文档库 最新最全的文档下载
当前位置:文档库 › 盾构用气泡的性能及对开挖土体改良效果影响

盾构用气泡的性能及对开挖土体改良效果影响

盾构用气泡的性能及对开挖土体改良效果影响
盾构用气泡的性能及对开挖土体改良效果影响

边坡运动学分析

岩土力学与岩土工程学报 沿着Jonk,Rishikesh,India附近的58号高速公路的边坡质量评价及 边坡运动学分析 Tariq Siddique,M.Masroor Alam,M.E.A.Mondal,V.Vishal 关键词:岩体质量评价运动学分析滑坡稳定性分析滑坡的易滑性 摘要:那些位于喜马拉雅山脉中的、连接坐落于偏远的山谷中或山坡上的城镇的道路网,在印度社会经济发展中起着举足轻重的作用。在这种不稳定的地形中对道路和铁路网进行规划,施工甚至维护发展始终是一项具有挑战性的任务,因为这里的地形、地质构造、地层岩性和新构造很复杂。人口和道路建设的不断增加导致了斜坡的失稳,导致了岩体的破环和移动,从而进一步加剧了近期的火山爆发和山洪爆发。边坡易滑性分析是“滑坡灾害评估”和“边坡质量特征”的重要组成部分,指导设计者为道路的结构和其他工程结构预测、选择合适的方法。58号公路中从Rishikesh 到Devprayag段滑坡现象很是常见。对58号公路沿线的Jonk 到Rishikesh段边坡进行了调查,这一段经历了繁重的交通特别是从三月到八月的朝圣期。在边坡岩体质量分级的基础上的调查,表明该地区属于稳定类,并且滑坡敏感性得分值也表明这个地区的边坡不易滑动。我们应该更加关注公路沿线的边坡,以实现更安全和更经济。 1.概况 喜马拉雅造山运动是印度板块和欧亚板块碰撞的结果。该区岩层极度破碎,具有主要的逆冲断层的不连续性,如喜马拉雅正面推力(HFT),主边界断层(MBT)和主中央断层(MCT)。喜马拉雅山脉中的58号公路沿线的滑坡是非常普遍和频繁的自然灾害,并且造成了大量生命和财产的损失。沿着这条公路的边坡失稳了很多次在不同的位置并且变得更易滑动,这都是由于无计划的发展导致的,作为Uttarakhand灾害的见证。众所周知,小喜马拉雅山脉的山坡是不稳定边坡,是由于地貌、降雪、严重和持续的降雨,以及正在进行的新构造活动导致的。最近几年增加的人为活动似乎是一个额外的因素对于喜马拉雅山脉的不稳定边坡。有很多或大或小的山体滑坡发生在不同的地方(Sati等人,2011)。过去几年中在Badarinath 和Rishikesh附近的58号公路为了建造建筑物和进行道路拓宽而进行的无计划开挖和爆破震动降低来人滑坡的稳定性。对Rudraprayag地区的临界边坡进行数值模拟得出其安全系数小于1(Singh等人,2008)。为了更安全的施工和减少边坡的破坏,适当的调查和斜坡特征描述是必需的。边坡特征分析取决于边坡,岩体,气象等相关参数和数据(Pradhan等人,2011,2014;Trivedi 等人,2012)。对58号公路沿线的喜马拉雅山脉中嘉华附近的50个路堑边坡利用边坡岩体质量分级(RMR)和地质强度指标(GSI)分类系统进行稳定性研究来确定其易滑性(Sarkar等人,2012a)。Rishikesh的平均海拔高度是372米(1745英尺)。根据印度Skymet气象部更新最新天气预报,该地区的温度大约是20℃到22℃之间。根据Koppen-Geiger气候分类系统,Rishikesh处在潮湿的亚热带地区。Rishikesh的降雨在不同季节差异明显;最大降水发生从七月九月约490mm,而最小降水量在四月只有10mm。边坡岩体特征是岩土工程研究的必要项目,它的基础是岩石或岩体的不同参数,目的是对不同类型的边坡进行分类和分析其稳定性,从而提出相应的支护措施。所有的内在属性的量化岩体和外部因素作用于斜坡可以用来说明斜坡的现状和预测他们的发展趋势。58号公路是生活在Rishikesh,Devaprayag,Srinagar,Rudraprayag,Gochar,Chamoli 和Joshimath的人们的生命线。据报道,公路沿线的许多滑坡对旅客和朝圣者造成了很多困难。本研究确定了在58号公路沿线的Laxman Jhula和Jonkand Rishikesh附近安全区域和地区的地质灾害的影

树脂流动对气泡运动特性的影响

树脂流动对气泡运动特性的影响 风电叶片制造技术2010-05-05 20:27:35 阅读29 评论0 字号:大中小 树脂流动对气泡运动特性的影响 作者:张佐光发表于:2010-01-29 08:50:03 点击:159 复材在线原创文章,转载请注明出处 摘要:为了排除复合材料成型过程中的气泡,建立了气泡运动可视化装置,研究了树脂流动状态和流动速度对气泡运动速度的影响,并在此基础上建立了气泡运动模型。研究结果表明:树脂流动对气泡运动有明显的带动或阻碍作用。当树脂流动方向与气泡运动方向相同时,随着树脂流速的增加,气泡的运动速度明显增大;而流动方向相反时,随着树脂流速的增加,气泡的运动速度呈明显下降的趋势。所建立的气泡运动模型与实验结果基本吻合。该研究结果将为热压成型过程中气泡运动模型的建立奠定基础。 关键词:复合材料;树脂;气泡;孔隙 先进树脂基复合材料是由纤维和树脂按一定方式复合而成的一类新型材料。然而复合材料的制造过程非常复杂,在其制备过程中由于各种因素以及工艺实施不完善等造成最终复合材料制品存在孔隙。孔隙的存在严重地影响材料的质量和力学性能,为外界空气和水分扩散进制品提供了路径,使聚合物降解并引起氧化作用,削弱纤维和基体的界面结合力El,2],进而影响复合材料的层间剪切强度、弯曲强度和模量、拉伸强度和模量、压缩强度和模量、抗疲劳以及高温性能。许多学者Is]认为,对于环氧基复合材料,孔隙含量每增加1 ,材料的剪切性能将下降6 ~8 。因此,为了提高复合材料的制备质量,必须合理地控制制备环境条件及固化温度、压力等工艺参数,使气泡在树脂凝胶之前尽量排出,以便降低孔隙含量。 在复合材料成型过程中,气泡主要随着树脂的流动而运动[4 ],因此,对树脂流动和气泡运动关系的研究是十分必要的。本文中利用自行建立的气泡运动可视化装置,研究了树脂流动对气泡运动速度的影响关系,并在实验基础上建立了气泡运动模型,该研究结果将为复合材料成型过程中气泡运动模型的建立提供依据。1实验部分 1.1 实验材料及设备 环氧618:环氧值0.51,无锡树脂厂生产;1,4-二氧六环:分析纯,北京益利精细化学品有限公司生产;数码相机:尼康C001PIX995,尼康株式会社;微量进样器(量程为5~100 L):上海医用激光仪器厂。1.2 实验装置及方法 为了研究树脂流动对气泡运动行为的影响,首先建立了气泡运动的可视化装置,如图1所示。该实验系统由流体装载、流体接收、气泡发生(微量进样器)以及图像采集等部分组成。主要利用重力差原理,控制装载部分和流出部分的液面高度差来使树脂流动,并通过调节控制阀来改变树脂的流速。

气泡的声学特性分析

气泡的声学特性分析 2.2.1 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从Urick 和Hoover 在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误!未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此,对于水声探测来说,目标散射场特性的研究尤为重要。沿x 轴方向传播的平面声波入射到半径为R 的软球边界上,观察点(,)S r θ处的声场。如图2.1所示,x 轴方向为零度方向。 ) ,(t x p i θ (,) S r θx R O 图2.1 平面声波在软球球面上的散射 入射平面声波表达式为: )cos (0)(0),(θωωkr t j kx t j i e p e p t x p --== (2-1) 其中,λ为波长,c 为介质声速,ω为角频率,λπω2==c k 为波数,),(θr 为点S 的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 0 (r )i s R p p +== (2-2) 声场关于x 轴对称,所以取满足以x 轴对称的球坐标系的波动方程的解为 (2)0(cos )()j t s m m m m p R P h kr e ωθ∞==∑ (2-3) 其中,m R 为常数, )()2(x h m 为第二类m 阶汉克尔(Hankel )函数,为 m 阶勒让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为球函数的和: ∑∞=+-=00)()(cos )12()(),,(m m m m t j i kr j P m j e p t r p θθω (2-4) 其中,)(kr j m 为m 阶球贝塞尔(Bessel )函数。将(2-2),(2-3)和(2-4)式合并,解出m a ,则s p 为:

机构运动特性分析与四杆机构设计

模块六机构运动特性分析与四杆机构设计 【能力目标】具备平面机构运动特性和传力特性的分析能力及一般平面连杆机构的设计能力【课程内容】 1.机构的运动特性分析方法, 2.平面四杆机构的基本设计方法, 3.计算机辅助图解设计法。 【教学方法】观察机构,分析机构运动特性、传力特性及机构间运动的协调,观察运动副的结构。 【教学手段】课堂演示与现场教学相结合 【教学地点】多媒体教室、创新实训室 【教学重点】四杆机构的构成要素,基本特性分析 【教学难点】四杆机构的协调运动设计 【实践内容】图解法设计平面四杆机构 【教学课时】理论3课时实践2课时 【理论授课内容】 6.1 铰链四杆机构及其演化 一、铰链四杆机构的基本形式 1.基本概念: 铰链四杆机构:所有低副均为转动副的四杆机构。 机架:机构中的固定构件。 连杆:与机架相对的杆。 连架杆:与机架相连的杆。 曲柄:能作360°回转的连架杆。 摇杆:只能在小于360°范围内摆动 的连架杆 2.铰链四杆机构的基本形式: 曲柄摇杆机构:在两连架杆中,一个为曲柄,另一个为摇杆。 双曲柄机构:两连杆架均为曲柄的四杆机构。 双摇杆机构:两连杆架均为摇杆的四杆机构。 二、铰链四杆机构的演化

所有的四杆机构都是由四杆机构的基本形式演化来得。 1.扩大转动副,使转动副变成移动副 得到曲柄滑块机构 (1)e≠0时,为偏置曲柄滑块机构 (2)e=0时,为对心曲柄滑块机构 曲柄滑快机构演化:扩大运动副,可将转动副的尺寸扩大到超过曲柄长度,演化成偏心轮机构 2.取不同的构件为机架 1)铰链四杆机构的演化 a:曲柄摇杆机构b双曲柄机构 c双摇杆机构d曲柄摇杆机构 2)曲柄滑块机构的演化

气泡的声学特性分析

气泡的声学特性分析 221 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从UriCk和HOOVer在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此, 对于水声探测来说,目标散射场特性的研究尤为重要。沿X轴方向传播的平面声 波入射到半径为R的软球边界上,观察点S(rc)处的声场。如图2.1所示,X轴方向为零度方向。 图2.1平面声波在软球球面上的散射 入射平面声波表达式为: P i(x,t)=p°e j(Z) = P O e j g rCO S e)(2-1)其中,,为波长,C为介质声速,「为角频率,C=二,为波数,(r,d)为点S的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 P i P S=O (^ R) (2-2)声场关于X轴对称,所以取满足以X轴对称的球坐标系的波动方程的解为 Oel P s =Σ R m P m(CoS日)h m2>(kr)e jκt(2-3) m z0 其中,R m为常数,h r mυ(x)为第二类m阶汉克尔(Hankel)函数,「:?为m阶勒 让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为 球函数的和: Oa P i(r,8,t) =p°e j°5∑ (―j)m(2m+1)P m(cos日)j m(kr) (2-4) m =0 其中,j m(kr)为m阶球贝塞尔(BeSSe)函数。将(2-2),(2-3)和(2-4)式合并,解出a m ,则P S为:

带传动的受力分析及运动特性

带传动的受力分析及运动特性 newmaker 一、带传动的受力分析 带传动安装时,带必须张紧,即以一定的初拉力紧套在两个带轮上,这时传动带中的拉力相等,都为初拉力F0(见图7–8a )。 图7-8 带传动的受力情况 a)不工作时 b)工作时 当带传动工作时,由于带和带轮接触面上的摩擦力的作用,带绕入主动轮的一边被进一步拉紧,拉力由F0增大到F1,这一边称为紧边;另一边则被放松,拉力由F0降到F2,这一边称为松边(见图7–8b )。两边拉力之差称为有效拉力,以F 表示,即 F =F1–F2 (7–4) 有效拉力就是带传动所能传递的有效圆周力。它不是作用在某一固定点的集中力,而是带和带轮接触面上所产生的摩擦力的总和。带传动工作时,从动轮上工作阻力矩T¢2所产生的圆周阻力F¢为 F¢=2 T'2 /d2 正常工作时,有效拉力F 和圆周阻力F¢相等,在一定条件下,带和带轮接触面上所能产生的摩擦力有一极限值,即最大摩擦力(最大有效圆周力)Fmax ,当Fmax≥F¢时,带传动才能正常运转。如所需传递的圆周阻力超过这一极限值时,传动带将在带轮上打滑。 刚要开始打滑时,紧边拉力F1和松边拉力F2之间存在下列关系,即 F1=F2?e f?a (7–5) 式中 e –––自然对数的底(e≈2.718); f –––带和轮缘间的摩擦系数;

a–––传动带在带轮上的包角(rad)。 上式即为柔韧体摩擦的欧拉公式。 (7-5)式的推导: 下面以平型带为例研究带在主动轮上即将打滑时紧边拉力和松边拉力之间的关系。 假设带在工作中无弹性伸长,并忽略弯曲、离心力及带的质量的影响。 如图7–9所示,取一微段传动带dl,以dN表示带轮对该微段传动带的正压力。微段传动带一端的拉力为F,另一端的拉力为F+dF,摩擦力为f·dN,f为传动带与带轮间的摩擦系数 (对于V带,用当量摩擦系数fv,,f为带轮轮槽角)。则 因da很小,所以sin(da/2)?da/2,且略去二阶微量dF?sin(da/2),得 dN=F?da 又 取cos(da/2)?1,得f?dN=dF或dN=dF/f,于是可得 F?da=dF/f 或dF/F=f?da 两边积分

行走机器人运动结构特性分析

第19卷第3期湖 北 工 学 院 学 报2004年6月 V ol.19N o.3 Journal of H ubei Polytechnic U niversity Jun.2004 [收稿日期]2004-03-01 [作者简介]段成龙(1980-),男,湖北武汉人,中国地质大学(武汉)硕士研究生,研究方向:机械设计及理论. [文章编号]1003-4684(2004)0620017202 行走机器人运动结构特性分析 段成龙,张 萌 (中国地质大学机械与电子工程学院,湖北武汉430074) [摘 要]介绍了行走机器人的发展、分类、结构和运动特性,并详细叙述了几种典型的机器人行走机构和特 点,最后介绍采用U G 设计软件对机器人结构设计的模拟仿真.[关键词]机器人;行走机构;仿真[中图分类号]TP24[文献标识码]:A 行走机器人是机器人学中的一个重要分支.关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等.其次,必须考虑驱动器的控制,以使机器人达到期望的行为.第三,必须考虑导航或路径规划.因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统. 1 行走机器人的结构设计技术发展现 状 机器人的机械结构形式的选型和设计,应该根据实际需要进行.在机器人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性的工作.对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构. 当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和广阔的应用前景而成为智能机器人发展的方向之一. 2 几种行走机器人行走机构特点 2.1 轮式行走机器人 轮式行走机器人是机器人中应用最多的一种机 器人,滚轮由电机直接驱动,它一般是将具有独立驱动装置、换向装置和制动装置的滚轮安装在由电机驱动的腿结构的末端,这些机构和装置在增强了行走机器人可操作性能的同时,也增加了机器人的重量,一定程度上限制了其机动性能.图1所示机器人是一种特殊的轮式机器人从动轮式机器人 . 从动轮式机器人作为特殊的轮式机器人,其滚轮是作为从动轮,滚轮上无任何附加主动力,通过水平连杆、垂直连杆和滚轮的协调动作,利用滚轮受到的法向摩擦力远大于切向力的特点,可以使系统受到的摩擦力合力指向前方,产生机器人驱动力,驱动机器人运动.从动轮式机器人可实现多种运动姿态,其功能相当于万向轮式行走机器人,具有较大的灵活性[1]. 该机器人是由四个装有滚轮的机械腿和机器人本体构成.每个腿有水平连杆和垂直连杆构成,四个腿协调运动.每个机械腿分别有两个直流控制电机驱动.第一个电机控制水平连杆的前后摆动,另一个电机控制垂直连杆内外摆动.根据运动形式,确定四个腿的水平连杆的初始摆角,通过四个腿上的水平连杆和垂直连杆的协调动作,可以调节机器人所受合力的大小和方向,使机器人按要求的路径滑行.

显微镜下瓷器表面气泡研究

古陶瓷的釉中有气泡是一种比较常见的现象。有的器物的气泡特征十分明显,用肉眼即能观察清楚,形成很深的直观印象;而有的器物虽然有明显的气泡,但气泡的特征却不是很明显;也有的器物釉面无明显的气泡,甚至无气泡。 有关气泡形成的原因和变化规律,目前尚未处于探索阶段。有人认为它是由釉层中的水分子变化而来的。在陶瓷烧制过程中,窑内的高温会使釉层中的结晶水或液态水都变成气体,当釉层厚时,气态水分子被釉膜包住,释放不出来便形成为气泡。 当釉层薄时,气泡冲破了釉层,则在釉表形成无数小坑凹(麻点)。气泡的形成与器物的窑口、釉质、釉层厚薄、烧成时窑内的温度变化、窑内气氛等因素有密切关系。 气泡在古陶瓷鉴定中的作用 目前收藏界尚有不同说法,肯定者认为,气泡在古陶瓷鉴定中具有重要的参考作用,可以作为鉴别新旧和窑口的主要依据之一;否定者认为,气泡不过是釉层中的一种自然现象,气泡无规律可循,不具有区分标识的功能,因而不能作为鉴定的依据。事实上,这两种观点都不完全正确。尽管不同器物的气泡在具体形态、疏密、多少、大小及层次分布等方面的特征千差万别,有时难以用同一个标准去把握,但相同窑口或品种的器物在气泡特征方面却具有一定的相似性。相同窑口或品种的器物,由于釉的原料、配方、施釉方法、釉层厚薄、烧成时的窑内气氛、温度变化等方面都大致相同,因而烧成后的器物在气泡特征方面会具有一定的共性和规律。这种共性和规律,在进行仔细分析研究后,有时也可以作为古陶瓷鉴定的依据之一,具有一定的参考价值。但相对于古陶瓷的胎、釉、造型、纹饰等其他鉴定标准来说,气泡并不是最典型最本质的特征,气泡标准具有不确定性,因而不能无限夸大气泡在鉴定中的参考价值。对于一些釉中无明显气泡或虽有气泡但特征不典型的陶瓷种类,不宜通过气泡特征进行鉴定。依据气泡进行古陶瓷鉴定,最基本的前提在于对被鉴定对象的气泡特征要了如指掌,这种了解应是在观察、上手大量真品实物基础上的感性认识和理性升华,而不能只是通过书本得来的未经对照实物检验的似是而非、众说纷纭的所谓气泡特征。 历代各个窑口陶瓷气泡的特征

气泡动力学研究

气泡动力学研究 A.Shima Professor Emeritus of Tohoku University, 9-26 Higashi Kuromatsu, Izumi-ku, Sendai 981, Japan Received 17 June 1996 / Accepted 15 August 1996 摘要:为了弄清楚与空化现象密切相关的气泡的特性,气泡动力学的研究已经深入的进行并且建立了其研究领域。本文旨在结合激波动力学简单的介绍气泡动力学及其历史。 关键字:气泡、空化、脉冲压力、液体射流、冲击波、损害坑。 1引言 在1894年的英格兰,当船在高速螺旋桨推动下试运行的时候达不到设计速度。为了查清这种现象的原因而设计了一个试验并最终发现了空化现象。从那时起,空化现象的研究日益进展,因为空化现象是阻碍工作在流体环境中的水力机械性能提高的一个重要因素。 然而,现在为了根本的理解空化现象及其相关内容,人们已经意识到应该研究气泡动力学。作者研究空化现象和气泡动力学四十多年,本文简单介绍一些气泡动力学研究及其与冲击波动力学的联系。 2空化和气泡核 水在水轮机,水泵,螺旋桨和带有各种沟渠的水力机械中流过,当液体和固态水翼的表面或者沟槽壁的相对速度变得如此大以至于局部水流的静压力减小到极限压力以下时空化现象就出现了,这个极限压力被称为空化初始压力。 通常情况下当水中不满足空化条件时,称为气泡核的小气泡是不存在的,水能抵抗非常大的负压,空化现象不能轻易的发生。 然而,水中通常包含几个百分点的空气,因此在这种情况下气泡核生长称为可见的气泡和容易被告诉摄影观察到(Knapp and Hollander 1948)。这就是所谓的空化现象。 同样地,假设有一个气泡核半径为,在液体中随着温度变化而生长,气泡存在和稳 定的条件通过由静力平衡关系得到的公式给出(Daily and Johnson 1956)。 上式中σ是液体的表面张力,是液体饱和蒸汽压,P是液体压力。当上式中的值超过右 端或小于左端的值时,气泡核分别开始无限的膨胀或收缩。由此看来气泡表现出复杂的行为取决于气泡周围各种水力状况。由于这些状况存在于空化噪声,空泡腐蚀等许多现象中,所以空泡动力学的研究要澄清空化现象的机理。 3无限液体中气泡的行为 Besant (1859) 提出(在真空、无限的、非粘滞性的并且不能压缩的液体中运动的球形气泡)一个预测液体中各点压强和气泡溃灭时间的难题。 Rayleigh (1917)从理论上解决了这一难题并且得到了描述气泡运动的解析式。他的在无限的、非粘滞性的、不能压缩的液体中单个球形气泡运动公式如图示1所示。气泡的表面速 度V通过假定液体所做的功——当一个气泡由初始半径缩小到R——等于气泡运动的全部 动能获得。

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

初始形状对浮升气泡动力特性的影响

第45卷 第1期 西 安 交 通 大 学 学 报 Vol.45 No1 2011年1月 JO U R N A L O F X I ’A N JI A O TO N G U N I V ER SI TY Jan.2011 收稿日期:2010-06-17. 作者简介: 何丹(1986-),女,硕士生;李彦鹏(联系人),男,教授. 基金项目:国家自然科学基DOI: 初始形状对浮升气泡动力特性的影响 何丹,李彦鹏,刘艳艳 (长安大学环境科学与工程学院,710064, 西安) 摘要:采用Level Set 方法, 三维直接数值模拟了浮力作用下单个气泡的上升运动. 数值模拟中, 气液系统的物性参数设置为埃奥特沃斯数Eo =1~103, 莫顿数Mo =10-10~102 . 数值研究了气泡的初始形状对气泡的变形和上升速度的影响,并与文献中结果进行了比较; 给出了高Eo 时气泡由球帽状转变为气泡环的结构相图, 确定了二者形状转变的Eo 和Mo ; 最后详细分析了初始形状影响气泡动力学特性的机理. 模拟结果表明:低Eo (Eo <52)时浮升气泡的终端形状与上升速度基本不受初始形状的影响; 高Eo 和低Mo 时的浮升气泡受初始形状的支配, 呈现出球帽状和气泡环两种最终形状, 初始气泡的高宽比越大, 气泡越容易变形为气泡环, 上升速度的脉动也越剧烈. 关键词:浮升气泡;初始形状;相图;数值模拟 中图分类号:TK124 文献标志码:A 文章编号:0253-987X(2011)01-0000-00 Effect of Initial Bubble Shape on Dynamics of a Buoyancy-driven Bubble HE Dan, LI Yanpeng, LIU Yanyan (College of Envi r onm ent al Sci ence and Engi neer i ng, C hang’A n U ni ver s i t y, X i ’an 710064, China) Abstract :Three-dimensional direct numerical simulation on a single bubble rising by buoyancy in viscous liquids was carried out with the level set method. The effect of initial bubble shape on the bubble dynamics was studied numerically w i t h E?t v?s num ber (Eo : O (0)-O (3)) and Morton number (Mo :O (-10)-O (2)) , and the influencing mechanism was explained in detail. The bubble shape and rise velocity predicted by the simulation agree with a well-known bubble regime phase diagram in literature. In addition, a phase map was also established at high Eo to provide quantitative analysis on the transition of final bubble topology from spherical-cap to toroidal bubble. The numerical results show that the final shape and rise velocity are not affected by the initial bubble shape at low Eo (Eo <52), while the final bubble state appears to be the spherical-cap and toroidal bubble and is influenced by initial bubble shape at high Eo and low Mo . The bubble is easier to become a toroidal bubble and the temporal fluctuation of bubble rise velocity is stronger when the aspect ratio of the initial bubble is greater. Keywords :buoyancy-driven bubble ;initial shape ;phase diagram; numerical simulation 以气泡为分散相的气液两相流动存在于许多工业过程中,如能源与化学工业的鼓泡床反应过程、污水处理中的曝气工艺、湖泊河道治理中的受氧过程等,都需要考虑气泡传质问题,而这一问题与气泡的动力学行为密切相关。因此,深入认识气泡的动力学行为对于改进实际工业过程具有重要的理论意义。 Bhaga 等[1]系统地研究了浮力气泡在黏性液体中的上升运动,得到了描述气泡形状及终端上升速度与3个参数(雷诺数Re 、莫顿数Mo 和埃奥特沃斯数Eo )之间关系的气泡相图。随后30年,各国学者一方面利用高速摄影技术,另一方面采用基于界面捕捉的数值模拟技术,对气泡在各种局部流动条件以及不同水质下的动力学特性 CNKI:61-1069/T_20101019.2211.014

晃荡条件下气泡上升速度特性研究

第36卷第6期一一一一一一一一一一一哈一尔一滨一工一程一大一学一学一报一一一一一一一一一一Vol.36?.6 2015年6月一一一一一 一一 一一一 JournalofHarbinEngineeringUniversity一一一一一一一一一一一Jun.2015 晃荡条件下气泡上升速度特性研究 宋禹林1,谭思超1,付学宽1,李小辉2 (1.哈尔滨工程大学核安全与仿真技术国防重点学科实验室,黑龙江哈尔滨150001;2.中国舰船研究设计中心,湖北武汉430064) 摘一要:海浪二地震等条件都会导致核动力设备中储存自由液面的设备产生剧烈的晃荡三为了分析晃荡条件下液体中的气泡行为特性,本文运用CLSVOF(coupledlevel?setandvolume?of?fluid)模型追踪两相流体交界面,数值模拟气泡在液体中受余弦简谐激励和自由液面影响的上升过程三计算结果显示余弦简谐激励降低了气泡纵向运动速度,而横向速度略大于激励速度;自由液面的波动在纵向上会使气泡上升速度骤然降低,甚至出现负速度,越接近自由液面横向速度峰值越大三计算结果表明晃荡运动的影响是余弦简谐激励与自由液面波动影响的叠加,晃荡条件下自由液面波动是气泡速度变化的主要因素,气泡的本身属性起次要作用三关键词:上升气泡;晃荡;CLSVOF;大空间doi:10.3969/j.issn.1006?7043.201404023 网络出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20150428.1115.017.html中图分类号:TL334一文献标志码:A一文章编号:1006?7043(2015)06?0865?06 Studyonthecharacteristicsofsinglebubblerisingvelocityundersloshingconditions SONGYulin1,TANSichao1,FUXuekuan1,LIXiaohui2 (1.FundamentalScienceonNuclearSafetyandSimulationTechnologyLaboratory,HarbinEngineeringUniversity,HarbinEngineeringUniversity,Harbin150001,China;2.ChinaShipdEvelopmentandDesignCenter,Wuhan430064,China) Abstract:Oceanwavesandseismicwavescancauseviolentlysloshingofthefreeliquidsurfaceinacontainer.Inordertoanalyzethebehaviorofrisingbubbleinliquidundertheconditionofsloshing,thispaperusestheCLSVOF(coupledlevel?setthevolume?and?fluid)modeltosimulatethetwo?phasefluidinterface,obtainingtherisingbub?bleintheliquidwithcosineharmonicexcitationconditionorwaveoffreesurfacecondition.Calculationresultsshowthatcosineharmonicexcitationreducesthebubblelongitudinalvelocitytransversevelocityisslightlybiggerthanthemotivationspeedandthewaveoffreesurfacewillmakethebubblerisingvelocityplummetandevenleadtonega?tivespeed.Thelateralvelocitypeakincreasesgraduallyclosertothefreesurface.Calculationresultsprovethatsloshingistheoutcomeofsuperpositionwithcosineharmonicexcitationandwaveoffreesurfaceandthedensitydifferencebetweenairandwaterisoneofthedrivingforcesofbubblemotion.Insloshingcondition,fluctuationoffreesurfaceisthemainfactorofchangesinbubblevelocity,whichprovedthattheattributeofbubbleisthewea?kestfactor. Keywords:risingbubble;sloshing;CLSVOF;largespace收稿日期:2014?04?07.网络出版时间:2015?04?28.基金项目:黑龙江省青年学术骨干支持计划资助项目(1254G017); 核安全与仿真技术国防重点学科实验室基金资助项目(HEUFN1305). 作者简介:谭思超(1979?),男,教授,博士生导师.通信作者:谭思超,E?mail:tansichao@hrbeu.edu.cn. 一一行驶在海洋中的船舶二运行在陆地上的核电站,在遇到风浪二地震等外界激励时,会使存在自由液面的容器产生剧烈的晃荡三强烈的晃荡产生的复杂流场必然对气泡的运动有着不可忽视的影响三正常工况下运行的蒸汽发生器二除氧器还有事故工况下未停止运行的反应堆都存在大量的气泡,气泡的大小二形状及运动规律等对气液传热传质都有这种影响,因此晃荡对气泡运动行为的影响或危机设备的安全运行三而这方面的研究却未见诸公开报道,因此有必要对晃荡条件下气泡的运动行为特性进行研究三 1一数值计算方法与静水中气泡的上升 气泡运动的数值模拟主要通过界面追踪法来实现,LevelSet和VOF都是优秀的界面跟踪方法,C.W.Hirt[1]首次将VOF方法应用到数值模拟晃荡现象中,SussmanM[2]等将LevelSet方法应用于数值模拟气泡的上升运动三SonG[3]等完善了CLSVOF方法,相比其他两相流界面追踪方法,CLSVOF方法计算得更精准并且收敛的更快三耦合LevelSet方法与VOF方法关键的过程在于相函数的耦合方法三相函数耦合又分为以LevelSet方法为主还是以VOF方法为主,这里选以LevelSet为主的LevelSet-相界面法为例,式(1)是一种最基本的耦合方法,利用Heaviside函数建立了LevelSet函数φ(x,y,z,t)和VOF流体体积函数f(Ω,t)的关系[4]:

相关文档