文档库 最新最全的文档下载
当前位置:文档库 › 2008年高考平面向量命题趋势应试对策 (6)

2008年高考平面向量命题趋势应试对策 (6)

2008年高考平面向量命题趋势应试对策 (6)
2008年高考平面向量命题趋势应试对策 (6)

2008年高考平面向量命题趋势应试对策

湖南祁东中等职业学校 周子云 湖南祁东育贤中学 周友良

一、命题趋势

1.平面向量作为高考新增知识点,在近几年高考试题中的分值正逐年增加,在高考命题中向量的基本概念与运算,多以选择题和填空题的形式出现;向量的坐标运算和数量积属必考内容,一般考查:(1)利用向量的数量积解决向量的垂直问题;(2)利用向量数量积的两种计算方法求两向量的夹角,同时此内容与立体几何、解析几何有密切联系,如线线平行、垂直、线面角、线线角的求解证明。利用向量的数量积解决更为简单,易出综合题;高考对两点间的距离公式、线段的定比分点与图形的平移的考查以基本概念和基本运算为主,通常会与其他知识综合考查;三角形中的三角问题往往与其他数学知识相联系,高考命题中常以选择题或填空题出现,解斜三角形的问题在近几年高考题中经常出现,今后仍是高考命题的热点.

二、应试对策

1.平面向量在往届全国高考题中很少单独出现,估计以后将会成为高考的一个命题点.从上海历届高考试卷来看,这部分试题难度不大,但从近年高考来看平面向量与其他章节的综合题已经大量出现,且有一定难度.因此,在复习中一方面要重视教材的基础作用,加强基本知识的学习,做到概念清楚、运算准确.对定比分点、图形的平移等掌握公式及寻求解题规律;另一方面,也要注意综合能力的训练.

2.平面向量与空间向量的数量积及坐标运算是高考的重点,复习中要注意培养准确的运算能力和灵活运用知识的能力.要进行有针对性的复习与训练. 3.由于平面向量的计算已成为中学数学的工具,与三角函数、解析几何、立体几何等密切相关,因此在复习时要特别注意向量与三角函数、解析几何等相关联问题的解决方法,使向量真正成为中学数学的一件利器.

三.高考题型分析

一) 高考中的平面向量问题

近几年来,平面向量成为高考考查的重点,分值逐年增加。考查地重点一方面是平面向量的基本概念及基本运算能力;另一方面平面向量的坐标运算和平面向量的数量积的概念、性质及运算律也是考查的重点。向量是一个有“形”的几何量,因此,在研究与向量相关的问题时,一定要结合图形进行分析、判断和求解,这是研究平面向量问题的重要方法和技巧。 例1. 如图1, AB OM //, 点P 在由射线OM , 线段OB 及AB 的延长线围成的区域内(不含边界)运动, 且

y x +=,则x 的取值范围是__________;当2

1

-=x 时,y 的取值范围是__________.

解析:依题意,在射线OM 上取= 由平行四边形法则,可得到OB n ON m OP +=, 其中,()+∞∈,0m ()1,0∈n

则()

m

n m n m +-=+-=+=令n m y m x +=-=,,则OB y OA x OP +=,由此可得当21-

=x 时,??

? ??∈+=23,2121n y 说明:本题主要考查平面向量的基本定理,同时,要利用实数与向量的积的概念结合图形分析实数m 和n 的取值范围,

从而求出x 和y 的取值范围。

例2.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →

=0且AB →|AB →| ·AC →|AC

→| =12 , 则△ABC 为( )

A.三边均不相等的三角形

B.直角三角形

C.等腰非等边三角形

D.等边三角形

解析:0=??? ?+BC 0=+O 图1

A

B

C

由向量的数量积的定义可知,

= +

()B

-

?

π

cos C

cos

?=0

所以,cosC-cosB=0,其中B,C为△ABC内角,则∠C=∠B 故△ABC为等腰三角形;

o

A

A60

2

1

cos

2

1

2

1

=

?

=

?

=

?

?

=

综上所述,可知△ABC为等边三角形.

说明:本题主要考查向量的数量积和向量的夹角,在两个向量的数量积的运算中一定要注意夹角,必须是两个向量有共同的起点时所构成的角.

例3.设,,满足=

+

+,()⊥

-,

⊥1

=

+

+的值为 .

解析:[方法1]由()⊥

-,可知()0=?-即()()0=

-

?

-

由此可得()()0

2

2

=

-

=

+

?

-

1

=

=;

又()

[]2

22

2

2

2

2

2

=

+

=

+

?

+

=

+

-

=

4

=

+

+.

[方法2]依题意构图如右,令a

OA=,b

OB=,其中,

⊥作平行四边形ABCD

-

=

+

=

+

=,即=,-

=

-

=

由于⊥,则∠AOB=90O,即平行四边形ABCD为矩形,

又由于()⊥

-,则⊥,所以四边形ABCD

为正方形。

1

=

=

2

=

=

=

4

=

+

+.

说明:主要考查平面向量的性质和运算法则,以及基本运算技能,要求考生掌握平面向量的和,差,数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算.

例4.设(0,0)

O,(1,0)

A,(0,1)

B,点P是线段AB上的一个动点,AP AB

λ

=

,若OP AB PA PB

?≥?

,则实数λ的取值范围是( )

(A)

1

1

2

λ

≤≤

(B) 11

λ

≤≤

(C)

1

1

2

λ

≤≤

(D) 11

λ

≤≤

解析:如右图所示设P(x,1-x)(0≤x≤1),则由OP AB PA PB

?≥?

得到(x,1-x)(-1,1)≥(1-x,x-1)(-x,x),整理得:2x2≤1,

所以

2

2

0≤

≤x,又由AP AB

λ

=

,即(x-1,1-x)=λ(-1,1),

故?

?

?

?

?

?

-

-

=1,

2

2

1

1x

λ,故选择B.

说明:从向量的定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又可将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用,突出数形结合的数学思想。

在解决有关向量的问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会运用向量处理问题的优越性;二是向量的坐标运算体现了数与性的相互转化和密切结合的思想,所以要通过向量法和坐标法运用,进一步体会数形结合思想在解决数学问题上的作用.

C

二)向量与三角的交汇

当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具体代数与几何形式的双重身份。它是新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与三角的交汇是当今高考命题的必然趋势,以下几例解析方法,重在为备考中的考生揭示题型规律,与数学同仁们共同归纳与探究解题策略。

1、向量与三角函数性质的交汇

例1、设平面向量→a = (3,-1) ,→b = ( 12 ,32),若存在实数m (m ≠0)和角θ(θ∈(-2π,2

π)),使向量→c =→

a +

(tan 2θ-3)→b ,→d =-m →a +(tanθ) →b ,且→c ⊥→

d , 求:①试求函数m=f (θ)的关系式;

②令t = tanθ,求出函数m = g(x)的极值。 解析:①∵→a ·→b = 12 ×3-1×32

= 0,→c ⊥→

d

∴→c ·→d = [→a +(tan 2θ-3)→b ]·[-m →a +(tanθ)→b ] = -m →a 2+(tan 3θ-3tanθ)→

b 2 = 0

∵|→a | =2 ,|→b | =1

∴m= 1

4 (tan 3θ-3 tanθ),其中θ ∈(-2π,2

π)

②由tanθ = t ,得m = g(t) = 1

4

(t 3-3t) t ∈R

求导得 g ′(t)= 3

4 (t 2-1) 令g ′(t)=0,得t 1=-1,t 2=1

当t ∈(-∞,-1)时,g ′(t)>0 当t ∈(-1, 1)时,g ′(t)<0 当t ∈(1,+∞)时,g ′(t)>0 ∴当t =-1时,即θ=-4

π时,m=g(t)有极大值12

当t =1时,即θ =

4

π时,m = g(t)有极大值-1

2

点评:②问是求函数的极值运用求导的方法,这是新旧知识交汇点处的综合运用. 2、向量与三角函数求值、运算的交汇

例2、设→a =(1+cos α,sin α)、→b =(1-cosβ, sinβ)、→

c =(1,0), α∈(0,π),β∈(π,2π),→a 与→c 的夹角为θ1,→b 与→c 的夹角为θ2, 且θ1-θ2=

6

π,求sin α-β

4 的值.

解析:|→

a | = (1+cos α)2+sin 2α = 2cos α

2

|→b |=

(1-cos α)2+sin 2α = 2sin β

2

|→c | =1,又→a ·→c =1+cos α= 2 cos 2α2 →b ·→

c = 1-cosβ = 2cos 2β2

∴cosθ1= →a ·→c |→a | |→c | = cos α2 cosθ2 = →b ·→

c |→b | |→

c | = sin β

2

α2 ∈(0,2

π) ∴θ1 = α2

又β∈(π,2π) ∴β2∈(2π,π) 即0<β2-2π

<2

π

由cosθ2 = sin β2 = cos (β2-2π),得θ2= β2-2

π

由θ1-θ2 =

6π 得α2-( β2-2π

) =6π ∴α-β2 =-3π α-β4 =-6

π

∴sin α-β4 =sin(-6π)=-12

点评:本题是以向量的夹角概念为背景,考查了三角函数求值的有关知识。 3、向量与解三角形的交汇

例3、ΔABC 内接于以O 为圆心,1为半径的圆,且3→OA +4→OB +5→OC=→

0 ①求数量积,→OA ·→OB ,→OB ·→OC ,→OC ·→

OA ; ②求ΔABC 的面积

解析:①∵|→OA|=|→OB|=|→

OC|=1

由3→OA +4→OB +5→OC=→0 得 3→OA +4→OB=-5→OC 两边平方得 9 →OA 2+24→OA ·→OB +16→OB 2=25→

OC 2

∴ →OA ·→OB=0

同理 由4→OB +5→OC=-3→OA 求得→OB ·→

OC=-45

由3→OA +5→OC=-4→OB 求得→OA ·→

OC=-35

②由→OA ·→OC=0得→OA ⊥→

OC S ΔABC =12 |→OA| |→OB| = 12

由→OB ·→

OC=-45 得cos ∠BOC=-45 ∴sin ∠BOC=-35

∴S ΔABC =12 |→OB| |→OC|sin ∠BOC=3

10

由→OC ·→

OA=-35 得cos ∠COA=-35 ∴sin ∠COA=45

∴S ΔCOA = 12 |→OC| |→OA|sin ∠COA=-35 = 2

5

即S ΔABC = S ΔAOB +S ΔBOC +S ΔCOA =12 +310 +25 = 6

5

点评:本题考查了向量的模、向量的数量积的运算,用于表达三角形的内角、面积。 4、向量与三角变换的交汇

例4、已知A 、B 是ΔABC 的两个内角,→a =cos A -B 2i +52sin A +B 2j ,其中i 、j 为相互垂直的单位向量,若|→a | = 3 2

4 ,

求tanA ·tanB 之值.

解析:|→

a | = (cos A -B 2i +52sin A +B 2j)2=cos 2 A -B 2+54 sin 2 A +B 2

=

1+cos(A -B)2 +54 1-cos(A +B)2 = 98

即4cos(A -B)=5cos(A +B)

∴4cosAcosB +4sinAsinB=5cosAcosB -5sinAsinB

即9sinA ·sinB=cosAcosB ≠0 ∴tanA ·tanB = 1

9

5、向量与解三角不等式的交汇

例5、已知二次函数f (x)对任意x ∈R ,都有f (1-x) = f (1+x)成立,设向量→a = ( sinx , 2 ) ,→

b = (2sinx , 12),→

c = ( cos2x ,

1 ),→d =(1,2),当x ∈[0,π]时,求不等式f (→a ·→b )>f (→c ·→

d )的解集.

解析:设f(x)的二次项系数为m ,其图象上的两点为A(1-x,y 1)、B(1+x, y 2),因为 (1-x)+(1+x)

2

=1 f (1-x) = f (1+x),所以y 1= y 2

由x 的任意性得f(x)的图象关于直线x=1对称,若m >0,则x ≥1时,f(x)是增函数 ; 若m <0,则x ≥1时,f(x)是减函数。

∵→a ·→

b =(sinx ,2)·(2sinx, 12)=2sin 2x +1≥1

→c ·→

d =(cos2x ,1)·(1,2)=cos2x +2≥1

∴当m >0时,f (→a ·→b )>f (→c ·→

d )?f(2sin 2x +1)> f(cos2x +2)

? 2sin 2x +1>cos2x +2?1-cos2x +1>cos2x +2 ? cos2x <0?

2k π+2

π<2x <2k π+2

,k ∈z ?k π+4

π<x <k π+43π

, k ∈z ∵0≤x ≤π ∴4

π<x <43π

当m <0时 同理可得0≤x <

4

π或43π

<x ≤π

综上所述,不等式f (→a ·→b )>f (→c ·→

d )的解集是:

当m >0时,为{ x|4

π<x <43π } ;

当m >0时,为{ x|0≤x <4

π或43π

<x <π=。

三)向量与解析几何的交汇

向量这几年时间逐渐成为高考中的重要角色,很多时候向量与解析几何在一起,成为解析几何的一部分,但纵观与向量与

解析几何的问题,不外以下几类:

一类是可以转化为平面几何语言的;第二类是不可以或者转化比较麻烦;还有一类是平面几何背景问题,但是我们转化为用向量来解决比较方便的.

对于第一类和第三类,我们常常要进行转化,或是把向量问题转化为平面几何问题,然后用平面几何的知识和方法解决问题;或是把平面几何问题转化为向量问题,借助向量来解决平面几何问题。比较这两个方法,用向量来解决有以下优点:免去讨论斜率是否存在的问题;但用向量方法同时存在缺点:用向量会涉及到两个变量,常常会不利于求解。

处理方法有三类:

1. 不作任何变换,直接由向量概念向点的坐标转化

2. 转换为平面几何语言,用纯解析知识来解决

3. 把平面几何语言转化为向量语言,然后用向量知识来解决。

“减少运算量,提高思维量” 是未来几年高考的一个方向,高考中对求轨迹的方程倾向于利用适当的转化再用定义法,以利于减少运算量,提高思维量。而圆锥曲线的两种定义均可用向量的模及数量积几何意义、射影定理来表示,无疑为平面向量与圆锥曲线交汇命题开拓了广阔的空间。在推导和探索圆锥曲线的标准方程和几何性质,曲线和方程的关系方面,向量是较好的工具.

例题1.已知j i ,是x,y 轴正方向的单位向量,设(a x i yj =+

, (b x i yj =+ , 且满足|a

|+|b |=4.

(1) 求点P(x,y)的轨迹C 的方程.

(2) 如果过点Q(0,m)且方向向量为c

=(1,1) 的直线l 与点P 的轨迹交于A ,B 两点,当?AOB 的面积取到最大值时,

求m 的值。

解:(1) a =j y i x +-)3(, |b |=j y i x ++)3(,且|a

|+|b |=4.

∴点P(x,y)到点(3,0),(-3,0)的距离这和为4,故点P 的轨迹方程为14

22=+y x . (2)设A(11,y x ),B(22,y x )依题意直线AB 的方程为y=x+m.代入椭圆方程,得044852

2=-++m mx x ,则

1x +2x =-58m, 1x 2x =)1(25

4

-m . 因此,225

22

1

)5(m m d AB S AOB -=

=

?.

当2

2

5m m =-时,即m=2

10±

时,1max =S .

例题2.已知A 、B 为抛物线2

2x py =(p>0)上两点,直线AB 过焦点F ,A 、B 在准线上的射影分别为C 、D ,

(1)若6OA OB ?=-

,求抛物线的方程。

(1) (2)CD 是否恒存在一点K ,使得0KA KB ?=

解:(1)提示:记A (1,1y x )、B (22,y x )设直线AB 方程为2

p kx y +

=代入抛物线方程得0222=-+-p kpx x

2

4

121221,p y y p x x =-= =?6

2

43

2121-=-=+p y y x x (2)设线段AB 中点P 在在准线上的射影为T ,

则)()(PB TP PA TP TB TA +?+=

?PB PA PB PA TP ?++?+=)(

++=241?=4

1

2+-2=412-412

=0 故存在点K 即点T ,使得0=?KB KA

[实质:以AB 为直径的圆与准线相切]

例题3..已知椭圆的中心在原点,离心率为1

2

,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;

(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. 若

2MQ QF = ,

求直线l 的斜率.

解:(Ⅰ)设所求椭圆方程是22

221(0)x y a b a b

+=>>.由已知,得c =m ,12c a =,所以a =2m

,b =.故所求的椭圆

方程是22

2

2143x y m m

+=. (Ⅱ)设Q (Q x ,Q y ),直线l :y =k (x +m ),则点M (0,km ).当2MQ QF =

时,由于F (-m ,0),M (0,km ),由定比分点坐标公式,得022123Q m m x -==-+,01123Q km y km +==+.又点2()33m km

Q -,在椭圆上,所以222

22499143m k m m m

+=.解

得k =±.当2MQ QF =- 时,0(2)()212Q m x m +-?-=

=--,12

Q km

y km ==-- 于是

222

22

4143m k m m m +=,解得k =0.故直线l 的斜率是0

,±

例题4.(2004湖南文)如图,过抛物线2

4x y =的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A ,B 两点,点Q

是点P 关于原点的对称点.设点P 分有向线段AB

所成的比为λ,证明:

()QP QA QB λ⊥-

解:依题意,可设直线AB 的方程为 ,m kx y += 代入抛物线方程y x 42=得.0442

=--m kx x ① 设A 、B 两点的坐标分别是 ),(11y x 、22(,),x y

12,x x 则是方程①的两根.所以 .421m x x -=

由点P (0,m )分有向线段AB 所成的比为λ,

.,012

121x x

x x -==++λλλ即又点Q 是点P 关于原点的对称点,

故点Q 的坐标是(0,-m ),从而)2,0(m =.1122(,)(,)QA QB x y m x y m λλ-=+-+

1212(,(1)).x x y y m λλλ=--+-])1([2)(21m y y m QB QA QP λλλ-+-=-?

2

2

121212

2212144)(2])1(44[2x m x x x x m n x x x x x x m +?+=++?+= .0444)(2221=+-?+=x m

m x x m 所以 ).(λ-⊥

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

三年高考真题分类汇编(平面向量)

三年高考真题分类汇编 平面向量 五年高考真题分类汇编 平面向量 1.(19全国1文理)已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为( ) A .π6 B .π3 C .2π3 D .5π6 2.(19全国2理)已知AB u u u r =(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ?u u u r u u u r =( ) A .-3 B .-2 C .2 D .3 3.(19全国2文)已知向量a =(2,3),b =(3,2),则|a –b |=( ) A B .2 C . D .50 4.(19全国3理)已知a ,b 为单位向量,且a ·b =0 ,若2=c a ,则cos ,<>=a c 23 5.(19全国3文)已知向量(2,2),(8,6)==-a b ,则cos ,<>= a b 6.(19天津文理)在四边形ABCD 中,,5,30AD BC AB AD A ==∠=?∥, 点E 在线段CB 的延长线上,且AE BE =,则BD AE ?=u u u r u u u r 1- 7.(18浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3 ,向量b 满足b 2?4e ·b +3=0,则|a ?b |的最小值是( ) A 1 B C .2 D .2 8.(18天津文)在如图的平面图形中, 已知 1.2,120OM ON MON ==∠=o , 2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r 则·BC OM u u u r u u u u r 的值为( ) (A )15- (B )9- (C )6- (D )0 9.(18天津理)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则?uu u r uur AE BE 的最小值为 ( )

最新全国卷-高考—平面向量试题带答案

5.平面向量(含解析) 一、选择题 【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--,则向量BC =( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( ) A . B . 21 C .2 1 D . 二、填空题 【2017,13】已知向量()1,2a =-,(),1b m =,若向量a b +与a 垂直,则m = . 【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 【2012,15】15.已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数, 若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编 4.平面向量 一、选择题 (2017·4)设非零向量,a b ,满足+=-a b a b 则( ) A .a ⊥b B. =a b C. a ∥b D. >a b (2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( ) A. -1 B. 0 C. 1 D. 2 (2014·4)设向量b a ,满足10||=+b a ,6||=-b a ,则=?b a ( ) A .1 B .2 C .3 D .5 二、填空题 (2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. (2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=uu u r uu u r _______. (2012·15)已知向量a ,b 夹角为45o,且|a |=1,|2-a b |b |= . (2011·13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

平面向量高考试题精选(含详细答案)

平面向量高考试题精选(含详细答案)

平面向量高考试题精选(一) 一.选择题(共14小题) 1.(2015?河北)设D为△ABC所在平面内一点,,则() A.B. C.D. 2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则 的最大值等于() A.13 B.15 C.19 D.21 3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=() A.20 B.15 C.9 D.6

4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是() A.||=1 B.⊥C.?=1 D.(4+)⊥ 5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是() A.||≤|||| B.||≤|||﹣||| C.()2=||2D.()?()=2﹣2 6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π 7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D. 8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()

12.(2014?四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=() A.﹣2 B.﹣1 C.1 D.2 13.(2014?新课标I)设D,E,F分别为△ABC 的三边BC,CA,AB的中点,则+=()A.B.C.D. 14.(2014?福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2 C.3 D.4 二.选择题(共8小题) 15.(2013?浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.

高考数学平面向量及其应用习题及答案 百度文库

一、多选题1.题目文件丢失! 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤ B .若a b c b ?=?且0b ≠,则a c = C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向 D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? 3.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( ) A .2 AB AB AC B .2 BC CB AC C .2AC AB BD D .2 BD BA BD BC BD 4.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A .8+33 B .83161+ C .8﹣33 D .83161- 5.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( ) A .2 2 OA OD ?=- B .2OB OH OE +=-

C .AH HO BC BO ?=? D .AH 在AB 向量上的投影为22 - 6.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形 7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1 ()2 AD AB AC = + C .8BA BC ?= D .AB AC AB AC +=- 8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b = B .a b = C .a 与b 的方向相反 D .a 与b 都是单位向量 9.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥c B .若PA PB PB P C PC PA ?=?=?,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向 D .若a ∥b ,则存在唯一实数λ使得a b λ= 10.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b += B .a b ⊥ C .() 4a b b +⊥ D .1a b ?=- 11.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量 B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对 C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使() 11122122e e e e λμλλμ+=+ D .若存在实数λ,μ,使120e e λμ+=,则0λμ== 12.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( ) A .A B D C = B .AB D C = C .AB DC > D .BC AD ∥

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

平面向量高考试题精选

平面向量高考试题精选(一) 一.选择题(共14小题) 1.(2015?河北)设D为△ABC所在平面内一点,,则() A. B. C. D. 2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21 3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6 4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是() A.||=1 B.⊥C.?=1D.(4+)⊥ 5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是() A.||≤|||| B.||≤|||﹣||| C.()2=||2D.()?()=2﹣2 6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A. B. C. D.π 7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为() A. B. C. D. 8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D 满足||=1,则|++|的取值范围是() A.[4,6] B.[﹣1,+1] C.[2,2] D.[﹣1,+1] 9.(2014?桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于() A.2 B. C. D.1 10.(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若?=1,?=﹣,则λ+μ=() A. B. C. D. 11.(2014?安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若?+?+?+?所有可能取值中的最小值为4||2,则与的夹角为() A. B. C. D.0

全国卷2011-2017高考—平面向量试题带答案

新课标全国卷Ⅰ文科数学分类汇编 5.平面向量(含解析) 一、选择题 【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( ) A .AD B . AD 21 C .BC 2 1 D .BC 二、填空题 【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = . 【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ||b =r _________. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编 4.平面向量 一、选择题 (2017·4)设非零向量,a b ,满足+=-a b a b 则( ) A .a ⊥b B. =a b C. a ∥b D. >a b (2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( ) A. -1 B. 0 C. 1 D. 2 (2014·4)设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 二、填空题 (2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. (2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=uu u r uu u r _______.

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

高考数学真题平面向量的概念与运算【学生试卷】

高考数学平面向量的概念与运算 一、选择题 1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .31 44AB AC - B .13 44AB AC - C .31 44AB AC + D .1344 AB AC + 【答案】 2.(2018北京)设a ,b 均为单位向量,则“ 33-=+a b a b ”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】 3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a , 1?=-a b ,则(2)?-=a a b ( ) A .4 B .3 C .2 D .0 【答案】 4.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0?=m n .若()t ⊥+n m n , 则实数t 的值为( ) A .4 B .–4 C .94 D .–94 【答案】 6.(2016年天津)已知ΔABC 是边长为1的等边三角形,点,D E 分别是边,AB BC 的中点,连接DE 并 延长到点F ,使得2DE EF =,则AF BC ?的值为( ) A .58- B .18 C .14 D .118 【答案】 7.(2016年全国II )已知向量(1,)(3,2)m =-,=a b ,且 ()+⊥a b b ,则m =( ) A .8- B .6- C .6 D .8 【答案】 8.(2016年全国III ) 已知向量 1(,22 BA = ,31(),22BC = 则ABC ∠=( ) A .30 B .45 C .60 D .120 【答案】 9.(2015重庆)若非零向量a , b 满足= a ,且()(32)-⊥+a b a b ,则a 与b 的夹角为( ) A . 4 π B . 2 π C . 34 π D .π 【答案】 10.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||?a b a b ≤ B .||||||||--a b a b ≤ C .2 2 ()||+=+a b a b D .2 2 ()()+-=-a b a b a b 【答案】 11.(2015安徽)ΑΒC ?是边长为2的等边三角形,已 知向量a ,b 满足2ΑΒ=a ,2ΑC =+a b ,则下列结论正确的是( ) A . 1=b B .⊥a b C .1?=a b D . ()4ΒC -⊥a b

高考数学平面向量及其应用习题及答案百度文库

一、多选题1.题目文件丢失! 2.若a →,b →,c → 是任意的非零向量,则下列叙述正确的是( ) A .若a b →→ =,则a b →→ = B .若a c b c →→→→?=?,则a b →→ = C .若//a b →→,//b c →→,则//a c →→ D .若a b a b → → → → +=-,则a b →→ ⊥ 3.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A b B a =,则该三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且 02 C << π ,4b =,则以下说法正确的是( ) A .3 C π = B .若72 c = ,则1cos 7B = C .若sin 2cos sin A B C =,则ABC 是等边三角形 D .若ABC 的面积是4 5.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点 时,点P 的坐标为( ) A .4,23?? ??? B .4,33?? ??? C .()2,3 D .8 ,33?? ??? 6.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

高考平面向量及其应用专题及答案百度文库

一、多选题 1.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是 ( ) A .() 0a b c -?= B .() 0a b c a +-?= C .()0a c b a --?= D .2a b c ++= 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ?≤ B .若a b c b ?=?且0b ≠,则a c = C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向 D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是 5,3??-+∞ ??? 3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且 02 C << π ,4b =,则以下说法正确的是( ) A .3 C π = B .若72 c = ,则1 cos 7B = C .若sin 2cos sin A B C =,则ABC 是等边三角形 D .若ABC 的面积是4 4.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知 cos cos 2B b C a c =-, ABC S = △b = ) A .1cos 2 B = B .cos 2 B = C .a c += D .a c +=5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

相关文档
相关文档 最新文档