉克森滤芯 18、https://www.wendangku.net/doc/4617320092.html, 精密滤芯 19、https://www.wendangku.net/doc/4617320092.html, 报到证 20、https://www.wendangku.net/doc/4617320092.html, 聚结器 21、https://www.wendangku.net/doc/4617320092.html, 仓顶除尘器 22:https://www.wendangku.net/doc/4617320092.html,

旋风除尘器除尘效率的提高及改进

论旋风除尘器除尘效率提升及改进 Theory of dust cyclone dust removal efficiency improvement and improvement 作者:赵德政 摘要:在旋风除尘器筒体中部,安装筒状钢板网整理稳固气流流型,主要不是过滤作用,重点是整理涡旋流型、延长筒体、增加旋转时间提高除尘效率。 Abstract: in the dust cyclone central cylinder, installation tubular steel nets tidy stable airflow pattern, not filter function, the key is to finishing vortex flow type and prolong barrel, in crease rotation time to improve the dust removal efficiency. 关键字:旋风除尘网状装置整理流型提高效率 Key word: cyclone dust、reticular device、arrangement flow type 、improve efficiency 引言 旋风除尘器是除尘装置的一类。 除沉机理是使含尘气流作旋转运 动,借助于离心力降尘粒从气流 中分离并捕集于器壁,再借助重 力作用使尘粒落入灰斗。旋风除 尘器于1885年开始使用,已发 展成为多种型式。普通旋风除尘 器由简体、锥体和进、排气管等 组成。旋风除尘器结构简单,易 于制造、安装和维护管理,设备 投资和操作费用都较低,已广泛 用来从气流中分离固体和液体粒 子,或从业体重分离固体粒子。 在普通操作条件下,作用于粒子 上的离心力是重力的5~2500 倍,所以旋风除尘器的效率显著 高于重力沉降室。大多用来去除. 3μm以上的粒子,并联的多管旋 风除尘器装置对3μm的粒子也 具有80~85%的除尘效率。旋风

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

XCX旋风除尘器 设计说明书 学院:环境科学与工程学院 专业:环境工程 姓名:李昊(0920169,前期计算) 林毅(0920179,CAD画图) 费磊(0920156,计划书制作) 胡五钢(0920164,后期整理)指导老师:万锐

目录 一.旋风除尘器简介···································· 二.XCX旋风除尘器的结构及特点··························· 三.XCX旋风除尘器原理及其优点··························· 四.选型依据········································· 五.影响XCX旋风除尘器效的因素··························· 六.影响XCX旋风除尘器压降的因素························· 七.结论与建议·······································八.参考文献········································

一、旋风除尘器简介 旋风除尘器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置.旋风除尘器用于工业生产以来,已有百余年历史。该类分离设备机构简单、制造容易、造价和运行费用较低,对于捕集分离5μm以上的较粗颗粒粉尘,净化效率很高所以在矿山、冶金、耐火材料、建筑材料、煤炭、化工及电力工业部门应用极为普遍。但旋风除尘器对于5μm 以下的较细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率极低所以旋风分离器通常用于粗颗粒粉尘的净化或用于多级净化时的初步处理 二、XCX旋风除尘器的结构及特点 旋风除尘器也称作旋风分离器,是利用器内旋转的寒碜气体所产生的离心力,将粉尘从气流中分离出来的一种干式气固分 离装置。它主要由排灰管、圆锥体、圆柱体、进气管、 排气管以及顶盖组成。 旋风除尘器具有以下特点: 1.结构简单,器身无运动部件,不需要特殊的附属 设备,占地面积小,制造,安装投资较少。 2.操作维护简便,压力损失中等,动力消耗不大, 运转,维护费用较低。 3.操作弹性较大,性能稳定,不受含尘气体的浓度, 温度限制。对于粉尘的物理性质无特殊的要求同时可根 据化工生产的不同要求,选用不同的材料制作或内衬不 同的耐磨,耐热的材料,以提高使用寿命。 旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器,其除尘效率可达5%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。

相关文档
相关文档 最新文档