文档库 最新最全的文档下载
当前位置:文档库 › 嵌入式linux-驱动-ad

嵌入式linux-驱动-ad

嵌入式linux-驱动-ad
嵌入式linux-驱动-ad

//#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include /* printk() */

#include /* kmalloc() */

#include /* everything... */ #include /* error codes */ #include /* size_t */

#include

#include

#include

#include

#include

#include

#include

//#include

#include

#include

#include

#include

#include

#include

#include

#include

//#include

#include

#include

#include

#include

#include "s3c2410-adc.h"

#include

#define DEVICE_NAME "adc"

#define ADCRA W_MINOR 0

#define ADC_INPUT(x) ((x)<<3)

#define PRSCVL(x) ((x)<<6)

static int adc_major = 249;

typedef struct {

struct semaphore lock; //声明一个信号量

wait_queue_head_t wait; //声明一个等待队列头

int channel;//选择哪一路AD转换器

int prescale;//预分频值

}ADC_DEV;

static ADC_DEV adcdev;

/*

*中断处理函数

*/

static irqreturn_t adcdone_int_handler(int irq,void *dev_id,struct pt_regs *regs)

{

wake_up(&adcdev.wait);//唤醒等待队列

return IRQ_HANDLED ;

}

/*

*对设备进行写操作,buffer一定是用户空间的

*/

static ssize_t s3c2410_adc_write(struct file *file, const char *buffer, size_t count, loff_t * ppos) {

int data;

if(count!=sizeof(data)){

printk(KERN_INFO"the size of input data must be %d\n", sizeof(data));

return 0;

}

copy_from_user(&data, buffer, count);//从用户空间拷贝数据到内核空间

adcdev.channel=ADC_WRITE_GETCH(data);//得到哪一路AD转换器

adcdev.prescale=ADC_WRITE_GETPRE(data);//得到预分频值

//printk(KERN_INFO"set adc channel=%d, prescale=0x%x\n", adcdev.channel, adcdev.prescale);

return count;

}

/*

*对设备进行读操作,buffer一定是用户空间的

*/

static ssize_t s3c2410_adc_read(struct file *filp, char *buffer, size_t count, loff_t *ppos)

{

int ret = 0;

if (down_interruptible(&adcdev.lock))//获得信号量

return -ERESTARTSYS;

writel(readl(S3C2410_ADCCON) &(~1),S3C2410_ADCCON);//对AD控制寄存器进行操作,具体参看s3c2410 datasheet

writel( (1<<14) | (255<<6) |(1<<0)|(1<<0)| ADC_INPUT(adcdev.channel),S3C2410_ADCCON);

sleep_on( &adcdev.wait );

ret = readl(S3C2410_ADCDA T0);

ret &= 0x3ff;

//printk(KERN_INFO"AIN[%d] = 0x%04x, %d\n", adcdev.channel, ret, readl(S3C2410_ADCCON) & 0x80 ? 1:0);

copy_to_user(buffer, (char *)&ret, sizeof(ret));//拷贝内核数据到用户空间

up(&adcdev.lock);

return sizeof(ret);

}

/*

*打开设备

*/

static int s3c2410_adc_open(struct inode *inode, struct file *filp)

{

int ret;

printk("in adc open");

ret = request_irq(IRQ_ADC, adcdone_int_handler, 0, DEVICE_NAME, NULL);//注册中断例程

if (ret) {

return ret;

}

init_MUTEX(&adcdev.lock);//初始化一个互斥的信号量,并设置为1

init_waitqueue_head(&(adcdev.wait));//初始化等待队列

adcdev.channel=0;

adcdev.prescale=0xff;

printk(KERN_INFO"adc opened\n");

return 0;

}

/*

*关闭设备

*/

static int s3c2410_adc_release(struct inode *inode, struct file *filp)

{

free_irq(IRQ_ADC, NULL);//释放中断资源

printk(KERN_INFO"adc closed\n");

return 0;

}

/*

*初始化并添加结构提struct cdev到系统之中

*/

static void adc_setup_cdev(struct cdev *dev, int minor,

struct file_operations *fops)

{

int err, devno = MKDEV(adc_major, minor);

cdev_init(dev, fops);//初始化结构体struct cdev

dev->owner = THIS_MODULE;

dev->ops = fops;//给结构体里的ops成员赋初值,这里是对设备操作的具体的实现函数err = cdev_add (dev, devno, 1);//将结构提struct cdev添加到系统之中

/* Fail gracefully if need be */

if (err)

printk (KERN_NOTICE "Error %d adding adc %d", err, minor);

}

static struct cdev AdcDevs;

/*

*定义一个file_operations结构体,来实现对设备的具体操作的功能

*/

static struct file_operations adc_remap_ops = {

owner: THIS_MODULE,

open: s3c2410_adc_open,

read:s3c2410_adc_read,

write: s3c2410_adc_write,

release: s3c2410_adc_release,

};

/*

*初始化设备驱动模块,主要完成对字符设备结构体的初始化和添加到系统中,并得到一个

设备的设备号

*/

static int adc_init(void)

{

writel(0,S3C2410_ADCTSC); //XP_PST(NOP_MODE);

int result;

dev_t dev = MKDEV(adc_major, 0);//将主设备号和次设备号定义到一个dev_t数据类型的结构体之中

/* Figure out our device number. */

if (adc_major)

result = register_chrdev_region(dev, 1, "adc");//静态注册一个设备,设备号先前指定好,并得到一个设备名,cat /proc/device来查看信息

else {

result = alloc_chrdev_region(&dev, 0, 1, "adc");//如果主设备号被占用,则由系统提供一个主设备号给设备驱动程序

adc_major = MAJOR(dev);//得到主设备号

}

if (result < 0) {

return result;

}

if (adc_major == 0)

adc_major = result;//如果静态分配失败。把动态非配的设备号给设备驱动程序adc_setup_cdev(&AdcDevs, 0, &adc_remap_ops);//初始化和添加结构体struct cdev到系统之中

printk(KERN_INFO"adc device installed, with major %d\n", adc_major);

return 0;

}

/*

*卸载驱动模块

*/

static void adc_cleanup(void)

{

cdev_del(&AdcDevs);//删除结构体struct cdev

unregister_chrdev_region(MKDEV(adc_major, 0), 1);//卸载设备驱动所占有的资源

printk(KERN_INFO"adc device uninstalled\n");

}

module_init(adc_init);//初始化设备驱动程序的入口

module_exit(adc_cleanup);//卸载设备驱动程序的入口

MODULE_LICENSE("Dual BSD/GPL"); //模块应该指定代码所使用的许可证

嵌入式Linux应用软件开发流程

从软件工程的角度来说,嵌入式应用软件也有一定的生命周期,如要进行需求分析、系统设计、代码编写、调试和维护等工作,软件工程的许多理论对它也是适用的。 但和其他通用软件相比,它的开发有许多独特之处: ·在需求分析时,必须考虑硬件性能的影响,具体功能必须考虑由何种硬件实现。 ·在系统设计阶段,重点考虑的是任务的划分及其接口,而不是模块的划分。模块划分则放在了任务的设计阶段。 ·在调试时采用交叉调试方式。 ·软件调试完毕固化到嵌入式系统中后,它的后期维护工作较少。 下面主要介绍分析和设计阶段的步骤与原则: 1、需求分析 对需求加以分析产生需求说明,需求说明过程给出系统功能需求,它包括:·系统所有实现的功能 ·系统的输入、输出 ·系统的外部接口需求(如用户界面) ·它的性能以及诸如文件/数据库安全等其他要求 在实时系统中,常用状态变迁图来描述系统。在设计状态图时,应对系统运行过程进行详细考虑,尽量在状态图中列出所有系统状态,包括许多用户无需知道的内部状态,对许多异常也应有相应处理。 此外,应清楚地说明人机接口,即操作员与系统间地相互作用。对于比较复杂地系统,形成一本操作手册是必要的,为用户提供使用该系统的操作步骤。为使系统说明更清楚,可以将状态变迁图与操作手册脚本结合起来。

在对需求进行分析,了解系统所要实现的功能的基础上,系统开发选用何种硬件、软件平台就可以确定了。 对于硬件平台,要考虑的是微处理器的处理速度、内存空间的大小、外部扩展设备是否满足功能要求等。如微处理器对外部事件的响应速度是否满足系统的实时性要求,它的稳定性如何,内存空间是否满足操作系统及应用软件的运行要求,对于要求网络功能的系统,是否扩展有以太网接口等。 对于软件平台而言,操作系统是否支持实时性及支持的程度、对多任务的管理能力是否支持前面选中的微处理器、网络功能是否满足系统要求以及开发环境是否完善等都是必须考虑的。 当然,不管选用何种软硬件平台,成本因素都是要考虑的,嵌入式Linux 正是在这方面具有突出的优势。 2、任务和模块划分 在进行需求分析和明确系统功能后,就可以对系统进行任务划分。任务是代码运行的一个映象,是无限循环的一段代码。从系统的角度来看,任务是嵌入式系统中竞争系统资源的最小运行单元,任务可以使用或等待CPU、I/O设备和内存空间等系统资源。 在设计一个较为复杂的多任务应用系统时,进行合理的任务划分对系统的运行效率、实时性和吞吐量影响都极大。任务分解过细会不断地在各任务之间切换,而任务之间的通信量也会很大,这样将会大大地增加系统的开销,影响系统的效率。而任务分解过粗、不够彻底又会造成原本可以并行的操作只能按顺序串行执行,从而影响系统的吞吐量。为了达到系统效率和吞吐量之间的平衡折中,在划分任务时应在数据流图的基础上,遵循下列步骤和原则:

Linux网络设备驱动开发实验

实验三:Linux网络设备驱动开发实验 一、实验目的 读懂linux网络设备驱动程序例子,并且实际加载驱动程序,加载进操作系统以后,会随着上层应用程序的触发而执行相应动作,具体执行的动作可以通过代码进行改变。 ●读懂源码及makefile ●编译驱动程序 ●加载 ●多种形式触发动作 二、预备知识 熟悉linux驱动基本原理,能读懂简单的makefile。 三、实验预计时间 80-120分钟左右 四、驱动程序部分具体步骤 要求读懂一个最简单的驱动程序,在驱动程序的诸如“xxx_open”、“xxx_read”等标准接口里面加入打印语句。可参考多模式教学网上的驱动样例。 五、用于触发驱动动作的应用程序及命令 驱动程序就是以静态的标准接口库函数形式存在,网络设备驱动会受到两大类情况的触发,一种是linux里面的控制台里面的命令,另一种是套接口应用程序,首先要搞清都有哪些具体的命令和应用程序流程,应用程序参考多模式教学网的例子。 六、运行测试 提示:需要将驱动程序以dll加载进系统中,并且触发应用程序调用各种文件操作的接口函数,使得驱动有所动作,打印出相关信息。 1.编译驱动: cd /某某目录/vnetdev/ make clean make 2.加载驱动与打开网卡: insmod netdrv.ko

ifconfig vnet0 up 3.运行应用程序 ../raw 4.通过命令“修改网卡MTU”触发驱动执行动作: ifconfig vnet0 mtu 1222 5.显示内核打印: cat /var/log/messages 6.卸载: ifconfig vnet0 down rmmod netdrv.ko 7.修改代码中的某些函数中的打印信息,重新试验上述流程。 至此大家都应该真正理解和掌握了驱动程序-操作系统-应用程序的三者联动机制。 七、实验结果 由图可知能正常加载网卡驱动,并且能够打印调试信息。

嵌入式linux基本操作实验一的实验报告

实验一linux基本操作实验的实验报告 一实验目的 1、熟悉嵌入式开发平台部件,了解宿主机/目标机开发模式; 2、熟悉和掌握常用Linux的命令和工具。 二实验步骤 1、连接主机和目标板;(三根线,网线直接连接实验箱和PC机,实验箱UART2连接主机的UART口)。 2、Linux命令的熟悉与操作 PC端:在PC机的桌面上打开虚拟机,并启动Linux系统,打开命令终端,操作Linux基本命令,如:查看:ls,进入目录:cd,创建文件:mkdir,删除文件:rmdir,配置网络:ifconfig,挂载:mount,设置权限:chmod,编辑器:vi,拷贝:cp等命令,要求能熟练操作。 使用方法: 1.查看:ls Ls列出文件和目录 Ls–a 显示隐藏文件 Ls–l 显示长列格式ls–al 其中:蓝:目录;绿:可执行文件;红:压缩文件;浅蓝:链接文件;灰:其他文件;红底白字:错误的链接文件 2.进入目录:cd 改变当前目录:cd 目录名(进入用户home目录:cd ~;进入上一级目录:cd -) 3.创建文件:mkdir 建立文件/目录:touch 文件名/mkdir目录名 4.删除文件:rmdir 删除空目录:rmdir目录名 5.配置网络:ifconfig 网络- (以太网和WIFI无线) ifconfig eth0 显示一个以太网卡的配置 6.挂载:mount mount /dev/hda2 /mnt/hda2 挂载一个叫做hda2的盘- 确定目录'/ mnt/hda2' 已经存在 umount /dev/hda2 卸载一个叫做hda2的盘- 先从挂载点'/ mnt/hda2' 退出fuser -km /mnt/hda2 当设备繁忙时强制卸载 umount -n /mnt/hda2 运行卸载操作而不写入/etc/mtab文件- 当文件为只读或当磁盘写满时非常有用 mount /dev/fd0 /mnt/floppy 挂载一个软盘 mount /dev/cdrom /mnt/cdrom挂载一个cdrom或dvdrom mount /dev/hdc /mnt/cdrecorder挂载一个cdrw或dvdrom mount /dev/hdb /mnt/cdrecorder挂载一个cdrw或dvdrom mount -o loop file.iso /mnt/cdrom挂载一个文件或ISO镜像文件

嵌入式点亮一个LED灯的程序

飞凌OK6410开发板(裸板)第一个点亮LED灯程序,主要的C程序,完整程序请下载附件。 #define rGPMCON (*(volatile unsigned *)(0x7F008820)) #define rGPMDAT (*(volatile unsigned *)(0x7F008824)) #define rGPMPUD (*(volatile unsigned *)(0x7F008828)) void msDelay(int time) { volatile unsigned int i,j; for(i = 0; i < 2000000; i++) for(j=0; j

1.设计要求 EM-STM3210E开发板上有一个LED灯D1,编写程序点亮该灯。 2.硬件电路连接 在开发板上,D1与STM32F103ZE芯片上的引脚PF6相连,如下图所示。 3.软件程序设计

根据任务要求,程序内容主要包括: 1、配置Reset and clock control (RCC)以使能GPIOF端口模块的时钟 2、配置GPIOF端口的PF6引脚(50MHz,推挽输出) 3、调用STM32标准固件库函数GPIO_WriteBit以令PF6引脚输出高电平,从而点亮LED灯D1。 整个工程用户只需要实现源代码文件:main.c,其他工程文件由MDK和STM32标准固件库提供。 main.c文件的内容如下: [cpp] /** ********************************************************** ******************** * @file main.c * @author Max Liao * @version * @date 02-Novenber-2012 * @brief Main program body ********************************************************** ******************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/

嵌入式Linux系统中音频驱动的设计与实现

第31卷 第2期 2008年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.31 No.2Apr.2008 Design and Implementation of Audio Driver for Embedded Linux System YU Yue,YA O G uo -liang * (N ational A S I C S ystem Eng ine ering Center ,S outhe ast Unive rsity ,N anj ing 210096,China) Abstract:This paper intro duces the fundam ental principle and architecture of the audio system w hich con -sists of the CODEC UCB1400and the 805puls,and describes the design of audio dev ice dr iv er based on Audio Codec .97for Embedded Linux System.The paper focuses o n the implementatio n of the DM A trans -port and ioctl interface.T he audio dr iv e is running w ell in actual Embedded Linux system equipments.Key words:805plus;embedded Linux;Audio A C .97driver;DM A;ioctl interface EEACC :1130B 嵌入式Linux 系统中音频驱动的设计与实现 虞 跃,姚国良 * (东南大学国家专用集成电路系统工程中心,南京210096) 收稿日期:2007-07-09 作者简介:虞 跃(1982-),男,东南大学电子工程系国家专用集成电路工程技术研究中心硕士研究生,研究方向为嵌入式系统设计; 姚国良(1979-),男,东南大学电子工程系博士研究生,yuyueo@https://www.wendangku.net/doc/4417598821.html,. 摘 要:介绍了由805puls 处理器和U CB1400编解码芯片构成的音频系统体系结构及工作原理,接着阐述了嵌入式Linux 操作系统下基于A C .97协议标准的音频设备驱动程序的设计与实现。其中着重讲述了采用循环缓冲区进行音频数据的DM A 传输流程以及ioctl 接口的实现。此设计方案已在嵌入式L inux 系统中得到使用,运行效果良好。 关键词:805plus;嵌入式L inux ;AC .97音频驱动;DM A;ioctl 接口中图分类号:TP391 文献标识码:A 文章编号:1005-9490(2008)02-0709-03 嵌入式音频系统广泛应用于GPS 自动导航、PDA,3G 手机等移动信息终端,具备播放、录音功能的音频系统的应用使得移动信息终端上视听娱乐IP 电话、音频录制等成为可能,并推动了移动信息终端设备的发展。 在软件上,嵌入式操作系统的新兴力量Linux 的开源性,内核可定制等优点吸引了许多的开发者与开发商。它是个和U nix 相似、以核心为基础的、完全内存保护、多任务多进程的操作系统。支持广泛的计算机硬件,包括X86,A lpha,Sparc,M IPS,PPC,ARM ,NEC,MOT OROLA 等现有的大部分芯片[1]。 本文针对805puls 微处理器选用Philips 公司的编解码芯片(CODEC)U CB1400,构建了基于Au -dio Codec .97(AC .97)标准的音频系统。并介绍了该音频系统在Linux 操作系统2.4.19内核下驱动 程序的实现技术。 1 音频系统构架 1.1 微处理器805plus 805plus 是东南大学ASIC 系统工程技术研究中心和北京大学微处理器研究开发中心共同设计和开发的32bit 嵌入式微处理器,是采用H ar vard 结构的RISC 处理器。内部采用五级流水线结构,兼容16bit 和32bit 的指令系统805plus 嵌入式微处理器集成了存储接口EMI,时钟和功耗管理PM C,中断控制器INTC,通用定时器T IM ER,脉宽调制器PWM,实时时钟RT C,通用串口UA RT,LCD 控制器LCDC,AC .97控制器,同步外设接口SPI 。1.2 AC .97协议标准[2] AC'97协议标准是一套关于A C'97数字音频处理(AC'97Digital Controller)、AC '97数字串口(AC

CAN总线在嵌入式Linux下驱动程序的实现

CAN总线在嵌入式Linux下驱动程序的实现 时间:2009-11-05 09:41:22 来源:微计算机信息作者:黄捷峰蔡启仲郭毅锋田小刚 1 引言 基于嵌入式系统设计的工业控制装置,在工业控制现场受到各种干扰,如电磁、粉尘、天气等对系统的正常运行造成很大的影响。在工业控制现场各个设备之间要经常交换、传输数据,需要一种抗干扰性强、稳定、传输速率快的现场总线进行通信。文章采用CAN总线,基于嵌入式系统32位的S3C44B0X微处理器,通过其SPI接口,MCP2510 CAN控制器扩展CAN总线;将嵌入式操作系统嵌入到S3C44B0X微处理器中,能实现多任务、友好图形用户界面;针对S3C44B0X微处理器没有内存管理单元MMU,采用uClinux嵌入式操作系统。这样在嵌入式系统中扩展CAN设备关键技术就是CAN设备在嵌入式操作系统下驱动程序的实现。文章重点解决了CAN总线在嵌入式操作系统下驱动程序实现的问题。对于用户来说,CAN设备在嵌入式操作系统驱动的实现为用户屏蔽了硬件的细节,用户不用关心硬件就可以编出自己的用户程序。实验结果表明驱动程序的正确性,能提高整个系统的抗干扰能力,稳定性好,最大传输速率达到1Mb/s;硬件的错误检定特性也增强了CAN的抗电磁干扰能力。 2 系统硬件设计 系统采用S3C44B0X微处理器,需要扩展CAN控制器。常用的CAN控制器有SJA1000和MCP2510,这两种芯片都支持CAN2.0B标准。SJA1000采用的总线是地址线和数据线复用的方式,但是嵌入式处理器外部总线大多是地址线和数据线分开的结构,这样每次对SJA1000操作时需要先后写入地址和数据2次数据,而且SJA1000使用5V逻辑电平。所以应用MCP2510控制器进行扩展,收发器采用82C250。MCP2510控制器特点:1.支持标准格式和扩展格式的CAN数据帧结构(CAN2.0B);2.0~8字节的有效数据长度,支持远程帧;3.最大1Mb/s的可编程波特率;4.2个支持过滤器的接受缓冲区,3个发送缓冲区; 5.SPI高速串行总线,最大5MHz; 6.3~5.5V宽电压范围供电。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为了进一步提高系统抗干扰性,可在CAN控制器和收发器之间加一个光隔6N137。其结构原理框图如图1: 图1.S3C44B0X扩展CAN结构框图图2.字符设备注册表 3 CAN设备驱动程序的设计 Linux把设备看成特殊的文件进行管理,添加一种设备,首先要注册该设备,增加它的驱动。设备驱动程序是操作系统内核与设备硬件之间的接口,并为应用程序屏蔽了硬件细节。在linux中用户进程不能直接对物理设备进行操作,必须通过系统调用向内核提出请求,

《嵌入式系统与开发》构建嵌入式Linux系统-实验报告

《嵌入式数据库sqlite移植及使用》 实验报告 学生姓名:陈彤 学号:13004405 专业班级:130044 指导教师:孙国梓 完成时间:2016.5.31 实验3 嵌入式数据库sqlite移植及使用 一.实验目的 理解嵌入式软件移植的基本方法,掌握sqlite数据库软件移植的步骤,掌握sqlite开发的两种方式—命令模式和C代码开发模式的使用方法,并编程实现简单通讯录查询实验。 二.实验内容 实验3.1 移植嵌入式数据库sqlite 实验3.2 简单通讯录查询实例设计和测试 三.预备知识 Linux使用、数据库相关知识等 四.实验设备及工具(包括软件调试工具) 硬件:ARM 嵌入式开发平台、PC 机Pentium100 以上、串口线。 软件:WinXP或UBUNTU开发环境。 五.实验步骤 5.1 移植嵌入式数据库sqlite 步骤【参看教材103页】: 第一步,解压缩sqlite源码,命令tar zxvf sqlite-autoconf-3080900.tar.gz,在解压后的文件夹下,可以看到源码文件有shell.c 和sqlite3.c文件,生成Makefile的配置脚本文件configure.ac ,并检查当前文件夹下__A__(A.存在 B.不存在)Makefile文件。 第二步利用configure脚本文件生成基于ARM实验台的Makefile,具体命令为./configure CC=arm-linux-gcc –prefix=/opt/sqlite –host=arm-linux(假设安装目录为/opt/sqlite),并检查当前文件夹下___A__(A.存在 B.不存在)Makefile文件。 第三步,编译sqlite,命令为_make_,编译过程中使用的编译器为_ arm-linux-gcc _。 第四步,安装sqlit,命令为_make install_。安装完成后到_/opt/sqlite_文件夹下去查看相关文件,可以看到该文件夹下有_bin_、_include_、__lib__和share文件夹,其中可执行文件sqlite3位于_./bin_文件夹,库位于_./lib_文件夹。 第五步,将sqlite3拷贝到开发板bin目录下,将库下的文件拷贝到开发板的lib目录下【注意链接文件的创建】 第六步,数据库的使用 方式1:命令操纵数据库 在超级终端环境下创建数据库stucomm.db,命令为_sqlite3 stucomm.db_; 创建数据表stutable,字段包括id 整型,name 字符型,phoneNum 字符型,具体命令为_sqlite> create table stutable (id int(20),name char(20),phoneNum char(20));_; 插入2条记录,记录信息如下 001,zhangsan,10086 002,lisi,10000

南邮嵌入式系统B实验报告2016年度-2017年度-2

_* 南京邮电大学通信学院 实验报告 实验名称:基于ADS开发环境的程序设计 嵌入式Linux交叉开发环境的建立 嵌入式Linux环境下的程序设计 多线程程序设计 课程名称嵌入式系统B 班级学号 姓名 开课学期2016/2017学年第2学期

实验一基于ADS开发环境的程序设计 一、实验目的 1、学习ADS开发环境的使用; 2、学习和掌握ADS环境下的汇编语言及C语言程序设计; 3、学习和掌握汇编语言及C语言的混合编程方法。 二、实验内容 1、编写和调试汇编语言程序; 2、编写和调试C语言程序; 3、编写和调试汇编语言及C语言的混合程序; 三、实验过程与结果 1、寄存器R0和R1中有两个正整数,求这两个数的最大公约数,结果保存在R3中。 代码1:使用C内嵌汇编 #include int find_gcd(int x,int y) { int gcdnum; __asm { MOV r0, x MOV r1, y LOOP: CMP r0, r1 SUBLT r1, r1, r0 SUBGT r0, r0, r1 BNE LOOP MOV r3, r0 MOV gcdnum,r3 //stop // B stop // END } return gcdnum; } int main() { int a; a = find_gcd(18,9);

printf("gcdnum:%d\n",a); return 0; } 代码2:使用纯汇编语言 AREA example1,CODE,readonly ENTRY MOV r0, #4 MOV r1, #9 start CMP r0, r1 SUBLT r1, r1, r0 SUBGT r0, r0, r1 BNE start MOV r3, r0 stop B stop END 2、寄存器R0 、R1和R2中有三个正整数,求出其中最大的数,并将其保存在R3中。 代码1:使用纯汇编语言 AREA examp,CODE,READONL Y ENTRY MOV R0,#10 MOV R1,#30 MOV R2,#20 Start CMP R0,R1 BLE lbl_a CMP R0,R2 MOVGT R3,R0 MOVLE R3,R2 B lbl_b lbl_a CMP R1,R2 MOVGT R3,R1 MOVLE R3,R2 lbl_b B . END 代码2:使用C内嵌汇编语言 #include int find_maxnum(int a,int b,int c)

USB鼠标嵌入式驱动系统

USB鼠标嵌入式驱动系统 朱娟光华长春大学 吉林省 E-mail:zhuj_guanghua@ https://www.wendangku.net/doc/4417598821.html, 王帅中国科学院长春光 学精密机械与物理研究 所 吉林长春 张舒阳王津立李赵希 长春大学光华学院 吉林长春 摘要:该论文设计了一种USB鼠标基于AT89S52单片机的嵌入式驱动系统。这AT89S52控制USB的主控芯片,SL811HS实现控制USB鼠标的功能。硬件给出该系统的原理框图。软件介绍系统的实现原理和USB总线重新插入行动的装置检测、设备速度检测等。嵌入式USB驱动系统有重要的参考价值,USB主机系统的设计。 关键词——USB数目;SL811HS;AT89S52单片机 I.简介 USB设备因其便捷和高性价比特点,被广泛用于日常工作和生活中。例如,USB 磁盘,USB相机,USB鼠标,USB键盘,等等。单片机(SCM)有成熟的技术和高性价比,被广泛用于自动化领域中。但是单片机没有USB主机接口配置,从而导致直接控制USB外围设备有困难。如果我们在单片机系统中增加USB主机接口、通过接口控制USB从动装置设备,单片机系统的功能将大大扩展。该系统为单片机加上USB主机接口。使用常见的51单片机连接特殊解决USB接口芯片。这个解决方案具有良好的灵活性和简单的移植。它为低成本产品的开发提供了一个广阔的前景。系统选用Atmel公司的AT89S52单片机。USB的主控制芯片是芯片赛浦路斯的公司的SL811HS。SL811HS可以在任何一个主机或从动模型使用,它支持USB1.1的全速和低速数据传输。当在主机模式下工作时,就可以自动检测到嵌入SL811HS的行为。本论文介绍方法AT89S52控制SL811HS以完成USB控制的方法。例如,USB鼠标控制计划的情况。 II.系统硬件 系统的硬件如图一所示。AT89S52和SL811HS的电压分别为5V和3.3V。虽然电压不同,AT89S52和SL811HS的参数可以根据噪音容忍参数直接连接。

linux字符设备驱动课程设计报告

一、课程设计目的 Linux 系统的开源性使其在嵌入式系统的开发中得到了越来越广泛的应用,但其本身并没有对种类繁多的硬件设备都提供现成的驱动程序,特别是由于工程应用中的灵活性,其驱动程序更是难以统一,这时就需开发一套适合于自己产品的设备驱动。对用户而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以像对其它文件一样对此设备文件进行操作。 通过这次课程设计可以了解linux的模块机制,懂得如何加载模块和卸载模块,进一步熟悉模块的相关操作。加深对驱动程序定义和设计的了解,了解linux驱动的编写过程,提高自己的动手能力。 二、课程设计内容与要求 字符设备驱动程序 1、设计目的:掌握设备驱动程序的编写、编译和装载、卸载方法,了解设备文件的创建,并知道如何编写测试程序测试自己的驱动程序是否能够正常工作 2、设计要求: 1) 编写一个简单的字符设备驱动程序,该字符设备包括打开、读、写、I\O控制与释放五个基本操作。 2) 编写一个测试程序,测试字符设备驱动程序的正确性。 3) 要求在实验报告中列出Linux内核的版本与内核模块加载过程。 三、系统分析与设计 1、系统分析 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 字符设备提供给应用程序的是一个流控制接口,主要包括op e n、clo s e(或r ele as e)、r e ad、w r i t e、i o c t l、p o l l和m m a p等。在系统中添加一个字符设备驱动程序,实际上就是给上述操作添加对应的代码。对于字符设备和块设备,L i n u x内核对这些操作进行了统一的抽象,把它们定义在结构体fi le_operations中。 2、系统设计: 、模块设计:

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

LED驱动程序设计

LED驱动程序设计 分类:ARM系统进阶班(arm裸机程序)2012-08-24 13:23 1561人阅读评论(0) 收藏举报 首先声明,此文章是基于对国嵌视频教程中tiny6410有关视频教程的总结,为方便大家的复习。再次予以感谢,感谢国嵌各位老师为我们提供如此好的视频教程,为对于想要迈入嵌入式大门却迟迟找不到合适方法的学子们指引一条光明的方向。好了,接下来步入正题,此处将介绍tiny6410 LED驱动程序的设计。

2 下面来看看tiny6410关于LED 的原理图如图(1)所示:

图1 LED原理图 3 LED实例,代码如下所示:(代码摘自\光盘4\实验代码\3-3-1\src\main.c) main.c [cpp]view plaincopy 1./********************************************************** 2.*实验要求:用Tiny6410上的4个LED资源实现跑马灯程序。 3.*功能描述: Tiny6410用下面4个引脚连接了LED发光二极管,分别是 4.* GPK4--LED1 5.* GPK5--LED2 6.* GPK6--LED3 7.* GPK7--LED4 8.* 本程序将控制这四个管脚的输出电平,实现跑马灯的效果 9.*日期: 2011-3-10 10.*作者:国嵌 11.**********************************************************/ 12.#include "def.h" 13.#include "gpio.h" 14. 15.#define LED1_ON ~(1<<4) 16.#define LED2_ON ~(1<<5) 17.#define LED3_ON ~(1<<6) 18.#define LED4_ON ~(1<<7) 19. 20.#define LED1_OFF (1<<4)

linux应用程序开发实验报告3

实验报告 学生姓名:白迪学生学号:222014********* 日期:2016年11月15日与11月29日 院(系):计算机与信息科学学院软件学院专业(班级):网络工程实验题目:终端驱动属性编程及利用属性特性的应用程序编程 一. 实验目的 掌握终端驱动属性的特殊功能,掌握终端驱动属性的显示与修改方法编程,掌握利用终端驱动属性的特属性编写需要特殊功能的应用程序技巧。 二. 实验原理 三. 实验器材 安装有Windows操作系统PC机一台,实验环境为LINUX虚拟机(包含gcc 与gdb). 四. 实验分析与设计 补全终端设备属性位与控制字符的信息输出: Main函数

Flags的补充 显示flags函数

Setecho函数,设置echo的状态位Echostate函数。显示echo状态 Setecho函数

忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。 预处理 Main函数 Tty—mode set_nodelay_mode()//没阻塞 set_nobuf_noecho_mode()//没回显,没缓冲

Getresponse() 中断处理函数 五. 实验结果 属性位与控制字符的信息输出

stty控制字符的修改功能,setecho 忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。当按下的键不是y或者n就显示f。 六. 实验心得 通过本次试验中对终端文件更加的了解了,还学会了对中断文件的一些基本的设置,前面的实验做起来就是一些验证比较简单,但是收获很大,最后一个做的时候先看过书后,自己编写的,调试过程中总是出错,做到最后跟书上的代码比较发现自己的代码跟书上比差了好远,修改了很多,自己用的是Redhat5,cc—

eink嵌入式驱动

起因 2007年,苹果公司推出了第一代的iPhone,后来这款产品完全改变了人们对于智能手机的理解和认识,智能手机以及衍生的后PC产品功能不断强化,正在一步步取代着原本PC 才能做的事情。而就是这样一个背景下,亚马逊公司却反其道而行,推出了一款功能无比单一的产品:Kindle。Kindle不但软件上设计成只能用来看书,就连硬件上也选用了一块基本只能用来看书的屏幕:黑白EPD屏幕。这种屏幕只能显示黑白颜色(或者灰阶),响应速度也非常慢(大约400ms-1s),而且还不能主动发光,必须要借助环境光才能显示……然而这种屏幕却也有一些非常重要的优点,比如显示效果非常接近纸张,不刺眼,只有在刷新时耗电等等。几年后,国产厂家也进军了这一领域,把这类使用EPD屏幕的电纸书的价格做到了千元以下。当时我就买了一台,着实是被这种显示屏的效果给吸引住了。当时我就想着要是能自己用单片机驱动起来玩一玩就好了。无奈当时自己技术差,屏幕也贵,没能顺利实施。最近发现大尺寸(6英寸,型号ED060SC4)的E-Ink屏幕价格已经降到了50以内,于是决定开始研究下它的驱动,也顺便做个最简单的应用:台历。 初步研究 首先,为了各位方便阅读,先来区分几个名词,首先是EPD,EPD并非是E-Paper Display (电子纸显示器)的缩写,而应该是Electrophoretic Display即电泳显示器的缩写。E-Ink 则是PVI公司的注册商标,用于指代他们旗下的EPD产品。但是并非只有PVI公司生产电子纸,天马、龙亭、友达、佳显和LG等公司都在生产类似且兼容的EPD产品,所以最好称他们为EPD而非E-Ink。电子纸这个概念就比较笼统了,EPD是一种电子纸,但是也有很多基于其它技术的电子纸,比如说Ch-LCD、PN-LCD、HR-TFT LCD等等,比如Pebble 所使用的HR-TFT LCD也被宣传为电子纸,但实际上并非EPD。

嵌入式LED灯显示

【设计题目】 矩阵LED字符显示控制系统设计 【设计目的】 1.掌握无操作系统下的硬件软件设计原理和方法; 2.进一步熟悉ARM 处理器的基本结构、指令集、存储系统以及基本接口编程; 3.熟悉嵌入式系统各部件的硬件初始化过程以及基本IO控制方法。 4.掌握矩阵LED 的应用原理 【设计内容】 1.利用sys_init初始化程序,利用串口实现PC和开发板的数据通信; 2.编写S3C2410X 处理器的点阵屏驱动程序; 3.编写S3C2410X 处理器的点阵屏应用程序。 4. 当程序运行等待要求从串口输入学生姓名的字符串在矩阵LED上显示出来。【实验环境】 硬件:Embest EduKit-IV 平台,ULINK2 仿真器套件,PC 机; 软件:μVision IDE for ARM 集成开发环境,Windows XP。 【相关知识综述】 背景知识、原理算法等 一、硬件部分 1.点阵屏的结构电路

图1点阵屏的结构电路 图上QL1-QL16为行驱动信号,每个信号控制一行, LR1~LR16 是点阵屏的列驱动信号,每一个信号控制一列。当行信号为高电平而列信号为低电平,对应的LED 就会亮。 2,S3C2410与点阵屏的连接 LL1 LL8 LL7 LL9

图2 S3C2410ARM处理器与两片CD4094连接得到16位行选信号图以上电路可以通过S3C2410GPIO口把CPU的并行数据(16位两个字节的数据)打入到两个CD4094芯片中并锁存起来变成LL1-LL16的行选信号。 各信号的作用如下表1;

3.点阵屏的保护电路 图3 点阵屏的保护电路图 为了保护LED 屏加了对应的电阻实现行限流作用,即LL1-LL16变为RQ1-RQ16 4.LED 的驱动 加入行驱动电路的目的是实现LED 灯的驱动。这样由RQ1-RQ16变为行驱动信号QL1-QL16。Q11-QL16为图1中的行驱动信号。

嵌入式linux android驱动工程师 面试题总汇

嵌入式linux android驱动工程师面试题总汇 1.嵌入式系统中断服务子程序(ISR)收藏中断是嵌入式系统中重要的组成部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字__interrupt。下面的代码就使用了__interrupt关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。 2.C语言中对位的操作,比如对a的第三位清0,第四位置1.本来应该会的,一犯晕写反了,以后注意! #define BIT3 (1<<3) #define BIT4 (1<<4) a &= ~BIT3;a |= BIT4; 3.考到volatile含义并举例: 理解出错,举了很具体的例子,连程序都搬上去了,有些理解不深的没举出来…… volatile表示这个变量会被意想不到的改变,每次用他的时候都会小心的重新读取一遍,不适用寄存器保存的副本。 volatile表示直接存取原始地址 例: 并行设备的硬件寄存器(状态寄存器) 在多线程运行的时候共享变量也要时时更新 一个中断服务子程序中访问到的的非自动变量(不太清楚,正在查找资料ing……) 4.要求设置一绝对地址为0x67a9的整型变量的值为0xaa66

当时我的写法: #define AA *(volatile unsigned long *)0xaa66AA = 0x67a9; 答案: int *ptr =(int *)0xaa66; *ptr = 0x67a9; 我感觉自己写的应该不算错吧(自我感觉,还请达人指正),我写的适合裸机下用,当做寄存器用,而答案就是适合在操作系统下的写法。 1. linux内核里面,内存申请有哪几个函数,各自的区别? 2. IRQ和FIQ有什么区别,在CPU里面是是怎么做的? 3. int *a; char *b; a 和b本身是什么类型? a、b里面本身存放的只是一个地址,难道是这两个地址有不同么? 4.xx的上半部分和下半部分的问题: 讲下分成上半部分和下半部分的原因,为何要分?讲下如何实现? 5.内核函数mmap的实现原理,机制? 6.驱动里面为什么要有并发、互斥的控制?如何实现?讲个例子? 7. spinlock自旋锁是如何实现的? 8.任务调度的机制? 【二、本人碰到】

嵌入式linux实验指导书

目录 实验一 linux常用指令练习 (3) 1、在线帮助指令 (3) 2、linux开关机及注销指令。 (3) 重启指令: (3) 1)、reboot命令 (3) 2)、init 6命令 (3) 关机指令: (3) 1)、halt命令 (3) 2)、poweroff命令 (4) 3)、init 0命令 (4) 4)、shutdown命令 (4) 注销指令: (4) 3、用户管理命令 (4) 1)、用户切换su命令 (4) 2)、添加用户命令adduser/useradd (5) 3)、删除用户及更改用户属性 (5) 4)、设置用户密码 (6) 5)、查看用户信息 (6) 4、文件目录操作指令 (7) 1)、改变当前工作目录命令(cd) (7) 2)、显示当前路径pwd (7) 3)、查看当前目录下的文件命令ls (7) 4)、新建目录指令mkdir (8) 5)、删除目录命令rmdir (8) 6)、新建文件命令touch (8) 7)、删除文件指令rm (8) 8)、文件和目录的复制命令cp (8) 9)、文件和目录的移动命令mv (9) 10)、更改文件或目录的使用权限chmod (9) 11)、查看文件的命令cat (9) 12)、文件链接命令ln (9) 13)、文件压缩解压命令 (10) 5、网络相关命令 (11) 6、磁盘管理命令 (11) 7、挂载文件命令mount (12) 8、其他系统命令 (12) 练习1: (13) 练习2: (15) 练习3: (16) 练习4: (21) 实验二 VI文本编辑器的使用 (24) 1、练习使用VI指令 (24) 2、利用VI编写一个hello.c文件 (24)

嵌入式LINUX四按键驱动

对一个具有四个按键的按键驱动的分析 源代码: /*Headers-------------------------------------------------*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DEVFS_FS #include #endif /*V ars----------------------------------------------------*/ #define DEVICE_NAME "buttons" #define EXTINT_OFF (IRQ_EINT4 - 4) unsigned int buttons_major=0; unsigned int buttons_minor=0; unsigned int type = IRQT_FALLING; struct button_info { unsigned int irq_no; unsigned int gpio_port; unsigned int IN; int button_no; }; struct button_info realarm_button_info[4] = { { IRQ_EINT19, S3C2410_GPG11, S3C2410_GPG11_INP, 1 }, { IRQ_EINT8, S3C2410_GPG0, S3C2410_GPG0_INP, 2 },

相关文档
相关文档 最新文档