文档库 最新最全的文档下载
当前位置:文档库 › Trent 60 燃气轮机防喘放气阀故障原因浅析

Trent 60 燃气轮机防喘放气阀故障原因浅析

Trent 60 燃气轮机防喘放气阀故障原因浅析
Trent 60 燃气轮机防喘放气阀故障原因浅析

燃气轮机发电技术

第14卷 第3/4期2012年10月Trent 60燃气轮机防喘放气阀故障原因浅析

李 健,陆建东

(宁夏韩纳斯新能源集团,宁夏 银川 750001)

摘要:燃气轮机压气机防喘放气阀(Blow Off Valve, BOV)主要是在燃气轮机启动、停机时动作,防止燃气轮机压气机进入喘振状态,在实际运行中多次由于该阀异动造成燃气轮机甩负荷停机。对Trent 60燃气轮机BOV阀不同故障实例进行分析,并对故障排除过程进行总结,谨以此文作到抛砖引玉之用。

关键词:燃气轮机;压气机;防喘放气阀;故障分析

0 前言

工业用Trent 60燃气轮机是rolls-royce公司生产的航改型燃气轮机,它是由飞行时间超过1 400万h的RB211系列航空涡扇发动机Trent 800派生得到的。该燃气轮机于1998年投入使用,可用于承担电网基本负荷和峰值负荷电力生产。

Trent 60燃气轮机是三转子发动机(3个独立的压气机—涡轮转子),2级低压压气机装有进口可转导叶,8级中压压气机(前2级静叶可调),6级高压压气机,3个相应的涡轮分别是单级高压涡轮、单级中压涡轮和5级低压涡轮;高压和中压压气机—涡轮转子以自己理想的速度自由运行,使得发动机得到最佳的效率,低压压气机—涡轮转子额定转速有3 400 r/min和3 000 r/min两种,并具有连续的70% ~ 105%速度能力,同时作为动力转子以驱动被驱动设备。

Trent 60燃气轮机有DLN和WLN两种燃烧室。干式低排放(DLN)燃烧室为环管式,8个筒式燃烧室,适用于天然气燃料;湿式低排放(WLN)燃烧室为环形燃烧室,24个喷嘴,2个点火器,是天然气/液体/双燃料燃烧室。

Trent 60 DLN燃气轮机于2009年首台引进并当年投产,其选型原则“以热定电”,保障冬季供暖(连续运行),该燃气轮机发电功率51 504 kW(DLN / 50 Hz),压气机压比33.0:1,排气量151.7 kg/s,排气温度444 ℃。

Trent 60燃气轮机自投运以来,运行稳定,已安全运行近2万h,但也发生过多次因为BOV阀故障造成的机组负荷加载不上和紧急甩负荷停机等非停事故,现对Trent 60燃气轮机BOV阀做一简单介绍并将实际运行中发生的故障和排除过程进行分析总结。

1 Trent 60燃气轮机BOV阀

BOV阀是用来在燃气轮机启动过程中和低负荷时控制压气机的体积流量来防止燃气轮机压气机进入失速和喘振状态。

Trent 60燃气轮机采取三级放气方式,分别从低压压气机(LP)第2级、中压压气机(IP)第8级、高压压气机(HP)第3级放气,通过放气管汇总到放气室,然后通过放气管道释放到室外大气中。低压压气机放气系统从燃气轮机圆周均布的 18 个放气阀(位于放气室内)将空气导出低压压缩机,该放气系统与本文无关不做赘述。

中压压气机(IP)排放系统是由4个BOV阀组成的,它们是通过电磁阀独立操作,当电磁阀闭合时,来自中压压气机第3级的伺服空气协助气门弹簧打开BOV阀排气。其中中压压气机的1号和4号BOV 在燃机启动时打开,在燃机并网后分别在负荷10 MW、15 MW时关闭。

高压压气机放气系统是由3个BOV阀门组成的,并以与中压压气机放气系统相似的方式运行。这些BOV阀门通常将在燃机启动盘车时打开, 2号和3号BOV在燃机点火升速至4 200 r/min时关闭,

第3/4期· 295 ·

1号BOV在燃机升速至8 200 r/min时关闭。

2 Trent 60燃气轮机BOV阀常见故障分析及排除

2.1 HP BOV阀关闭不严造成燃机无法加载

2012年02月29日,Trent 60燃气轮机启动,在2012年3月4日机组高压压气机1号BOV出现温度升高至300 ℃(正常温度为40~75 ℃),当机组负荷降至37 MW,温度下降至140 ℃,决定停机对燃机HP BOV系统进行检查。

检查程序及分析

(1)检查燃机高压压气机BOV阀控制系统,继电器动作正常,电磁阀阻值90 Ω,说明高压压气机BOV系统控制系统正常。

(2)拆卸、并清洗电磁阀。

(3)对电磁阀进行模拟实验,电磁阀动作正常。

(4)随后决定再次启动燃气轮机进行试验,燃机点火升速,并网并且带10 MW负荷时,高压压气机1号BOV阀门测温点TT1035-1温度还是升高至325 ℃通过查询记录,怀疑高压压气机1号BOV阀未完全关闭,故障原因需要停机后进一步确认。

停机后检修人员对1号BOV进行了拆卸、分解,发现由于阀内的石墨密封环老化,部分已脱落,造成该BOV关闭不严。

2.2 HP BOV运行中开启造成燃机负荷突降

2012年3月4日20:41,燃机运行阶段,燃机值班员发现机组负荷从40 MW瞬间降到37 MW,燃气轮机透平温度升高50 ℃,在检查机组参数时发现燃机高压压气机1号BOV阀在开启状态。20:53排气温度达到345 ℃,在20:55机组发T 30(压气机出口温度)停机,同时运行人员发现高压压气机1号BOV阀控制保险管指示灯亮。

(1)故障原因查找及排除

停机后,首先检查燃机BOV阀控制系统,电磁阀阻值90 Ω,说明电磁阀完好。

其次检查电磁阀绝缘电阻,测量值为无穷大,对地绝缘,绝缘良好。检修人员对1号BOV控制电磁阀保险(2A)进行更换。

更换保险后对电磁阀模拟实验,且该试验进行了10次以上,发现电磁阀动作正常,未出现保险丝熔断的现象。

(2)燃机负荷突降原因分析:由于高压压气机1号BOV阀控制保险熔断,使该控制电磁阀突然失电,造成1号BOV突然打开,大量的高压压缩空气通过1号BOV排出,造成燃机负荷从40 MW瞬间降到37 MW。进入燃烧室的空气量减少,燃气轮机排气温度瞬间波动,触发了T 30保护,机组跳闸。

根据以上检查结果判断可能是保险丝老化,在运行中熔断。(运行中保险电流为260 mA),更换完保险就机组启动。

(3)启动燃气轮机进行检查

22:00机组再次启动,点火后在空转满速时停留10 min,通过BOV阀后温度变化可以看出高压压气机1号BOV、2号BOV动作正常(1号BOV在机组点火时已关闭,2号BOV在空转满速已关闭)(见表1)。

22:26机组负荷升高到40 MW, 22:35机组负荷

20120304

_22.csv

时间点高压Bov

温度1

高压Bov

温度2

高压Bov

温度3 5203/04/2012 22:08:40.00034.468.122.3

…………………………

20803/04/2012 22:34:40.00037.225.628.8

20903/04/2012 22:34:49.99937.225.428.8

21003/04/2012 22:34:59.99937.725.328.8

21103/04/2012 22:35:10.00039.125.428.9

21203/04/2012 22:35:19.99981.925.628.8

21303/04/2012 22:35:29.999153.225.629.2

21403/04/2012 22:35:40.000210.425.728.8

21503/04/2012 22:35:50.000258.126.129.1

21603/04/2012 22:35:59.999287.827.129.4

21703/04/2012 22:36:09.999305.427.429.2

21803/04/2012 22:36:20.000317.727.629.6

21903/04/2012 22:36:30.000326.428.929.3

22003/04/2012 22:36:39.999332.929.429.6

22103/04/2012 22:36:50.000334.730.329.9

表1 HP BOV阀开启后的(BOV阀后温度)数据表 ℃

瞬间又降至37 MW,查看BOV阀后温度参数发现高压压气机1号BOV阀后温度再次突然升高(见表1),说明该BOV阀再次被开启。

李健等:Trent 60燃气轮机防喘放气阀故障原因浅析

燃气轮机发电技术

· 296 ·第14卷

进一步检查发现高压压气机1号BOV控制电磁阀的控制保险丝又熔断,深入检查确认该电磁阀的供电回路的正极有永久性接地。

由于燃机此时带有37MW负荷运行,因此向电力调度申请停机排除故障。找到接地点正确处置后,机组运行正常,该故障现象再未出现。

2.3 中压压气机(IP)2号BOV导致机组在运行中突然熄火

2011年9月7日燃机突然发出“Flameout detected on TGTdot or NHdot/wfdot(熄火检查)”报警并跳闸。在对燃机系统进行了检查,并查看历史数据和机组(压气机排气压力P30、中压压气机出口压力P23、燃气轮机排气温度TGT等)相关参数,判断出故障原因可能是燃机中压压气机BOV阀故障造成机组在运行中突然熄火,

故障原因确认及分析如下:

(1)现场对比中压压气机BOV温度测控曲线的运行曲线,确认中压压气机1号BOV阀后温度和2号BOV阀后温度正常运行的数据与本次跳闸的数据有明显的差别。

(2)检查中压压气机BOV的4个温度测点,判断测温元件正常,排除因温度测点异常引起机组跳闸。

(3)现场接通压缩空气至BOV电磁阀组,逐个检查高压压气机BOV中压压气机BOV阀的动作情况,虽然这些阀的开关状态无法观察,但可以通过电磁阀动作后听声音来判断它是否动作。

通过检查发现:1号、3号、4号中压压气机BOV电磁阀带电后,气源管道有气流声,能听到BOV阀动作声音,说明这3个BOV阀正常;中压压气机2号BOV电磁阀带电后未听到气源管有气流声,说明2号阀或控制电磁阀气路有故障。

(4)重点检查2号阀或控制电磁阀:

测量电磁阀线圈直流电阻为0.75 Ω,正常;

检查并联在电磁阀线圈两端的过压保护电阻和蓄流二极管,正常;

解体检查电磁阀组的发片,发现2号电磁阀发片卡涩,无法正常动作。

根据2号电磁阀的故障情况,结合机组运行中2号BOV的温度,确认中压压气机2号BOV在运行中处于突然打开,燃机压气机后局部压力突然变化,造成燃机燃烧熄火或温度突然变化(燃机误认为熄火)从而甩负荷停机。

(5)故障处理:解体、清洗所有的中压压气机BOV控制电磁阀,清洗完毕后回装重新起机故障现象消除。

3 结束语

在Trent 60燃气轮机运行中多次处出现BOV阀故障而引起燃气轮机非计划停机或甩负荷停机,这与燃气轮机的排放阀的选型有关,对这一故障现象和原因反馈给rolls-royce公司,希望从根本上加以改进,同时在运行也应采取措施降低BOV阀故障对燃机运行的影响。

(1)BOV阀卡涩的原因经过分析一般会认为与压气机吸入的空气洁净度有一定的关系,运行中确保进气过滤器压差的基础上,对进气过滤器进行了更换,主要是粗滤、精滤过滤等级,但从实际效果看并未杜绝这样问题的出现。

之所以会出现这样的问题主要是因为空气速度流经中压、高压放气阀时速度、压力都已很大,而BOV 阀活门间隙较小,空气中很细小的灰尘、油腻在离心力作用下会大量流经BOV阀,从而造成BOV阀卡涩。

(2)汲取保险丝熔断处置的经验

保险丝熔断是排除故障中常见的现象,在处置这类问题时一定要查明引起这一故障的原因,不能采取一换了之的简单方式来处理,否则事倍功半。

参考文献:

[1] 吉桂明,Trent 60燃气轮机设计研制的历程[J].热能动力工程,

2010,(2):160 .

[2] Trent 60 Description of mechanical systems(Rev.3)[M],Turbomach

Industrial Energy Systems,2008.

[3] 清华大学热能工程系动力机械与工程研究所等.燃气轮机与燃

气-蒸汽联合循环装置[M],北京:,中国电力出版社,2007. [4] 刘万琨魏毓璞等. 燃气轮机与燃气-蒸气联合循环[M].北京:

化学工业出版社,2006.

作者简介:李 健(1964-),男,河南南阳人,高级机械工程师,电厂扩建项目负责人,从事电厂项目管理、燃气轮机运行管理。

陆建东(1968年-),宁夏银川人,电气工程师,总工程师,从事电厂运行管理。

简析燃气轮机发电机组的现状及未来发展正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 简析燃气轮机发电机组的现状及未来发展正式版

简析燃气轮机发电机组的现状及未来 发展正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重

视。 1.燃气轮机及其发电机组现状浅析 1.1.燃气轮机浅析 作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热

火灾自动报警系统的检测和维护管理

火灾自动报警系统检测 及维护保养 一系统检测的技术要求 (一)火灾报警控制器 1.检查自检功能和操作级别。 2.使控制器与探测器之间的连线断路和短路,控制器应在100s内发出故障信号(短路时发出火灾报警信号除外);在故障状态下,使任一非故障部位的探测器发出火灾报警信号,控制器应在1min内发出火灾报警信号,并应记录火灾报警时间 3.检查消音和复位功能。 4.使控制器与备用电源之间的连线断路和短路,控制器应在100s内发出故障信号。 5.检查屏蔽功能。 6.使总线隔离器保护范围内的任一点短路,检查总线隔离器的隔离保护功能。 7.使任一总线回路上不少于10只的火灾探测器同时处于火灾报警状态,检查控制器的负载功能。 8.检查主、备电源的自动转换功能,并在备电工作状态下重复本条第7款检查。 9.检查控制器特有的其它功能。 (二)点型感烟、感温火灾探测器 1.采用专用的检测仪器或模拟火灾的方法,逐个检查每只火灾探测器的报警功能,探测器应能发出火灾报警信号。对于不可恢复的火灾探测器应采取模拟报警方法逐个检查其报警功能,探测器应能发出火灾报警信号。当有备品时,可抽样检查其报警功能。 2.采用专用的检测仪器、模拟火灾或按下探测器报警测试按键的方法,逐个检查每只家用火灾探测器的报警功能,探测器应能发出声光报警信号,与其连接的互联型探测器应发出声报警信号。 (三)线型感温火灾探测器 在不可恢复的探测器上模拟火警和故障,逐个检查每只火灾探测器的火灾报警和故障报警功能,探测器应能分别发出火灾报警和故障信号。可恢复的探测器可采用专用检测仪器或模拟火灾的办法使其发出火灾报警信号,并模拟故障,逐个检查每只火灾探测器的火灾报警和故障报警功能,探测器应能分别发出火灾报警和故障信号。 (四)线型光束感烟火灾探测器 用减光率为0.9dB的减光片遮挡光路,探测器不应发出火灾报警信号;用产品生产企业设定减光率(1.0 dB~10.0dB)的减光片遮挡光路,探测器应发出火灾报警信号; 用减光率为11.5dB的减光片遮挡光路,探测器应发出故障信号或火灾报警信号。 (五)管路采样式吸气感烟火灾探测器 逐一在采样管最末端(最不利处)采样孔加入试验烟,探测器或其控制装置应在120s 内发出火灾报警信号。 根据产品说明书,改变探测器的采样管路气流,使探测器处于故障状态,探测器或其控制装置应在100s内发出故障信号。

燃气轮机控制系统概况

燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮机控制系统—SPEEDTRONIC Mark V的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying system. Keywords: Gas Turbine; control system 1.燃气轮机控制系统的发展 燃气轮机开始成为工矿企业和公用事业的原动机组始于40年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展,燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966年美国GE公司推出的第一台燃机电子控制系统的雏形。该套系

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

火灾自动报警系统检测与维护实用版

YF-ED-J4642 可按资料类型定义编号 火灾自动报警系统检测与 维护实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

火灾自动报警系统检测与维护实 用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 火灾自动报警系统竣工后,建设单位应负 责组织施工、设计、监理等单位进行检测。检 测不合格不得投入使用。 一、检测资料查验 系统检测时,施工单位应提供下列资料: 1.竣工检测申请报告、设计变更通知书、 竣工图; 2.工程质量事故处理报告; 3.施工现场质量管理检查记录; 4.火灾自动报警系统施工过程质量管理检

查记录; 5.火灾自动报警系统内各设备的检验报告、合格证及相关材料。 二、系统检测 系统的检测要按照检测数量要求对系统内的所有装置进行检测,检测内容和数量要符合下列要求,同时按照判定标准要求对检测结果进行判定。 (一)系统检测的内容 系统检测内容包括系统中下列装置的安装位置、施工质量和功能,其功能应满足设计文件的要求。 1.火灾报警系统装置(包括各种火灾探测器、手动火灾报警按钮、火灾报警控制器和区域显示器等);

燃气轮机发展现状分析报告前景预测

燃气轮机行业现状调研分析及市场前 景预测报告

一、基本介绍 近年,在中国能源发展“十三五”时期,着力推动能源生产利用方式变革,建设清洁低碳、安全高效的现代能源体系,是能源发展改革的重大历史使命。在新一轮能源革命蓬勃兴起背景下,中国燃气轮机行业企业有所增长,企业投资热情高涨。燃气轮机广泛应用于发电、船舰和机车动力、管道增压等能源、国防、交通领域,是关系国家安全和国民经济发展的高技术核心装备,属于市场前景巨大的高技术产业。 燃气轮机技术水平是代表一个国家科技和工业整体实力的重要标志之一,被誉为动力机械装备领域“皇冠上的明珠”。正是基于燃气轮机在国防安全、能源安全和保持工业竞争能力领域的重大地位,发达国家高度重视燃气轮机的发展,世界燃气轮机技术及其产业发展迅速,目前重型燃气轮机已基本形成以GE、西门子、三菱、阿尔斯通等公司为主导,航空燃气轮机(包括工业轻型燃气轮机)以通用电气(GE)、普拉特·惠特尼(P&W)、罗尔斯·罗伊斯(R&R)等航空公司为主导的格局。 二、燃气轮机工作原理及特点 1、燃气轮机定义 燃气轮机是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械,是一种旋转叶轮式热力发动机,其典型结构如图1。 图1 燃气轮机典型结构

2、燃气轮机的工作原理 压气机从外部吸收空气,空气从燃气轮机进气口进入,通过压气机叶片将其压力升高,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气燃烧受热后膨胀,进入透平区经过一级一级的叶片,推动动力叶片高速旋转,直至从出气口排出,成为废气,废气排入大气中或再加利用(如利用余热锅炉进行联合循环)。 叶片转动后带动轴也转动,轴带动负荷的机械转动,实现热能和机械能的转换。通常,将压气机、燃烧室、透平称为燃气轮机的三大核心部件。 3、燃气轮机特点 燃气轮机产品本身具有以下特点: 最大效率,最优效益。随着高温材料的不断进展,以及涡轮采用冷却叶片并不断提高冷却效果,透平前燃气的初温逐步提高,加之研制级数不断减少压缩比越来越高的压气机和各个部件效率的提高,使燃气轮机效率不断提高。 体积较小,使用便捷。燃气轮机动力部件设计构造衍生于涡轮增压器和辅助动力装置,结构简单、紧凑。与传统设备相比,燃气轮机设备规模、体积比传统的锅炉、蒸汽轮机小,占地面积小,便于移动。 减少燃煤,清洁环保。燃气轮机可以采用天然气、丙烷、油井气、煤层气、沼气、汽油、柴油、煤油、酒精等煤炭以外的燃料。而且燃气轮机通过在燃烧过程中控制NOx的生产,或在NOx 生成后排入余热锅炉时进行尾部烟气脱硝,达到超低的NOx排放效果,而且能够实现资源充分循环利用,真正达到零排放。 噪声最小,安全可靠。燃气轮机运行时产生的低频份量很低。而且可以通过采用数字式遥控的联网离网变换装置,弥补其它设备在安全稳定性方面的不足。 三、燃气轮机关键技术 从燃气轮机研发的角度来分析,当代燃气轮机主要关键技术难点如下: 1、燃气轮机基础技术方面 燃气轮机总体技术,高效高负荷压气机设计应用技术,高效稳定低污染燃烧室设计技术、高效流动、高效换热、高寿命透平设计技术,燃气轮机设计软件技术,燃气轮机现代控制理论与技术,燃气轮机振动、寿命与可靠性关键技术。 2、燃气轮机设计体系的规范、软件和数据库方面

(完整版)资料02燃气轮机仿真模型

燃气轮机数学模型与仿真模型 任何动力学问题都是研究惯性系统在外力和外力矩作用下的运动,燃气轮机装置也可以看作是一个惯性系统,系统中有以转动惯量J 表征的转动惯性;有以容积V 表征的容积惯性;也有以金属质量M 和比热C 乘积表征的热惯性,动力学问题研究参数变化(如供油量、大气条件、涡轮压气机可调导叶转角等)时整个惯性系统的运动过程。 双转子发动机的动力学模型如图1所示。模型中有三个转子:高压转子、中压转子和低压转子,都是转动惯性环节,其转动惯量分别为HT J 、LT J 和PT J 。模型中还有四个容积:位于高、低压压气机之间容积惯性IC V ;位于高压压气机和高压涡轮之间容积惯性B V ;位于高、低压涡轮之间容积惯性HLT V ;位于低压涡轮和动力涡轮之间容积惯性LPT V ,整个系统的运动由这些转子和容积的动态特性决定。 图1 三轴燃气轮机物理模型 如果燃气轮机有回热器、中间冷却器,还必须有热惯性环节。重型燃气轮机的转子、壳体、机匣、火焰筒也都有明显的热惯性,轻型燃气轮机装置的这些部件热惯性较小,可以忽略不计。根据上面的物理模型,惯性系统的数学模型,通过转子和容积的运动方程式建立各容积惯性和转动惯性的微分方程组如下所示: eHC eHT HT HT HT N N dt d J -=ωω eLC eLT LT LT LT N N dt d J -=ωω eL ePT PT PT PT N N dt d J -=ωω HCin LCout LHC LHC G G dt d V -=ρ

()HTin HCout B B G f G dt d V -+=1ρ ()LTin HTout HLT HLT G f G dt d V -+=1ρ ()PTin LTout LPT LPT G f G dt d V -+=1ρ 第1节 压气机数学模型 压气机是一个完全非线性的部件,据相似原理可知,其工作特性可以用压比 c π、折合流量 P T G c η四个参数间关系来表示,只要在压比、折合流量、折合转速三个参数里确定其中任意两个参数,则压气机就有完全确定的工作状况。在工程实际中,常将压气机通用特性线换算为进气是标准大气状态下的特性线,故折合流量与折合转速为: 101325 0288.P T G G in in in in = 288 in c c T n n = 式中:in G ,c n 分别为换算成进气是标准大气状态下的折合流量、折合转速。部件特性可简化为: ()c c in n ,f G π1= ()c c c n ,f π η2 = () c in in out c n ,G f P P 3== π () c in c n G f ,4=η 压气机进口焓值和熵函数分别为: 5() in in h f T = 6()in in f T ?= 压气机出口的理想熵函数为: .out s in c lg ??π=+

燃气轮机控制系统概况模板

燃气轮机控制系统 概况 燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮 机控制系统—SPEEDTRONIC Mark V 的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying

system. Keywords: Gas Turbine; control system 1. 燃气轮机控制系统的发展燃气轮机开始成为工矿企业和公用事业的原 动机组始于40 年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展, 燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦 可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966 年美国GE 公司推出的第一台燃机电子控制系统的雏形。该套系统, 也就是后来被定名为SPEEDTRONIC MARK I 的控制系统,以电子装置取代了早期的燃料调节器。 MARK I 系统采用固态系列元件模拟式控制系统, 大约50 块印刷电路板, 继电器型顺序控制和输出逻辑。 MARK II 在1973 年开始使用。其改进主要是采用了固态逻辑系统, 改进了启动热过渡过程, 对应用的环境温度要求放宽了。 在MARK II 的基础上, 对温度测量系统的补偿、剔除、计算等进行改型, 在70 年代后期生产出MARK II +ITS, 即增加了一套集成温度系统。对排气温度的控制能力得以加强, 主要是对损坏的排气热电偶

我国燃气轮机发展现状

2015年我国燃气轮机产业发展现状及需求市场前景分析 燃气轮机是一种先进而复杂的成套动力机械装备,主要通过将连续流动的气体作为工质、把热能转换为机械功产生动力。燃气轮机用途广泛,在能源电力、航空航天、舰船车辆等多个领域均有应用。先进燃气轮机具有高效率、低噪音、低排放等特点,是提供清洁、可靠、高质量发电及热电联供的最佳方式。 燃气轮机由于工作原理和航空发动机基本相同,核心技术也与之有相似之处,因此航空发动机改装为燃气轮机的工作一直被人们所重视。由于航空发动机体积小、质量轻,故最初改装后均用于舰艇的推进装臵。自20 世纪60 年代末,英美纷纷做出“舰船以燃气轮机为动力”的决策后,舰船燃气轮机得到了大力发展。 国外典型航空发动机改舰船燃气轮机简介及参数

中国的燃气轮机发电开始于上世纪50 年代末,水电部与1959 年从瑞士引进2套功率为6,200 千瓦的简单循环燃气轮机列车发电站用于大庆油田发电。而航改燃气轮机的工作则是从上世纪70 年代由南方动力公司等单位与民用部门协作开始的。到目前,我国已经具备了自主研发重型燃气轮机的能力。2001 年,我国第一台具有自主知识产权的重型燃气轮机R0110 在黎明公司的主导下开始研制。到2013 年底,R0110 重型燃气轮机已在中海油深圳电力有限公司完成168 小

时联合循环试验运行考核,各项性能均符合要求。R0110 的研制成功标志着我国已成为世界上第五个具备重型燃气轮机研制能力的国家。 中国典型燃气轮机简介及参数

纵观世界燃气轮机市场,高端市场基本被欧、美、日等国家和地区的公司所垄断,通用电气、西门子、三菱重工和阿尔斯通等几家公司占据了燃气轮机的主要市场份额。 我国燃气轮机市场虽然稳步增长,但自主研发产品的缺失导致我国燃气轮机长期受制于人。据中国电器工业年鉴数据,2013 年我国燃气轮机产品进口金额达到3.9 亿美元,同比增长11%,而燃气轮机产品出口金额仅为1 亿美元。 国内燃气轮机厂家众多,但水平差距较大。处于高端市场的国外企业占据了国内主要主机厂配套份额和维修市场的大部分份额。由于使用国外品牌,国内主机厂每年都要向燃气轮机供应商支付高昂的维修费用,大大提升燃气轮机的使用成本。而国内厂家基本是位于低端市场的中小型企业,由于技术水平和质量保证能力都较低,业务主要集中于社会维修市场。

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

图书馆火灾报警系统设计

建筑自动消防系统设计说明书 题目教学楼3区1层火灾自动报警系统设计学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级28040502 学生姓名李琛 学号2804050105 12月22日至12 月28日共1周 指导教师(签字) 郎禄平 系主任(签字) 2008 年12 月28日 目录

任务书 (2) 一、设计概况 (5) 二、系统设计 (5) A、系统设计原理 (5) B、智能二总线火灾自动报警系统 (5) C、火警电话和疏导照明系统设计 (9) D、火灾紧急广播系统设计 (10) 三、智能二总线火灾自动报警和紧急广播系统平面设计图(附图) 四、智能二总线火灾自动报警和紧急广播系统图 (11) 五、元件明细表 (13) 六、结束语 (13) 七、参考资料 (13) 课程设计任务书

题目教学楼3区1层火灾自动报警系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级电气28040501~02 学生姓名 学号 1月15日至12 月21日共1周 指导教师(签字) 郎禄平 系主任(签字) 2008 年12 月5 日

一.设计概况: 此设计是针对南京工业职业技术学院仙林校区图书馆的火灾自动报警系统,该楼包括电子阅览室,图书阅览室,收藏室,借阅室,服务大厅,卫生间等。其中收藏室放有贵重资料,电子阅览室放有大量电气设备,其它教室放有大量图书。而且该图书馆作为本校的主楼,楼内来往人员较多,是人数较密集的区域,所以一定要做好防火工作,保证人身安全。根据《高层民用建筑设计防火规范》规定可知该图书馆为一类建筑,防火等级为一级。图书馆的火灾报警控制系统,集火灾报警于一体,通过设置感烟探测器、手动报警按钮,火警电话等达到火灾报警的目的,然后通过设置的消防广播扬声器通报火灾情况,并通过疏散指示灯和应急照明灯指示人员疏散。系统的设计依据为《火灾自动报警系统设计规范》(GB 50116—98),《民用建筑设计防火规范》(GB 50045—95)。 二.系统设计 A. 系统的工作原理 安装在保护区的探测器不断的向所监视的现场发出巡测信号,监视现场的烟雾浓度等,并不断反馈给报警控制器,控制器将接收的信号与内存的正常整定值比较、判断确定火灾。当火灾发生时,发出声光报警,显示烟雾浓度,显示火灾房号的地址编码,并打印报警时间、地址等。同时向火灾现场发出警铃报警,在火灾发生楼层的上下相邻层或火灾区域的相邻区域也同时发出报警信号,以显示火灾区域。各应急疏散指示灯亮,指明疏散方向。 如图所示火灾自动报警系统的工作原理图: B、火灾自动报警系统设计 火灾自动报警系统是建筑智能化系统的一个子系统,它由火灾探测器,区域报警控制器,

简析燃气轮机发电机组的现状及未来发展

简析燃气轮机发电机组的现状及未来发展 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重视。1.燃气轮机及其发电机组现状浅析1.1.燃气轮机浅析作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热效率。高度垄断是重型燃气轮机制造领域的特点,重要的核心企业为ABB、西门子/西屋、GE、三菱等。轻型燃气轮机制造领域中主导企业为PW、R.R与GE,其他国家也不甘落后,正在紧锣密鼓的航机改型。上世纪五十年代末,国内开始制造重型燃气轮机。当时的上汽厂、南汽厂、哈汽厂身肩国家工业复兴的大任,在厂校结合形式下,自主研发出的燃气轮机位列世界领先,如3500hp机车用机组,1MW、3MW发电机组。近年来,随着我国工业化的不断升级,重型燃气轮机也在不断的改造升级。为实现利用冶金企业的高炉煤气,美国GE与南汽厂通过技术交流,立足于MS6001B,6B-L型燃气轮机研发成功,实现再利用高炉煤气的环保要求。从科研实力分析,国内研究所或高校储备着大量科研设施与科研人员,如哈尔滨工业大学、清华大学、国家电网热工研究院、中科院工程热物理研究所等,研究出的一批批优秀成果。当然,设备不够集中,先进性尚待提高,完善工作仍需继续。国内航空系统是轻型燃气轮机的集结地,在航空发动机领域,研究设计院、制造厂数量众多,职工数量上万。在上世纪70年代,邮电、石化、油田等企业都应用到了331厂、410厂研发的WZ-6G、

电气火灾监控系统规范标准

浅谈漏电火灾报警系统的设计与安装 2006/4/10/9:4 来源:昆明华安工程技术有限责任公司作者:宁卫国 2.4.3 配电柜成套形式的安装设计 直接在配电箱柜面板上嵌入探测控制器,只考虑在柜内适当位置固定漏电互感器(一般在主空开上端或下端),不改动配电柜内部结构,不用增加单独的探测控制器安装箱,美观方便。应在设计中明确提出要求,在施工图会审完毕,由配电柜成套厂考虑预留面板上嵌装漏电流探测控制器的孔。 3 漏电火灾报警系统安装中应注意的问题 3.1 漏电火灾报警系统施工主体单位问题 根据上述漏电火灾报警系统的特点,漏电火灾报警系统有相当的独立性,但与配电系统密不可分,归入强电系统施工比较便于协调配合。反之,实践证明,归入消防报警系统施工单位施工,则容易扯皮,协调配合困难,加上其对控制柜不熟悉,对互感器安装等比较陌生,施工质量难以保证。对于个别直接使用普通火灾报警系统的二总线漏电火灾报警系统,在与配电柜成套厂家或施工单位充分沟通配合的前提下,可以并入消防报警系统施工单位施工。目前,消防主管部门对漏电火灾报警系统施工单位是否需要具备消防专业承包资质,尚未有明确的界定。 3.2 漏电火灾报警系统的施工要求 国家标准《剩余电流动作保护装置的安装和运行》GB13955第6部分“剩余电流保护装置的安装”明确指出:“剩余电流保护装置安装应充分考虑供电方式、供电电压、系统接地型式及保护方式。剩余电流保护装置的形式、额定电压、额定电流、短路分断能力、额定剩余动作电流、分断时间应满足被保护线路和电气设备的要求,在不同的系统接地形式中 应正确接线”。 具体地说,漏电火灾报警系统的安装应注意以下问题: 1) 漏电流报警器标有电源侧和负荷侧时,应按规定安装接线,不得反接。 2) 安装漏电流断路器时,应按要求,在电弧喷出方向有足够的飞弧距离。 3) 安装时,必须严格区分N线和PE线,三级四线式或四极四线式电的N线应通过漏电火灾监控系统的电流互感探测器。通过漏电火灾监控系统的电流互感探测器的N线,不得作为PE线,不得重复接地或接设备外露可接近导体。PE线 不得接入剩余电流保护装置。 4) 漏电火灾报警系统没有归入配电系统施工单位施工时,双方应充分沟通,协调有关安装方式、尺寸和电气技术参数。新工程使用电气火灾监控设备与电气火灾监控探测器(互感器)分离配置型产品时,在配电柜(箱)订货时应向 厂家明确互感器尺寸,以便于预留安装位置。 5) 《高层民用建筑设计防火规范》GB50045-2005的 9.1.1条要求,漏电火灾报警系统应当按照消防用电的规定执行。因此,无论消防中心设置的集中控制器还是现场设置的电气火灾监控探测器都要按照消防用电的规定执行,接入 消防用电。 6) 漏电火灾报警系统的电流互感探测器在配电柜(箱)内安装,要特别注意施工安全,要在断电情况下施工,并注意强弱电分开走线,单独敷设电流互感探测器信号线,并应使用带屏蔽的多芯控制线。特别注意防止接错线或搭线,造成强电串入火灾监控探测器中烧毁火灾监控探测器或联网的多个火灾监控探测器。 7) 改造工程一般应将组合式电流/剩余电流探测器置于塑壳断路器下端出线处,当安装不便时,可考虑安装于塑壳断 路器的入线端。 8) 施工单位应配备移动式(手持便携式)剩余电流检测仪,并在调试时先进行配电系统剩余电流的检测,及时排除剩余电流异常情况,并作详细记录。根据GB13955标准5.7.3和5.7.5要求,设定合适的漏电流报警阀值,通常报警设 定值取值不小于线路和设备正常运行泄漏电流值的两倍。 9) 根据GB13955标准6.3.7要求,安装完成后必须要有如下的检验项目:按动探测控制器(报警器)上的测试试验按钮,使探测控制器输出脱扣电压,试验塑壳断路器脱扣是否灵敏。此项测试应逐一进行,用试验按钮连续试验3次,应正确动作,消防中心集中控制器应指示报警部位;带额定负荷电流分合3次,均可靠动作,不应有误报警现象; 在消防中心集中控制器上手动对各配电箱进行断电测试,应正确无误。

我国工业燃气轮机的现状与前景.doc

我国工业燃气轮机的现状与前景 南京汽轮电机(集团)有限责任公司薛福培 一、世界工业燃气轮机的发展趋势 1、世界工业燃气轮机的发展途径与现状 自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。 由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。 80年代以后,燃气轮机及其联合循环技术日臻成熟。由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。 90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。 这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气 36

(完整版)燃气轮机

燃气轮机简介 1、燃气轮机发展史 1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。 近二十年来,燃气轮机在电站中的应用得到了迅猛发展。这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。而燃气—蒸汽联合循环电站的热效率更高达60%。先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。 2、我国燃气轮机工业概况 我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。 1962年上海汽轮机厂试制船用燃气轮机,1964年与上海船厂合作制成 550KW燃气轮机,1965年制成6000KW列车电站燃气轮机,1971年制成3000KW卡车电站。在这期间还与703研究所合作制造了3295KW、4410KW、18380KW等几种船用燃气轮机。 1969年哈尔滨汽轮机厂制成2200KW机车燃气轮机和1000KW自由活塞式燃气轮机,1973年与703研究所合作制成4410KW船用燃气轮机,与长春机车车辆厂合作制成3295KW机车燃气轮机。 1964年南京汽轮电机厂制成1500KW电站燃气轮机;1970年制成37KW 泵用燃气轮机;1972年制成1000KW电站燃气轮机;1977年制成21700KW快装式电站燃气轮机;1984年与GE公司合作生产了PG6541B型36000KW燃气轮机;从1984年至2004年已生产了PG6541B型、PG6551B型、PG6561B型、PG6581B型四种型号燃气轮机,功率由36000KW上升到现在的43660KW。2003年国家发改委决定南京汽轮电机集团有限责任公司与GE公司进一步扩大

电气火灾监控系统和电气火灾预防的研究 张宏瑞

电气火灾监控系统和电气火灾预防的研究张宏瑞 摘要:电能作为人们日常生活中必要能源,使用量逐年递增。而因为规范用电、电路老化等因素导致的电气火灾问题也给人们带来严重的损失。加强对电气火灾 的预防,就要制定我那时的电气火灾监控系统,制定科学的电气火灾预防方案, 这样才可以合理控制电气火灾问题。 关键词:电气火灾监控系统;电气火灾预防方案;研究分析 1系统的特点 电气火灾监控系统,特点在于漏电监控方面属于先期预报警系统,与传统火 灾自动报警系统不同的是,电气火灾监控系统早期报警是为了避免损失,而传统 火灾自动报警系统是为了减少损失。所以,这就是说为什么不管是新建或是改建 工程项目,尤其是已经安装了火灾自动报警系统的单位,仍需要安装电气火灾监 控系统的根本原因。漏电火灾报警系统一般由一台主机和若干个剩余电流探测器、控制模块二总线连接而成。当被保护线路中发生接地剩余电流时,探测器测到报 警信号,传送给控制模块,通过二总线网络传输到主机发出声光报警信号;主机 显示屏同时显示报警地址,记录并保存报警和控制信息,值班人員可在主机处远 程操作切断电源或派人到现场排除剩余电流故障。漏电火灾报警系统集电气监测、分析、预警、报警及控制于一体,具有监控范围大、反应速度快、报警准确、操 作灵活、安装维修方便等特点。该系统安装时对用户供电线路有一定要求,如果 用户供电路混乱或三相四线制时,先要对供电线路进行整改后才能安装。 2监控系统的设计与应用 2.1建筑电气火灾监控系统的工作原理 建筑电气火灾监控系统与其他的监控系统的差异如下:首先是针对的对象不 一样,电气火灾监控系统主要的监控对象是电路中进入和出去的电流以及电压的 相关信息,对其进行系统性的实时监控,并通过现场较为专业的系统,对实时监 测的电流进行检测分析与计算,从而将其和规定的电路和电压进行比对,准确地 判断出哪里的电路发生了故障,有效地降低了火灾的发生频率。其次,在专业的 监控下,系统可以及时地将与电气有关的数值传输到中央的管控中心,控制中心 可以指挥和管控建筑物内全部的火灾监控系统,当控制中心得到了数据分析后的 反馈结果,会对系统的安全部门发出指定的命令,进而开启了火灾警戒的预防装置,为下一步的消防执行做好准备。 2.2系统的分级保护 分级保护顾名思义,就是对火灾分层管控,进行一层一层系统性的常规管理。我国相关对建筑物电气火灾监控系统的规定说明,应把泄露电流的动作保护装置 配备在供电系统的首端与末端,中间也需要配备,构成多级的系统保护模式。同时,每级泄露电流的保护动作装置的主要电路的额定电流值、泄露电流的动作值 与动作时间协同配合,真正意义上的让选择性的分级保护成为现实。再依据使用 者建筑物的电负荷和线路的实际情况,大致可以分成二级保护或者三级保护等。 在总电源端口,分路支线首段或者是电路末端分别装配剩余电流动作装置,以此 来有效地减少在低电压供配电系统中产生的电击现象,同时还有力地避免了由于 接地故障造成的切断电源停电现象,对于保护电流设备起了实质性的作用。 2.3电气火灾监控系统的应用 在我们对分级保护和系统的基本原理有了简单的了解之后,我们再来谈谈如 何对其进行合理有效的应用,因为这才是我们的最终目的——将其应用到实际的

重型燃气轮机发展现状及发展研究

重型燃气轮机发展现状及发展研究 摘要:文章对重型燃气轮机的发展背景以及国内外重型燃气轮机的发展现状进行分析,展望未来重型燃气轮机的发展趋势,并对未来我国重型燃气轮机行业的发展提出了几点建议,以供参考。 关键词:重型燃气轮机;发展现状;发展趋势 1引言 近年来随着我国经济的快速发展以及工业化进程的不断加快,我国的燃气轮机在工业领域中的应用数量在不断增大,而且在发电领域中由于具有较高的效率、较小的污染以及较短的建设周期和较快的收效而被广泛应用。尤其是在进入上世纪80年代以来,随着全球冶金以及3D打印等先进技术的发展和进步,燃气轮机的单机容量和参数也在不断增大,成为现有热功转换发电系统中效率最高的大规模商业发电方式。为此,文章就针对目前国内外中性燃气轮机的发展现状进行介绍,并对未来重型燃气轮机的发展趋势进行展望,为我国重型燃气轮机的发展提出建设性的建议。 2国内外重型燃气轮机发展现状 2.1国外重型燃气轮机的发展现状 国外的重型燃气轮机发展主要经历了三个阶段,在上世纪90年代之前所出现的重型燃气轮机属于常规级的燃气轮机,也就是B、D级别,其单机功率、效率以及联合循环效率都比较低。随着进入本世纪以来各项技术发展,重型燃气轮机也进入了当代级别,也就是E、F级别,后来在2010年以后重型燃气轮机又进入了先进级别,也就是G、H级别,无论是初温,还是单机功率、效率以及联合循环效率都有了较大的进步和发展。未来重型燃气轮机的单机效率有望突破45%并持续增加,而且联合循环效率也会达到65%。目前国际上重型燃气轮机市场的垄断现象比较严重,主要的燃气轮机公司有GE、西门子以及三菱日立等公司,这几家公司的产品也代表着本行业中的最高水平。目前各个公司的主要代表机型就是H级以及J级重型燃气轮机,就是在原有的技术基础上对其主要的压气机、燃烧时以及透平等进行了发展和创新。 2.2国内重型燃气轮机的发展现状 我国对重型燃气轮机的研究开始于上世纪50年代,然后进行自主研发和设计生产大概在上世纪的60到70年代,而且在上世纪的80年代,我国的部分企业开始与国外上述比较大型的企业建立合作关系,并引入了国外的先进技术,尤其是以我国的哈尔滨电气、东方电气以及上海电气集团为主。经过多年的技术引进以及联合开发,我国的重型燃气轮机的科研和生产能力有了飞速的发展和进步。而且在引进目前国外比较先进的E级以及F级燃气轮机的基础上,以上述几家大型公司为核心,也开始形成了相应的燃气轮机制造产业群。在各个行业中已经进行了上述两个级别的重型燃气轮机以及配套的燃气-蒸汽联合循环全套发电设备的较高设计与生产能力。但是在目前已经实现了国产化的装配和制造的同时,还需要加大对核心技术的深入研究,争取实现核心技术的自主研发,以及相关热端部件的制造,还有维修技术以及控制技术的自主研发。 3重型燃气轮机发展趋势 在目前我国不断进行能源结构调整以及对各个行业提出较高的环保要求的同时,中心燃气轮机的发展更是需要向以下几个方面进行发展:首先就是要对燃气轮机的参数进行进一步提高,主要目的就是实现循环热效率的提高。其次是提

相关文档
相关文档 最新文档