文档库 最新最全的文档下载
当前位置:文档库 › 选-基于单片机的双轴太阳能跟踪系统的设计_王国龙

选-基于单片机的双轴太阳能跟踪系统的设计_王国龙

选-基于单片机的双轴太阳能跟踪系统的设计_王国龙
选-基于单片机的双轴太阳能跟踪系统的设计_王国龙

基于单片机的双轴太阳能跟踪系统的设计

王国龙

(西南交通大学四川成都611756)

摘要:为了解决太阳能工程项目中光伏效率不高的问题,设计了双轴太阳能跟踪装置,该系统采用视日轨迹跟踪方案。文中着重分析了双轴跟踪的原理及其系统组成,利用光伏元件和STC89C52单片机实现大范围太阳跟踪,液晶显示屏实时显示最佳接收方位角及温湿度。在光线充足的天气条件下,跟踪装置自动旋转并始终保持太阳光垂直照射在太阳能电池的表面。在阴雨天或夜间等光线不足的条件下系统停止跟踪太阳转动。整个系统不需要任何外部电源供电,实现对太阳的高精度跟踪,并且使系统具有较强的抗干扰和运算能力。关键词:单片机;自动跟踪;光敏电阻;太阳能电池;步进电机中图分类号:TP18

文献标识码:A

文章编号:1674-6236(2013)15-0171-03

Design of two -axis solar tracking system based on MCU

WANG Guo -long

(Southwest Jiaotong University ,Chengdu 611756,China )

Abstract:In order to solve the low efficiency of solar projects in the photovoltaic ,design the solar tracking device of biaxial ,which depends on the trajectory tracking scheme using the system.This paper focuses on the analysis of the principle and system components of the two -axis tracking ;a wide range of solar tracking is achieved with a photosensitive element and STC89C52,and LCD display real -time optimal reception of azimuth and temperature and humidity.In sunny weather conditions ,surface tracking device rotates automatically and keeps the sun radiating on the solar cell.In the rainy day or night and low -light conditions ,the system stops tracking the sun ,reducing energy consumption.The system does not require any external power supply.Achieve high -precision tracking of the sun ,and the system has a strong anti -interference and computing power.Key words:MCU ;automatic tracking ;photosensitive resistance ;solar cell ;stepping motor

收稿日期:2013-04-09

稿件编号:201304105

作者简介:王国龙(1991—),男,黑龙江龙江人。研究方向:电磁场与微波、电子电路设计。

太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。目前太阳发电方式主要有塔式发电、碟式发电、光伏发电等,均为固定安装,无法保证太阳光实时垂直照射,导致太阳能资源不能得到充分利用。如何最大限度的提高太阳能的利用率,仍为国内外学者的研究热点。解决这一问题应从两个方面入手,一是提高太阳能装置的能量转换率,二是提高太阳能的接收效率,前者属于能量转换领域,还有待研究,而后者利用现有的技术则可解决。

自动太阳跟踪控制系统在实时跟踪太阳旋转的情况下,可接收到更多的太阳辐射能量,从而提高太阳能电池板的输出功率,该技术在各种太阳跟踪装置中可以广泛应用[1]。有人研究了太阳光角度与太阳能接收率的关系,理论分析表明:太阳的跟踪与非跟踪,能量的接收率相差37.7%,精确的跟踪太阳可使接收器的热效率大大提高,进而提高了太阳能发电系统的太阳能利用率,拓宽了太阳能的利用领域。

1总体设计思路

1.1

双轴独立太阳能自动跟踪系统功能简述

根据目前太阳能技术发展特点以及国内外光伏发电系统的发展状况,以及针对现阶段太阳能光伏发电系统普遍存在的效率偏低的现实[2]。文中研究并设计了双轴独立自动太阳跟踪控制系统。具体的设计目标如下:

1)双轴:系统采用两个步进电机来控制太阳能电池在水

平和垂直两个方位自由的移动。

2)独立:系统无需任何外部电源供电,其工作所需的能

源完全来自于自身太阳能电池发电和铅酸蓄电池的储能。

3)自动太阳跟踪:系统的运行无需人工手动调节,而是

利用太阳位置传感器实时监测太阳方位并且跟踪太阳旋转。

4)控制:保持太阳能电池最大限度地接受太阳光照射的

照射。

这个装置最大的特点就是让太阳能电池随着太阳位置的变化来自动实时调整方位始终保持太阳能电池接受太阳光的垂直照射,避免了余弦效应的影响,可以最大限度地提高太阳能电池的发电效率[3]。在阴雨天或夜间等光线不足的条件下步进电机停止工作,系统停止跟踪太阳转动,以降低能耗;出现大风天气时,装置自动报警,保证系统安全。同时,人机操作界面上安装了液晶显示屏,实时读取最佳接收方位

电子设计工程

Electronic Design Engineering

第21卷

Vol.21

第15期No.152013年8月Aug.2013

-171-

《电子设计工程》2013年第15期

角度、电机转动速度以及温湿度,极大地丰富了功能的多样

。装置原理示意图如图1所示

1.2光伏跟踪原理

根据基尔霍夫-菲涅尔公式,当太阳照射的法线与光电池的感光面的法线一致时,接收到的光通量最大的原理,使用位置传感器可以调节光敏面的角度实现最大光通量接收,如图2(a)所示[4]。

成像机构的水平轴指向东西方向,垂直轴指向南北方向,太阳光通过成像机构顶端小孔在接收屏上投影为太阳光斑,光斑在接收屏上的位置与太阳在天空中的方位有密切关系,如图2(b)所示。

当太阳光线垂直照射光伏电阻时,设光斑所在的位置为中心O(0,0),设某时刻太阳光线在坐标轴上的位置为X(x i,y i),调整太阳光光斑与O点重合,水平和垂直方向需要分别调节:

1)依据太阳光斑在水平坐标轴上的位置,即算出步进电机在水平方向上需要转动

角度α,此角为光斑所在位置与O点的连线与正西方向的夹角,当系统在水平方向上顺时针转过α后太阳光斑的位置为x’,由于太阳的运动方向为自东向西,根据接收光屏的摆放位置,太阳光斑只能在第III至第IV象限之间运动,所以α的计算方法如式所示。

α=180°-arctan(|y i|/|x i|)X在第III象限(1)α=arctan(|y i|/|x i|)X在第IV象限(2)由上推导可得,太阳方位角φs为:

φs=-90°-arctan(|y i|/|x i|)X在第III象限(3)φs=90+arctan(|y i|/|x i|)X在第IV象限(4)2)根据X′(x2i+y2i

姨,O)可以计算出接收屏在垂直方向要转动的角度β后,太阳光斑回到O点。此时太阳光线垂直于成像机构的接收屏,太阳高度h s与β关系为:

h s=90°-β=arctan(H/x2i+y2i

姨)(5)2硬件设计

整个系统硬件设计分为太阳自动跟踪系统和光伏电源系统的硬件设计两大部分。硬件结构图如图3所示。

各硬件所实现的主要功能如下:

1)光伏传感器检测光照强度以及太阳光入射角度;

2)A/D转换器完成太阳光检测信号的采集,并输出及放大信号的模拟输入量;

3)单片机STC89C52接收到信号后,控制步进电机自动调节接收屏的方位至最佳状态[5];

4)步进电机在水平和垂直方向运行速度可通过电位器调节;

5)液晶显示屏显示日期、时间、温湿度、方位角度、高度角以及电机转动速度;

6)太阳能电池板主要将太阳能转换为电能并输送给充放电控制器;

7)充放电控制器主要对蓄电池组进行充放电控制以及直流电能的输出。

3软件设计

设计中的软件采用模块化程序,设计在本次设计中实现分块逐渐,在对每个单独进行程序修改时不影响全局,同时降低编程的工作量和调试的难度。

主要流程如下:系统首先初始化,对程序中的变量值初始化。首先判断风速是否大于设定值,当未达到条件时,系统自动报警;当达到条件时,继而读取四个位置的光电信号,判断光照强度是否达到启动标准:如果未达到条件,重复读取光电信号;达到设置值后,1602液晶显示屏显示当前时间和温湿度。此时,A\D转换器输出光电信号,将太阳的高度角和方位角转换成步进电机所要转动的步数和方向。在STC89C52单片机控制下,步进电机在水平和垂直方向转动;当转到制定方位后,根据由光伏传感器通过信号处理后的信号,来判断太阳光是否垂直照射接收屏,若没有到达最佳方位,则需要修正方位角,直至达到最佳入射方向,继而命令即光斑在原点O(0,0);系统进入休眠状态。软件流程图如图4所示。

图3硬件结构图

Fig.3The hardware structure

图1装置原理图

Fig.1Principle diagram of the device

图2接收屏上光斑位置示意图

Fig.2Receiving light spot position diagram on screen -172-

4结束语

文中设计的双轴太阳能跟踪系统采用实时自动独立跟

踪和光伏检测跟踪相结合的跟踪方式实现。结合实时独立自动跟踪与光伏跟踪各自的优点,克服了单一控制及定时固定装置的缺点,并且以基于STC89C52单片机为控制器的核心芯片,使控制器具有高速计算功能、快速处理能力和低干扰性[6]

。通过硬件与软件抗干扰的结合,完善系统监控程序,设计稳定可靠的单片机复位系统是完全可行的。

综上所述,文中的太阳能跟踪装置可以精确地对太阳的方位角和高度角进行实时快速准确的跟踪,具有较高的稳定性,即使在天气变化比较复杂的情况下该系统也能正常工

作,有利于提高太阳能的利用效率。在技术上运用了数据融合的方法,避免了单一传感器检测带来的随机误差;各传感器均实时自动检测,实现了光电信号的动态监测和装置的动态调节控制。

在未来的发展中,自动独立太阳能跟踪装置的精度愈加准确、稳定愈加可靠以及智能愈加先进。参考文献:

[1]杨志成,柳浩,孔祥斌.基于DSP 的太阳能跟踪控制系统研

究[J].计算技术与自动化,2011,30(2):23-26.

YANG Zhi -cheng ,LIU Hao ,KONG Xiang -bin.Research of Solar tracking control system based on DSP[J].Journal of Computation Technology and Automation ,2011,30(2):23-26.[2]祝玉华,石凤良,李力猛.太阳电池及光伏发电[J].中国现

代教育装备,2008(6):54-55.

ZHU Yu -hua ,SHI Feng -liang ,LI Li -meng.Solar cells and photovoltaic power generation[J].Journal of Chinese Modern Education Equipment ,2008:54-55.

[3]谷延霞,谷艳云.光伏发电现状分析及发展对策[J].山西

建筑,2013,3(39):199-201.

GU Yan -xia ,GU Yan -yun.Photovoltaic current situation

analysis and development countermeasure[J].Shanxi Building ,2013,3(39):199-201.

[4]郭晶晶.太阳光线自动跟踪装置[D].沈阳:沈阳工业大学,

2007.

[5]易丽华,黄俊.基于AT89C51单片机与DS18B20的温度测

量系统[J].电子与封装,2009,5(9):39-43.

YI Li -hua ,HUANG Jun.Tmperature measurement system based on the AT89C51MCU and DS18B20[J].Journal of Electronics and Encapsulation ,2009,5(9):39-43.

[6]王晖,薛永存.基于MCS 51单片机的复位电路抗干扰分析

与设计[J].现代电子技术,2006(8):113-114.

WANG Hui ,XUE Yong -cun.Reset circuit anti -interference and design Based on the analysis of MCS 51single chip[J].Modern electronic technology ,2006(8):113-114.

图4

软件流程图

Fig.4Software flow chart

艾法斯为其TM500LTE-A 测试移动终端新增对多用户设备载波聚合的支持

艾法斯控股公司旗下的全资子公司艾法斯有限公司(Aeroflex Limited )日前宣布:推出支持在多个移动终端或用户设备(UE )上实现载波聚合的TM500Multi-UE LTE-A 测试移动终端。载波聚合是LTE-A 的关键组成部分,它允许由邻近或不邻近的频段叠加在一起组成多载波,从而实现更宽的信道带宽和更高的数据速率。

TM500测试移动终端平台是验证LTE 和LTE-A 基站或者eNodeB 的事实行业标准。Aeroflex 继续与移动运营商和领先的

网络基础设施供应商合作,支持他们继续开发并开始推出由FDD 和TDD 两种运行模式的LTE-A 所支持高宽带服务。

咨询编号:2013151013

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

欢迎订阅2013年度《电子设计工程》(半月刊)

国内邮发代号:52-142国际发行代号:M2996

订价:15.00元/期360.00元/年

""""""""""""""""""""""""""""""""""

王国龙基于单片机的双轴太阳能跟踪系统的设计

-173-

光伏双轴跟踪装置

说明书摘要 一种光伏双轴跟踪装置,主要内容为:水平电机固定安装在水平蜗轮蜗杆减速器上,而水平蜗轮蜗杆减速器固定安装在水平壳体上,水平蜗轮蜗杆减速器输出轴通过水平联轴器与水平小齿轮轴连接,水平大齿轮与水平小齿轮啮合带动水平大齿轮轴的转动,来调整太阳能电池板在经度方向上的跟踪;竖直电机固定安装在竖直蜗轮蜗杆减速器上,而竖直蜗轮蜗杆减速器固定安装在竖直壳体上,竖直蜗轮蜗杆减速器输出轴通过竖直联轴器与竖直小齿轮轴连接,竖直大齿轮与竖直小齿轮啮合带动竖直轴的转动,来调整太阳能电池板在纬度方向上的跟踪。本装置可在经度和纬度方向上进行调整,使其与太阳光线时刻保持垂直,提高了光伏发电装置的发电能力。

摘要附图1234567891011 12 13 14 15 16 17 18 19 20 21 22

权利要求书 1.一种光伏双轴跟踪机构,其特征在于,该系统包括水平电机(10)固定安装在水平蜗轮蜗杆减速器(9)上,而水平蜗轮蜗杆减速器(9)固定安装在水平下壳体(11)上,水平蜗轮蜗杆减速器(9)输出轴通过水平联轴器(8)与水平小齿轮轴(3)连接,水平大齿轮(5)与水平小齿轮(6)啮合带动水平大齿轮轴(2)的转动,水平大齿轮轴(2)、水平小齿轮轴(3)采用水平轴承(4)支撑,来调整太阳能电池板(1)在经度方向上的跟踪;竖直电机(13)固定安装在竖直蜗轮蜗杆减速器(14)上,而竖直蜗轮蜗杆减速器(14)固定安装在竖直壳体(19)上,竖直蜗轮蜗杆减速器(14)输出轴通过竖直联轴器(15)与竖直小齿轮轴(16)连接,竖直大齿轮(18)与竖直小齿轮(17)啮合带动竖直轴(12)的转动,竖直轴(12)、竖直小齿轮轴(17)采用竖直轴承(20)支撑,来调整太阳能电池板(1)在纬度方向上的跟踪。 2.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于采用水平涡轮蜗杆减速器(9)带动水平齿轮传动副(5,6)实现水平方向高的传动比,竖直涡轮蜗杆减速器(14)带动竖直齿轮传动副(17,18)实现竖直方向高的传动比。 3.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于竖直轴(12)采用三对竖直轴承(,20)支撑,水平大齿轮轴(2)采用三对水平轴承(4)支撑。

双轴跟踪

ZXS双轴跟踪支架的介绍与技术参数 紫旭光电ZXS采用西班牙技术,比固定系统增加40%以上的电力输出。紫旭ZXS双轴太阳能跟踪器,平台接收面积最大可达93平方米,拥有252度旋转方位角和60度提升角旋转器。回转轴承和减速电机通过齿轮环驱动垂直轴电动升降机系统驱动水平轴,基于三角公式计算天文位置的创新型混合控制系统,可获得 太阳精确位置。 主要特点 1.先进的定位控制 CP125为ZXS提供最佳的定位控制,向日葵方式跟踪,做到精确定位计算,精确地移动控制及风速的安 全控制。 2.提高能量输出 紫旭ZXS太阳能地面支架追踪系统比固定的太阳能安装系统多了40%的能量输出。 3.良好的适应性 不受天气、季节和地理位置的影响,可以安装于多种户外环境。 4.安全性 使用独立的传动电动机,驱动受控仪,因此不会受到不均匀沉降的影响,同时提供防雷击系统及台风防 止系统。 5.高品质 无论是原材料的选择,还是生产过程,紫旭光电都进行严格的质量管制,以确保系统的结构强度以及使 用寿命达到最优。 技术参数 安装地点户外 追踪系统类型双轴 追踪精度±1o 最大系统面积 15m2-93m2 系统排列按设计图纸 跟踪轴水平和垂直 垂直和水平旋转角垂直轴最大旋转角度252度 水平轴旋转角70度 跟踪器允许的最大组件功率直至12.9KWp(可调接收平台) 地基按地面性质情况设计尺寸的钢筋混泥土 抗风能力风载1:通常状态-14m/s(50km/h) 风载2:安全状态-35m/s(126km/h) 风载3:瞬间最大-66.5m/s(240km/h) 质保年限十年

阳能双轴跟踪系统/太阳能双轴跟踪/双轴太阳能跟踪系统 产品规格:RY-SL-B 产品说明: 系统介绍 目前,国内外太阳能路灯主要采用固定安装方式,其全天的有效日照时间约为5小时,其余日照时间内因太阳光光强不足或阳光入射角小的原因而导致发电量大幅度下降。 常州润源电子科技有限公司RY-SL-B型双轴太阳跟踪系统采用了自主研发设计的阳光跟踪传感器、控制器及传动执行机构,其最大特点是跟踪控制系统的低功耗。 实际测试结果表明,100W的太阳能电池板配上RY-SL-B型双轴太阳能路灯跟踪系统后,发电量至少增加45%,而系统本身的能耗为0.1W,达到了实用化及市场推广应用的目的。 系统组成 RY-SL-B型双轴太阳跟踪系统由阳光跟踪传感器、控制器和传动执行机构三部分组成。 阳光跟踪传感器 在有效光照条件下的全程对阳光高精度测量,并将太阳光方位信号转换成电信号,传送给跟踪控制器。 控制器 跟踪控制器接收太阳光跟踪定位传感器的信号后,驱使传动执行机构运转,使太阳能电池板垂直于太阳光。 传动执行机构 采用独特的机械结构设计,实现水平方向360°、俯仰180°旋转,最大抗风可达10级。

基于单片机的太阳能路灯控制器设计毕业设计(论文)

安徽工程大学机电学院毕业设计(论文) 毕业设计论文 基于单片机的太阳能路灯控制器设计 摘要 本论文主要完成对光伏电源LED照明控制系统进行优化设计和研究,以使系统达到稳定、操作方便、节能环保的要求。太阳能路灯智能控制器以AT89C52单片机为核心,主要由六个部分组成:太阳能电池板、蓄电池、负载(LED路灯)、控制器、测量电路、充电电路、放电/负载驱动电路。本课题的主要研究内容有:针对现有独立运行的太阳能路灯控制器的特点,实现多点控制蓄电池剩余荷电容量(SOC)控制和脉宽调制信号(PWM)来驱动太阳能LED路灯控制器的硬件设计和软件程序设计。 首先对太阳能路灯基本模块组成、基本功能及发展现状进行了阐述,并根据蓄电池剩余荷电容量(SOC)的数学模型和剩余荷电容量(SOC)与蓄电池的使用寿命的关系提出了单片机系统改进的控制方案,并根据实际需要提出用脉宽调制信号(PWM)来驱动和调节白光LED,可使白光LED工作于发射最纯净白光。半导体PN结技术的太阳能光伏发电技术与发光二极管(LED)照明技术,都有着环保、节能、长寿命和安全的特点。对这两项技术的高效结合进行优化研究,符合我国目前节能,环保及可持续性发展的目标。 总之,随着城市规模的不断扩大,现有的路灯技术不能达到环保节能的要求,本文采用多点控制蓄电池剩余荷电容量(SOC)控制和脉宽调制信号(PWM)来驱动太阳能LED路灯控制器的硬件设计和源程序设计,能有效解决LED太阳能路灯的不足。因此,本课题设计对我国LED路灯节能环保的发展有很大的现实意义。 关键词:光伏发电;剩余荷电容量;脉宽调制信号;控制系统

基于单片机的太阳能路灯控制器设计 II

太阳能路灯双轴跟踪系统设计

太阳能路灯双轴跟踪系统设计 摘要:针对当前太阳能路灯转换效率低的弊端,介绍了一种太阳能路灯双轴跟踪系统,通过实时检测光强的变化驱动执行机构,保证太阳能电池板始终垂直于太阳光线,从而提高太阳能利用效率。实验表明,太阳能电池板在双轴跟踪情况下,发电量要比最佳角度固定安装提高34%。 关键词: AVR单片机;太阳能路灯;双轴跟踪;光伏发电;蓝牙 随着科技日新月异的发展,太阳能产品层出不穷,太阳能路灯应运而生并得以飞速发展。太阳能路灯的供电方式主要有两种:一种是太阳能市电互补方式,另外一种是纯太阳能供电方式。前者除了需要挖沟渠,铺设电缆等大量的繁琐基础工程,还要长期不断地对线路和其他配置进行维护和更新,成本较高。但因其以市电作为储备能源,所以对太阳能发电量要求不高。后者不需要铺设电缆,无储备能源,成本低。为了使路灯正常工作,需要保证太阳能电池板的功率足够高,以产生充足的电量。而由于发电效率不高的问题,有时候会出现蓄电池电量低,无充足电量供予路灯照明的现象,其可靠性大大不如市电互补方式。为了提高其工作可靠性,本文提出一种太阳能路灯双轴跟踪系统。此系统通过在东西、南北两个方向实时跟踪太阳,达到提高太阳能利用效率和增加发电量的目的,以提高纯太阳能式供电的可靠性。 1 系统概述 太阳能路灯双轴跟踪系统由控制系统、太阳能充放电控制器、12 V铅酸蓄电池、电机、太阳能电池板、跟踪支架以及路灯等组成。其中控制系统主要包括供电电路、单片机及外围电路、光电检测电路、掉电检测电路、位置反馈电路、蓝牙无线传输电路、电机驱动电路等。太阳能双轴跟踪装置的原理框图。 核心的控制单元采用了ATMEL公司的ATmage16,ATmage16拥有16 KB的系统内可编Flash,512 B EEPROM,1 KB SRAM,32个通用I/O口,8路10位具有可选差分输入级可编程增益的ADC,3个具有比较模式的灵活的定时器/计数器和具有片内振荡器的可编程看门狗定时器,功能齐全且强大。 当太阳从东方升起且达到一定光照强度时,系统开始识别太阳的方位,并调整相应的角度,开始进行一天的跟踪。傍晚,当太阳光线弱到一定程度时,停止跟踪。为了避免晚上因为其他灯光的影响导致系统电机的误动作,在停止跟踪后,系统将休眠10个小时,此期间,光电检测模块停止工作,电机不动作。直到10小时过后,单片机将驱动电机回到最东边,光电检测模块也重新开始检测太阳光线,开始新的一天的工作。太阳能充放电控制器可以有效地控制蓄电池的充放电,防止蓄电池因过充或过放等不正常使用而降低寿命。本系统以经济、节能、实用为核心设计思想,除了能够在东西、南北两个方向上同时跟踪太阳,还能实现以下四个功能: (1)位置反馈功能。使系统能够辨别自己所处的跟踪方位。 (2)蓝牙通信功能。维修人员可以通过手机客户端实现双轴跟踪系统的控制、参数设定和系统的状态检测。 (3)掉电检测功能。使系统在检测到蓄电池低电量时停止跟踪,以防止蓄电池的过放。系统实时检测蓄电池电量,当蓄电池电量不足时,控制模块将驱动电机,使太阳能电池板置于最佳安装角度,并停止跟踪。蓄电池并不会因此停止对控制系统的供电。 (4)抗风性设计。当遇到狂风或是暴风雨天气时,控制系统将驱动电机,将太阳能电池板放平,使之所受外力最小。 2 机械结构

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

太阳能自动跟踪系统方案

摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First,the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor

光伏双轴跟踪装置

光伏双轴跟踪装置

说明书摘要 一种光伏双轴跟踪装置,主要内容为:水平电机固定安装在水平蜗轮蜗杆减速器上,而水平蜗轮蜗杆减速器固定安装在水平壳体上,水平蜗轮蜗杆减速器输出轴通过水平联轴器与水平小齿轮轴连接,水平大齿轮与水平小齿轮啮合带动水平大齿轮轴的转动,来调整太阳能电池板在经度方向上的跟踪;竖直电机固定安装在竖直蜗轮蜗杆减速器上,而竖直蜗轮蜗杆减速器固定安装在竖直壳体上,竖直蜗轮蜗杆减速器输出轴通过竖直联轴器与竖直小齿轮轴连接,竖直大齿轮与竖直小齿轮啮合带动竖直轴的转动,来调整太阳能电池板在纬度方向上的跟踪。本装置可在经度和纬度方向上进行调整,使其与太阳光线时刻保持垂直,提高了光伏发电装置的发电能力。

摘要附图1234567891011 12 13 14 15 16 17 18 19 20 21 22

权利要求书 1.一种光伏双轴跟踪机构,其特征在于,该系统包括水平电机(10)固定安装在水平蜗轮蜗杆减速器(9)上,而水平蜗轮蜗杆减速器(9)固定安装在水平下壳体(11)上,水平蜗轮蜗杆减速器(9)输出轴通过水平联轴器(8)与水平小齿轮轴(3)连接,水平大齿轮(5)与水平小齿轮(6)啮合带动水平大齿轮轴(2)的转动,水平大齿轮轴(2)、水平小齿轮轴(3)采用水平轴承(4)支撑,来调整太阳能电池板(1)在经度方向上的跟踪;竖直电机(13)固定安装在竖直蜗轮蜗杆减速器(14)上,而竖直蜗轮蜗杆减速器(14)固定安装在竖直壳体(19)上,竖直蜗轮蜗杆减速器(14)输出轴通过竖直联轴器(15)与竖直小齿轮轴(16)连接,竖直大齿轮(18)与竖直小齿轮(17)啮合带动竖直轴(12)的转动,竖直轴(12)、竖直小齿轮轴(17)采用竖直轴承(20)支撑,来调整太阳能电池板(1)在纬度方向上的跟踪。 2.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于采用水平涡轮蜗杆减速器(9)带动水平齿轮传动副(5,6)实现水平方向高的传动比,竖直涡轮蜗杆减速器(14)带动竖直齿轮传动副(17,18)实现竖直方向高的传动比。 3.如权利要求1所述的一种光伏双轴跟踪机构,其特征在于竖直轴(12)采用三对竖直轴承(,20)支撑,水平大齿轮轴(2)采用三对水平轴承(4)支撑。

太阳能控制器毕业设计论文

毕业论文 题目:太阳能充电器控制设计 学院:新能源工程学院 专业名称:光伏材料加工与应用

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。矚慫润厲钐瘗睞枥庑赖。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。聞創沟燴鐺險爱氇谴净。

作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。残骛楼諍锩瀨濟溆塹籟。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。酽锕极額閉镇桧猪訣锥。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

双轴跟踪说明书

太阳双轴跟踪说明书 此控制板板为太阳能双轴跟踪系统,控制两个直流电机的旋转,使电池板对准太阳。系统为12V系统,所以需要的是两个可以正反转的12V直流电机。实际连接时把仰俯的电机连接到上边,把旋转的电机连接到下边。 一、整体连接图如下:见图1 图1 二、左上角KEY1、KEY2、KEY3、KEY4为手动控制两个电机的正反转,见图2 KEY5无定义。 图2

三、下边红色拨码开关为跟踪的时间间隔,图3 1:为1小时间隔跟踪一次。 2:为2小时间隔跟踪一次。 3:为3小时间隔跟踪一次。 4:为1分钟间隔跟踪一次(只能作为测试用) 都不拨上的话,默认为1小时间隔跟踪一次。不可以组合拨码。组合默认为1小时。 图3 四、无线控制电机正反转。AB键控制一个电机的正反转,CD键控制另一个电机的正反转。图4为无线接收模块,安装在控制板上,有元器件的面朝外。 图4 图5为无线发射模块 图5

接收模块的安装,元器件朝外 六、LED显示定义,图6 第一个红色LED:快闪表示白天工作,慢闪表示进入黑夜状态,等待第二天继续工作。 第二个绿灯LED:亮表示进入黑夜状态,灭表示白天状态。 第三个绿色LED:亮表示南北电机需要旋转到太阳位置,灭表示南北方向太阳已经到达最佳位置。 第四个绿色LED:亮表示东西电机需要旋转到太阳位置,灭表示东西方向太阳已经到达最佳位置。 图6 七、左下角为传感器接入端口,图7 +PV-:表示需要把电池板的正负极接入,来判断黑夜和白天,如果不接入判断为黑夜状态。+WIN-:表示风速测试接口。 +GM-:表示光敏测试接口。 +X-:表示未知测试接口,用户可自己定义。 后三种都没有接入,如果需要的话,联系本人。 图7 八、数码管的显示,图8 数码管显示的是剩余时间,从60分钟到0分钟。如果测试的话每一分钟跟踪一次;如果一小时跟踪的话,则到0跟踪一次;2小时跟踪一次的话,需要两次60到0跟踪一次;同理三小时需要三次60到0的显示状态。 图8 九、RJ45网线接口为传感器的接线口,已经做好,连接上即可,自己做也可。单需要把传感器和板子的接口线顺序反过来。 图9 十、KEY6:复位键。 十一、电机连接,图10

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 解决方案: 跟踪系统驱动器接口电路 步进电机驱动电路 限位信号采集电路 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。 跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。 而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。该系统适用于各种需要跟踪太阳的装置。该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。 系统总体设计 本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。系统具有实现复位、水平方位的调整,俯仰方向的调整,太阳的跟踪及手动校准等功能。 硬件电路设计 1跟踪系统驱动器接口电路

基于PLC的太阳能热水器自动控制系统的毕业设计论文

本科生毕业论文(设计) 题目:基于PLC的太阳能热水器自动控制系统的设计姓名: 学院:机电工程学院 专业:电气工程及其自动化 班级: 学号: 指导老师: 完成时间: 基于PLC的太阳能热水器自动控制系统的设计

摘要 本课题研究了可编程控制器(PLC)在太阳能热水器自动控制系统中的应用。重点研究了系统的硬件构成及系统软件的设计过程。指出了 PLC 设计的关键主要是能满足基本控制功能, 并考虑维护的方便性、系统可扩展性等。在本文中经研究确定出了系统的各个工序,绘制了系统的工艺流程图;进行了系统的I/O分配和PLC的选型;根据系统设计要求设计绘制了系统的控制梯形图;绘制出了控制系统电气原理图和接线图等。 通过用PLC对太阳能热水器自动控制系统的改造,大大减少了系统对其它元器件的使用,使系统接线简单、检修维护方便快捷、可靠性提高,增进了系统的先进性。 关键词: PLC;太阳能;自动控制系统;热水器 Design of Solar Water Heater

Automatic Control System Based on PLC Abstract Application of PLC in solar water heater automatic control system is researched in this paper. The content of this paper on the process of system hardware constitution and the system software design is emphasized . And the key of PLC design that is to satisfy the basic control function is pointed out , meanwhile maintenance convenience and system extension are also considerated. The content of this paper is divided into four parts. In the first part, the procedure of the system is established, and then the treatment flow chart is drawed out; In the second part, The address of I/O is resigned .and the suitable PLC type is choosed. The third part, the control ladder diagram is designed according to the requirement; In the end, the electrical principle diagram and the interconnection diagram are drawn. Through the design of the solar water heater automatic control system, the components that is used in the solar water heater automatic control system are decreased. The performance of the system is lifted, and it has the feature such as simply interconnection, rapid and easy fault detecting and maintenance, and high reliability. In a word, the system becomes more advanced because of my design. Keywords: PLC; solar; automatic control system; water heater

太阳能电池板双轴自动跟踪伺服控制系统的设计

题目:光伏发电太阳能电池板双轴伺服控制系统研究 一、题目说明 1、双轴跟踪的基本原理 双轴跟踪又可以分为两种方式:极轴式全跟踪和高度----方位角式全跟踪。极轴式全跟踪原理如图1.1所示,太阳能设备的能量转换部分的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时太阳能设备的能量转换部分所在平面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以跟踪太阳方位角:反射镜围绕赤纬轴作俯仰转动是为了适应太阳高度角的变化,通常根据季节的变化定期调整。 图1.1 极轴式跟踪 高度角---方位角式太阳跟踪方法又称为地平坐标系双轴跟踪,其原理如图1.2所示。太 图1.2 高度---方位角式全跟踪

阳能设备的能量转换部分的方位轴垂直于地平面,另一根轴与方位轴垂直,称为俯仰轴。工作时太阳能设备的能量转换部分根据太阳的视日运动绕方位轴转动改变方位角,绕俯仰轴作俯仰运动改变太阳能设备的能量转换部分的倾斜角,从而使能量转换部分所在平面的主光轴始终与太阳光线平行。这种跟踪系统的特点是跟踪精度高,而且太阳能设备的能量转换部分的重量保持在垂直轴所在的平面内,支承结构的设计比较容易。 2、光伏发电系统光电板自动跟踪系统的原理 太阳电池方阵的发电量与阳光入射角有关,光线与太阳电池方阵平面垂直时发电量最大,如果改变入射角,发电量将明显下降。其基本原理与结构为:由2台电动机和减速机分别构成方位角转动机构和高度角转动机构,光电传感器与太阳能电池板方阵平面垂直安装。随着光线方向的细微改变,传感器失衡,引起系统输出信号产生偏差,达到一定幅度时,方向开关电路启动,执行机构开始进行纠正,使光电传感器重新达到平衡,即太阳能电池板方阵平面与光线构成90度角而停止转动,并完成一次调整周期。如此不断地调整,时刻沿着太阳的运行轨迹追随太阳,构成一个闭路负反馈系统,实现了跟踪功能。该系统不需设定基准位置,跟踪器永远不会迷失方向。系统还设有防杂光干扰及夜间停止跟踪电路,并附有手动控制开关,以方便调试。光电板跟踪系统框图如图1.3所示。 图1.3 光电板自动跟踪系统框图 3、太阳高度角和方位角 1) Coper方程 太阳光线与地球赤道面的交角就是太阳的赤纬角,以 表示。在一年中,太阳赤纬每天都在变化,但不超过士23°27′的范围。夏天最大变化到夏至日的+23°27′;冬季最小变化到冬至日的-23°27′.太阳赤纬随季节变化,按照Coper方程, 计算得:

太阳能自动跟踪系统

1.绪论 1.1课题背景 由于现今高科技环境下,能源是促进经济发达和社会进步的原动力。从工业革命以来,人类所使用的主要能源为石化能源,然而其蕴藏量有限,大量使用造成全球环境生态和气候产生莫大的变化,同时大气中的温室气体浓度大幅提高,造成气温逐渐升高、海平面上升等温室效应的现象,威胁了我们生存的环境。因此在环保意识抬头的今日,积极开发低污染及低危险性能源乃为迫切的需要。 虽然在可预见的将来,煤炭,石油,天然气等矿物燃料仍将在世界能源结构中占有相当的比重,但是人们对核能及太阳能,风能,地热能,水力能,生物能等可持续能源资源的利用日益重视,在整个能源消耗中所占的比例正在显著的提高。据统计,20世纪90年代,全球煤炭和石油的发电量每年增长1%,而太阳能发电每年增长达20%,风力发电的年增长率更是高达26%。预计在未来,可持续能源将与矿物燃料相抗衡,从而结束矿物燃料一统天下的局面。 相对日益枯竭的化石能源来说,太阳能似乎是未来社会能源的希望所在。1.1.1我国太阳能资源 我国幅员广大,有着十分丰富的太阳能资源。我国的国土跨度从南到北、自西至东,距离都在5000km以上,总面积达960×10 km2,占世界总面积的7%,居世界第三位。据估算,我国陆地表面每年接收的太阳辐射能约为50×10kJ,全国各地太阳年辐射总量达335~837KJ/cm2A,中值为586KJ/cm2A。从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。例如,被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816KJ/cm2A,比全国其它省区和同纬度的地区都高。全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。例如素有“雾都”之称的成

基于51单片机的太阳能热水器智能控制器的设计毕业设计论文

毕业设计论文 基于51单片机的太阳能热水器智能控制器的设计

目录 摘要……………………………………………………………………..I Abstract…………………………………………………………………..II 第一章:绪论 1.1 太阳能热水器的发展概况及市场竞争分析 1.2 太阳能热水器的应用及意义 第二章:太阳能热水器的组成及工作原理 2.1 系统总体结构设计 2.2 太阳能热水器组成及原理 2.3 主要芯片的结构与特点 2.3.1 DS12887实时时钟芯片简介 2.3.2 80C51单片机结构特点 2.3.3 数字温度传感器DS18B20主要特性及测温原理 第三章:太阳能热水器硬件设计 3.1 太阳能控制器硬件结构 3.2 控制器实时时钟接口电路设计 3.3 水位检测和温度检测接口电路设计 3.4 看门狗和复位接口电路设计 3.5 键盘和显示接口电路设计 3.5.1 键盘电路 3.5.2 显示接口电路 3.6 光电隔离与辅助加热电路设计 第四章:控制器的软件设计 结束语 参考文献 致谢 附录 太阳能热水器智能控制器的设计

摘要 太阳能热水器以其诸多的优点受到人们的欢迎。本文结合实际太阳能热水器的具体应用,在介绍太阳能、传感器、单片机的特点基础上,详细描述了太阳能热水器的工作原理和设计方案。这里根据太阳能热水器对控制器的要求与特点,提出了一种基于DS12887的太阳能热水器智能控制器的设计方法,给出了系统硬件设计及软件实现方法。 全文分三大部分。第一部分包括第一章,描述太阳能的利用和前景发展状况。第二部分包括第二章,描述太阳能系统组成及工作原理。第三部分包括第三、四章硬件设计及电路原理和软件设计,分别介绍了传感器的特点及应用、一般的太阳能热水器及循环系统、单片机发展和原理,这也是此款太阳能热水器的理论基础和必要前提。 关键词:太阳能热水器;传感器; 模糊控制; 实时时钟;单片机 Design of intelligent controller for Solar Water Heater Abstract Solar Water Heater is popular with its pretty benefits, Based on author’s real experience on Solar Water Heater design, this article describes the working theory of this solar water hearer after introducing the characters of solar、sensor、Single Chip

基于52单片机 太阳能自动跟踪系统设计.

摘要 太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及。太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。本设计采用光电跟踪的方法,利用步进电机双轴驱动,由光电传感器根据入射光线的强弱变化产生反馈信号到微机处理器。微机处理器运行程序,通过对跟踪机构进行水平、俯仰两个自由度的控制,调整太阳能电池板的角度实现对太阳的跟踪。采用单片机来实现的太阳能追踪系统能有效提高太阳板的光电转化效率,并具有较广泛的应用前景。 关键词:太阳能;跟踪;光敏二极管;单片机;步进电机

Abstract Solar energy is known as the most primitive energy, and it is clean, renewable, rich, and wide distribution and has wide prospects of use. But the solar energy utilization efficiency is low; the problem has been influencing and hindering the popularity of solar energy technology. Solar energy to be automatic tracking system designed to solve the problem provide the new way,which greatly improve the efficiency in the use of solar energy. This design uses the photoelectric tracking method, and use the stepping motor driver, by photoelectric sensor incident, then the strength of the light’s changes produce feedback signals to the computer processor, and computer processor will run the program, through the horizontal tracking mechanism and pitch two degrees of freedom control to adjust the angle of solar panels to achieve the tracking of the sun. Solar tracking system by single chip microcomputer to achieve can improve the efficiency of conversion of photoelectric solar panels, and has a broad prospect of application. Key words: Solar energy;Tracking;Photosensitive diode ;SCM;Stepping motor

太阳能热水器智能控制器设计【毕业作品】

BI YE SHE JI (20 届) 基于AT89C52单片机太阳能热水器控制器设计 所在学院 专业班级自动化 学生姓名学号 指导教师职称 完成日期年月 V

摘要 近些年来,太阳能的开发和利用已越来越受到人们的重视和青睐,因为节能、环保、使用方便等因素,太阳能热水器发展速度更是迅猛。对太阳能热水器来说,最重要的配件就是太阳能热水器控制器。目前市场上太阳能热水器的控制系统大多存在功能单一,操作复杂,控制不方便等问题,很多控制器只具有温度和水位显示功能,不具有温度和水位控制功能。虽然热水器具有辅助加热功能,但也可能因为加热时间无法控制而产生过烧,造成电能浪费。所以研制多功能、低成本的太阳能控制器,对方便用户、安全高效具有一定意义。 本文在分析了解太阳能热水器及其控制器的发展和市场分布状况的基础上,描述了太阳能热水器控制器的组成及其工作原理。论文完成了控制器的硬件设计和软件设计。在硬件设计中,利用AT89C52单片机作为控制的中心环节,控制整个系统运作。利用温度传感器DS18B20和分段式水位传感器作为水温水位测量环节,并将测量结果送单片机进行处理。利用DS12887作为时钟芯片,以实现时间以及日期的显示。选用液晶显示模块128*64显示水温水位时间及日期,显示部分是人机交换的重要媒介之一。在软件设计部分采用模块化结构,完成了包括主程序,水位检测子程序、LCD显示等子程序的设计。系统主程序主要完成一些初始化功能,温度的检测以及控制辅助加热系统,同时完成信号转换及显示功能;水位检测子程序完成水位测量及送数据功能;显示子程序完成水温水位及时间日期的显示功能;键盘扫描子程序实现功能转换及水温水位时间的设定。 论文通过对整体设计方案,硬件电路,软件程序的设计分析,实现了太阳能热水器的水温水位的检测与控制,具有实际的意义。 关键词:太阳能热水器;传感器;DS12887;单片机; V

相关文档