文档库 最新最全的文档下载
当前位置:文档库 › 机器视觉—三维重建技术简介

机器视觉—三维重建技术简介

机器视觉—三维重建技术简介
机器视觉—三维重建技术简介

三维重建技术简介

一、视觉理论框架

1982年,Marr立足于计算机科学,首次从信息处理的角度系统的概括了心理生理学、神经生理学等方面已经取得的重要成果,提出了一个迄今为止比较理想的视觉理论框架。尽管Marr提出的这个视觉理论框架仍然有可以进行改进和完善的瑕疵,但是在近些年,人们认为,计算机视觉这门学科的形成和发展和该框架密不可分。

第一方面,视觉系统研究的三个层次。

Marr认为,视觉是一个信息处理系统,对此系统研究应分为三个层次:计算理论层次,表示与算法层次,硬件实现层次,如下图所示:

计算机理论层次是在研究视觉系统时首先要进行研究的一层。在计算机理论层次,要求研究者回答系统每个部分的计算目的与计算策略,即视觉系统的输入和输出是什么,如何由系统的输入求出系统的输出。在这个层次上,将会建立输入信息和输出信息的一个映射关系,比如,系统输入是二维灰度图像,输出则是灰度图像场景中物体的三维信息。视觉系统的任务就是研究如何建立输入输出之间的关系和约束,如何由二维灰度图像恢复物体的三维信息。

在表示与算法层次,要给出第一层中提到的各部分的输入信息、输出信息和内部信息的表达,还要给出实现计算理论所对应的功能的算法。对于同样的输入,如果计算理论不同,可能会产生不同的输出结果。

最后一个层次是硬件实现层次。在该层次,要解决的主要问题就是将表示与算法层次所提出的算法用硬件进行实现。

第二方面,视觉信息处理的三个阶段。

Marr认为,视觉过程分为三个阶段,如表所示:

第一阶段,也称为早期阶段,该阶段是求取基元图的阶段,该阶段对原始图像进行处理,提取出那些能够描述图像大致三维形状二维特征,这些特征的集合构成所构成的就是基元图(primary sketch)"。

第二阶段也称中期阶段,是对环境的2.5维描述,这个阶段以观察者或者摄像机为中心,用基元图还原场景的深度信息,法线方向(或一说物体表面方向)等,但是在该阶段并没有对物体进行真正的三维恢复,因此称为2.5维。

第三阶段也称为后期阶段,在一个固定的坐标系下对2.5维图进行变换,最终构造出场景或物体的三维模型。

二、三维重建技术现状

目前三维重建的方法大致可分为三类,即:用建模软件构造的方式,多幅二维图像匹配重建的方式以及三维扫描重建的方式。

对于第一种方式,目前使用比较广泛的是3D Max, Maya, Auto Cad以及MultiGen-Creator等软件。这些三维建模软件,一般都是利用软件提供的一些基本几何模型进行布尔操作或者平移旋转缩放等操作,来创建比较复杂的三维模型。这样所构建出来的模型,比较美观,而且大小比例等非常精确。然而,这需要建模者精确知道三维场景的尺寸、物体位置等信息,如果没有这些信息,就无法建立精准的模型。

第二种方式是利用实时拍摄的图像或者视频恢复场景的三维信息。这种方式是基于双目立体视觉,对同一物体拍摄不同角度的图像,对这些图像进行立体匹

配,获取物体的三维信息。目前来说,比较成熟的基于双目立体视觉的三维重建系统主要有Faugeras等人设计的从图像序列中重建建筑物的三维重建系统、Bougnoux等开发的Total Calib系统、比利时K.U Leuven University的I'ollefeys等人开发的三维表面自动生成系统以及剑桥大学计算机视觉研究组开发的PhotoBuilder三维重建系统。这利方式比较实用,造价低廉,只需要一台普通的照相机或者摄像机,然而此种方式也有它的缺点,对于同一个物体在拍摄多幅照片时,如果每次移动的距离不同,则恢复出来的三维信息,就会相差很多。而且此种方式的精确度不高。所以,在对精度要求很高的行业中(比如精密仪器制造、汽车零部件制造等),非常不实用。另外,此种方式仍然需要大量的手工操作,比如上面提到的Pollefeys三维重建系统。因此,基于图像的三维重建方法的一个研究重点是如何避免过多的人工操作。

第三种方式是用三维扫描设备对物体表面进行扫描。三维扫描设备分为接触式设备和非接触式设备两种。这种方式能够得到比较精确的三维信息。但是,此种方式的造价比较高,普通人群无法承受三维扫描设备的昂贵价格。接触式的三维扫描设备,必须接触到物体的表面,这样就无法避免的会对物体表面造成一定压力,甚至会对物体产生损害,这对于文物保护等行业来说,显然是不可接受的。非接触式三维扫描设备将激光或可见光投射到物体表面,然后利用各种感光器件对发射的光进行感光,再利用各种技术计算出物体表面深度信息。目前较成熟的方法就是激光扫描法。美国的SIIarp_Shape公司,Footmanaeement公司和英国的CSM3D International公司都利用激光扫描技术开发出成型的人体扫描仪。但是激光扫描耗时较长,无法做到实时生成三维模型。

上述几种获得三维信息的方式,都有各自的优缺点。对于上述的第二种方式,研究人员对之加以改进,提出了一种基于结构光投影的三维重建方式,目前,国内利用此种方式开发的三维重建系统还很少且不成熟。这种方式尽管没有激光扫描那么高的精度,但是造价低廉,而且操作比较简单,比起传统的方式,没有太多影响精度的人工操作,是目前最有发展前途的实用型三维重建技术之一。

三、基于结构光投影的三维重建方式

1.结构光技术简介

物体的三维信息获取和表面几何形状是机器视觉研究的一个重要方向,获取

物体三维信息的技术有多种,如被动视觉和主动视觉等技术。当需要重建曲面物体的几何形状描述时,就要求获取的物体三维数据具有准确度高覆盖全面的特点。

由于双目视觉系统对于表面没有特征点的物体的表面无法进行很好的识别与重建。因此基于结构光的主动视觉技术得到了广泛的认可和应用。目前结构光技术被认为是对物体表面进行重建的最可靠的技术之一。结构光技术将双目视觉中两个摄像机中的一个替换为投影仪。通过投影仪将已知图案投射到物体表面,投影的图案会随着物体表面的高度而产生变化,通过摄像机得到的物体表面变形的图案来计算物体表面三维信息。结构光技术利用投影仪的投影解决了双目视觉中匹配的问题。

由于结构光技术拥有非接触、准确、测量范围大等优点,因此被应用于工业领域的各种元件的质量测量,三维信息检测等。将结构光图案投射到待加工板材的背面,通过摄像机拍摄加工过程中板材的形状变化可以实现对板材变形过程的三维重建,对于研究材料的特性和改进生产技术提供了完整的数据。利用多台摄像机和结构光相结合的技术可以加工元件的各部分的垂直性进行检测,与传统的检测技术相比拥有快速,在线,非接触和显著的准确性等优点。弹性网状材料在缠绕或者展开过程中的振动是制约网状材料传输的速率的重要因素,利用结构光技术可以实现对于网状材料缠绕过程中振动频率和振幅的实时,非接触测量。

2.基于结构光投影的三维重建方式的国外研究发展

国外的结构光技术在室内环境中主要应用于人体的面部和手部等部位的重建。部分学者已经将结构光技术应用在更广泛的工业测量技术中实现对零件的非接触精确测量。

Boulbaba Ben Amor, Mohsen Ardabilian和Liming Chen通过结合结构光和双目视觉对人脸进行了三维重建。首先通过双目视觉获得人脸部分的二维特征,然后通过结构光技术得到人脸的三维信息,将人脸的二维特征图像覆盖到脸部三维图像的表面实现了对人脸的实现了三维重建。Jiyoung Park, Cheolhwon Kim,Juneho Yi和Matthew Turk,用结构光技术获得图像中准确的深度边缘信息,为人手部动作和身体姿态的识别提供信息。FilaretiTsalakanidoua, Frank Forster, Sotiris Malassiotis , Michael G. Strintzis通过将彩色的结构光投射到人的面部,对人脸进行三维重建,利用人脸的三维信息对人脸进行识别,

克服了传统的基于人脸二维图像识别中严重受制子光照,姿态等因素的缺点。S. Boveriea, M. Devy, F. Lerasle利用点状结构光对汽车内部空间的占用情况进行测量和分类,来降低安全气囊误启动的几率。 D. Q. Huynh利用了交比不变性提出了一种新的投影仪标定方法,优化了标定过程并且提高了实验精度。Ming-June Tsai, Chuan-CherigHung通过DMD(数字微镜装置)投影设备和高精度摄像机将结构光的测量精度提高到了 3 um, Changsoo Je, Sang Wook Lee和Rae-Hong Park利用两幅对比强烈的投影图像投射到待测量物体表面,虽然需要多待测物体进行两次投影和两次拍摄,但是这两次高对比的投影图案投射后得到的图像经过处理后可以消除物体表面颜色和纹理的影响,扩大了结构光的应用范围。FrodeGrytten, EgilFagerholt, TrondAuestad将结构光投射到加工铝板的背面,实现了对于穿孔过程的动态信息重建。Peter Lindsey和AndrewBlake利用结构光技术实现了对于运动物体表面的实时跟踪。Jordi Pages, JoaquimSalvi和Canes Matabos在网状的结构光的竖直和水平两个方上利用颜色进行编码,提高了对图像进行分割和解码时的鲁棒性。 A. Dipanda, S. Woo 利用激光束点阵投影结构光系统实现对物体三维形状的实时重建,提出了自动获得系统构造参数的算法。David Fofi, JoaquimSalvib, E1Mustapha Mouaddiba 利用结构光技术提出了一种不需要标定就可以对物体表面进行重建的算法。Oleksandr A. Skydan, Michael J. Lalor, David R.Burton提出了利用多个不同位置的投影仪对待测量物体表面投射不同颜色的投影和傅立叶变换实现对物体的三维重建。

3.基于结构光投影的三维重建方式的国内研究发展

国内对于结构光技术的研究还主要集中在室内环境中的应用。主要研究范围集中在投影图案的设计和摄像机标定的方法。

喻擎苍等提出了一种针对移动物体的二元编码的小型网格结构光,利用复杂的网格形状取代颜色信息来实现代码的唯一性。岳慧敏等提出了基于傅立叶变换的复杂编码方法对投影图案进行编码的新的编码方法。张广军等提出在平面标准板上设定特征点来实现对于结构光系统的标定。王光辉等利用三种特定的基本颜色对投影图案编码,这种编码方式虽然不能保证编码的唯一性和对物体表面突变部分的识别,但是在选取这三种基本颜色时,可以选取受物体表面颜色和纹理影

响最小的颜色进行编码,获得物体表面的三维信息后,将物体表面的二维图像信息覆盖到三维物体表面,实现对物体的重建。张广军等通过多个摄像机和激光投影仪完成了对于加工部件垂直性的检测。B.Zhang提出了基于平面单应性的自身再标定结构光系统,通过对视场中一投影平面进行拍摄就可以完成对于结构光系统的自身再标定处理。万波,张大朴提出一种完全线性的针孔摄像机标定方法。在己知一个消隐点的情况下,利用交比不变性及消隐点的知识对摄像机进行标定。张洪波,李元宗利用透镜成像理论建立摄像机数学模型,经过畸变分析提出一种实验要求低、标定参数全面的标定方案。解决了其它线性方法中部分内部参数的标定问题,避免了传统非线性优化的繁琐和不稳定,有效地提高了标定精度。张颖康,李雅轩,孟军英设计了一种标定多摄像机视觉系统的方法,在多摄像机场景中,放置共线的2点(一维标靶)并使其围绕1个固定端点摆动;通过多摄像机从各自角度同步拍摄,标定出各摄像机含径向畸变系数的内外参数。王以忠,李琳,黄华芳提出了一种基于双目线结构光主动三角法的视觉系统的简单标定方法.该视觉系统采用线结构光原理,使用双目摄像机避免了常用的单摄像机系统中容易出现的遮挡等问题。刘维一,王肇沂,母国光,方志良研究了一种用彩色条纹对光栅进行数字编码的方法。其中投影光栅用白、红、绿、蓝和它们的补色黑、青、品、黄按照四位二进制原理对光栅进行编码。

综上所述,虽然现阶段结构光技术更为适合在室内环境中物体的表面进行测量以对其表面进行重建。而彩色结构光虽然容易受到环境和物体表面影响,但是其具有基本代码多,编码唯一性等优点,并且可以对运动物体进行重建,因此受到许多研究者的重视。

《机器视觉及其应用》习题

第一章机器视觉系统构成与关键技术 1、机器视觉系统一般由哪几部分组成?机器视觉系统应用的核心目标是什么?主要的分 成几部分实现? 用机器来延伸或代替人眼对事物做测量、定位和判断的装置。组成:光源、场景、摄像机、图像卡、计算机。用机器来延伸或代替人眼对事物做测量、定位和判断。三部分:图像的获取、图像的处理和分析、输出或显示。 2、图像是什么?有那些方法可以得到图像? 图像是人对视觉感知的物质再现。光学设备获取或人为创作。 3、采样和量化是什么含义? 数字化坐标值称为取样,数字化幅度值称为量化。采样指空间上或时域上连续的图像(模拟图像)变换成离散采样点(像素)集合的操作;量化指把采样后所得的各像素的灰度值从模拟量到离散量的转换。采样和量化实现了图像的数字化。 4、图像的灰度变换是什么含义?请阐述图像反色算法原理? 灰度变换指根据某种目标条件按照一定变换关系逐点改变原图像中每一个像素灰度值,从而改善画质,使图像的显示效果更加清晰的方法。对于彩色图像的R、G、B各彩色分量取反。 第二章数字图像处理技术基础 1、对人类而言,颜色是什么?一幅彩色图像使用RGB色彩空间是如何定义的?24位真彩 色,有多少种颜色? 对人类而言,在人类的可见光范围内,人眼对不同波长或频率的光的主观感知称为颜色。 一幅图像的每个像素点由24位编码的RGB 值表示:使用三个8位无符号整数(0 到255)表示红色、绿色和蓝色的强度。256*256*256=16,777,216种颜色。 2、红、绿、蓝三种颜色为互补色,光照在物体上,物体只反射与本身颜色相同的色光而吸 收互补色的光。一束白光照到绿色物体上,人类看到绿色是因为? 该物体吸收了其他颜色的可见光,而主要反射绿光,所以看到绿色。 3、成像系统的动态范围是什么含义? 动态范围最早是信号系统的概念,一个信号系统的动态范围被定义成最大不失真电平和噪声电平的差。而在实际用途中,多用对数和比值来表示一个信号系统的动态范围,比如在音频工程中,一个放大器的动态范围可以表示为: D = lg(Power_max / Power_min)×20; 对于一个底片扫描仪,动态范围是扫描仪能记录原稿的灰度调范围。即原稿最暗点的密度(Dmax)和最亮处密度值(Dmin)的差值。 我们已经知道对于一个胶片的密度公式为D = lg(Io/I)。那么假设有一张胶片,扫描仪向其投射了1000单位的光,最后在共有96%的光通过胶片的明亮(银盐较薄)部分,而在胶片的较厚的部分只通过了大约4%的光。那么前者的密度为: Dmin=lg(1000/960)= 0.02; 后者的密度为: Dmax=lg(1000/40)= 1.40 那么我们说动态范围为:D=Dmax-Dmin=1.40-0.02=1.38。

图像三维重建技术

1概述 随着计算机软硬件技术的快速发展,大规模复杂场景的实时绘制已经成为可能,这也加快了虚拟现实技术的发展,又对模型的复杂度和真实感提出了新的要求。虚拟场景是虚拟现实系统的重要组成部分,它的逼真度将直接影响整个虚拟现实系统的沉浸感。客观世界在空间上是三维的,而现有的图像采集装置所获取的图像是二维的。尽管图像中含有某些形式的三维空间信息,但要真正在计算机中使用这些信息进行进一步的应用处理,就必须采用三维重建技术从二维图像中合理地提取并表达这些 三维信息。 三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。而很多要构建的三维模型都存在于现实世界中,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 2三维建模技术 三维重建技术能够从二维图像出发构造具有真实感的三维图形,为进一步的场景变化和组合运算奠定基础,从而促进图像和三维图形技术在航天、造船、司法、考古、 工业测量、 电子商务等领域的深入广泛的应用。3基于图像的三维重建技术 基于图像的建模最近几年兴起的一门新技术,它使用直接拍摄到的图像,采用尽量少的交互操作,重建场 景。 它克服了传统的基于几何的建模技术的许多不足,有无比的优越性。传统的三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。考虑到我们要构建的很多三维模型都能在现实世界中找到或加以塑造,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 4 基于图像重建几何模型的方法 4.1 基于侧影轮廓线重建几何模型 物体在图像上的侧影轮廓线是理解物体几何形状的 一条重要线索1当以透视投影的方式从多个视角观察某一空间物体时,在每个视角的画面上都会得到一条该物体的侧影轮廓线,这条侧影轮廓线和对应的透视投影中心共同确定了三维空间中一个一般形状的锥体1显然,该物体必将位于这个锥体之内;而所有这些空间锥体的交则构成了一个包含该物体的空间包络1这个空间包络被称为物体的可见外壳,当观察视角足够多时,可见外壳就可以被认为是该物体的一个合理的逼近。鉴于此类算法一般需要大量的多视角图像,因此图像的定标工作就变得非常复杂。 4.2采用立体视觉方法重建几何模型 基于立体视觉重建三维几何是计算机视觉领域中的经典问题,被广泛应用于自动导航装置。近年来,立体视觉 图像三维重建技术 康皓,王明倩,王莹莹 (装甲兵技术学院电子工程系,吉林长春130117) 摘要:基于图像的三维重建属于计算机视觉中的一个重要的研究方向,从提出到现在已有十多年的历史。文章首先对三维重建技术做了详细阐述,并着重从计算机图形学的研究角度对基于图像建模技术进行了综述,介绍了 具有代表性的基于图像建模的方法及其最新研究进展,给出了这些方法的基本原理, 并对这些方法进行分析比较,最后对基于图像建模技术的未来研究给出了一些建议和应解决的问题。关键词:三维建模技术;图像建模技术;计算机图形学;虚拟现实中图分类号:TP271文献标识码:A 文章编号1006-8937(2009)11-0042-02 Three-dimensional image reconstruction technique KANG Hao,WANG Ming-qian,WANG Ying-ying (DepartmentofElectronicEngineering,ArmoredInstituteofTechnology,Changchun,Jilin130117,China) Abstract:Image-based Three-dimensional reconstruction is an important research direction in computer vision ,from now more than ten years'history.This article first describes three-dimensional reconstruction technique in detail and review image-based modeling techniques from the perspective of computer graphics research,introduce a representative of the method of image-based modeling and the latest research progress,give the basic principles of these methods,analysis and compare these methods,finally,give a number of recommendations and problems which should be solved on image-based modeling technology for future research. Keywords:three-dimensional modeling techniques;image modeling techniques;computer graphics;virtual reality 收稿日期:2009-03-19 作者简介:康皓(1978-),女,吉林长春人,硕士研究生,讲师,研 究方向:计算机辅助设计与编程。 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 2009年6月Jun.2009 企业技术开发 第28卷

三维重建综述

三维重建综述 三维重建方法大致分为两个部分1、基于结构光的(如杨宇师兄做的)2、基于图片的。这里主要对基于图片的三维重建的发展做一下总结。 基于图片的三维重建方法: 基于图片的三维重建方法又分为双目立体视觉;单目立体视觉。 A双目立体视觉: 这种方法使用两台摄像机从两个(通常是左右平行对齐的,也可以是上下竖直对齐的)视点观测同一物体,获取在物体不同视角下的感知图像,通过三角测量的方法将匹配点的视差信息转换为深度,一般的双目视觉方法都是利用对极几何将问题变换到欧式几何条件下,然后再使用三角测量的方法估计深度信息这种方法可以大致分为图像获取、摄像机标定、特征提取与匹配、摄像机校正、立体匹配和三维建模六个步骤。王涛的毕业论文就是做的这方面的工作。双目立体视觉法的优点是方法成熟,能够稳定地获得较好的重建效果,实际应用情况优于其他基于视觉的三维重建方法,也逐渐出现在一部分商业化产品上;不足的是运算量仍然偏大,而且在基线距离较大的情况下重建效果明显降低。 代表文章:AKIMOIO T Automatic creation of3D facial models1993 CHEN C L Visual binocular vison systems to solid model reconstruction 2007 B基于单目视觉的三维重建方法: 单目视觉方法是指使用一台摄像机进行三维重建的方法所使用的图像可以是单视点的单幅或多幅图像,也可以是多视点的多幅图像前者主要通过图像的二维特征推导出深度信息,这些二维特征包括明暗度、纹理、焦点、轮廓等,因此也被统称为恢复形状法(shape from X) 1、明暗度(shape from shading SFS) 通过分析图像中的明暗度信息,运用反射光照模型,恢复出物体表面法向量信息进行三维重建。SFS方法还要基于三个假设a、反射模型为朗伯特模型,即从各个角度观察,同一点的明暗度都相同的;b、光源为无限远处点光源;c、成像关系为正交投影。 提出:Horn shape from shading:a method for obtaining the shape of a smooth opaque object from one view1970(该篇文章被引用了376次) 发展:Vogel2008年提出了非朗伯特的SFS模型。 优势:可以从单幅图片中恢复出较精确的三维模型。 缺点:重建单纯依赖数学运算,由于对光照条件要求比较苛刻,需要精确知道光源的位置及方向等信息,使得明暗度法很难应用在室外场景等光线情况复杂的三维重建上。 2、光度立体视觉(photometric stereo) 该方法通过多个不共线的光源获得物体的多幅图像,再将不同图像的亮度方程联立,求解出物体表面法向量的方向,最终实现物体形状的恢复。 提出:Woodham对SFS进行改进(1980年):photometric method for determining surface orientation from multiple images(该文章被引用了891次) 发展:Noakes:非线性与噪声减除2003年; Horocitz:梯度场合控制点2004年; Tang:可信度传递与马尔科夫随机场2005年; Basri:光源条件未知情况下的三维重建2007年; Sun:非朗伯特2007年; Hernandez:彩色光线进行重建方法2007年;

机器视觉及工程应用matlab实例分析

clear all; clc; %RGB分量显示(如图1所示) I=imread('C:\Users\bjut\Desktop\机器视觉\北工大.jpg');%读取图片R=I(:,:,1);%图片中的红色元素存在R中 G=I(:,:,2);%图片中的绿色元素存在G中 B=I(:,:,3);%图片中的蓝色元素存在H中 figure(1) subplot(2,2,1);%生成2*2个子图,当前激活第1个子图 imshow(I);%显示图片 title('原始图像');%图片标题 subplot(2,2,2);%生成2*2个子图,当前激活第2个子图 imshow(R);%显示图片 title('R分量图像');%图片标题 subplot(2,2,3);%生成2*2个子图,当前激活第3个子图 imshow(G);%显示图片 title('G分量图像');%图片标题 subplot(2,2,4);%生成2*2个子图,当前激活第4个子图 imshow(B);%显示图片 title('B分量图像');%图片标题 图1 RGB分量显示

%彩色直方图均衡化(如图2) R1=histeq(R);%对各分量直方图均衡化,得到各分量均衡化图像 G1=histeq(G); B1=histeq(B); I1=cat(3,R,G,B);%创建三维矩阵,R为第一页,G为第二页,B为第三页HSV=rgb2hsv(I);%RGB转换成HSV V=HSV(:,:,3); V=histeq(V);%直方图均衡化 HSV(:,:,3)=V;%明亮度调节 I2=hsv2rgb(HSV); %HSV转换成RGB figure(2);%显示图像 subplot(1,2,1); imshow(I1); title('RGB各分量均衡化'); subplot(1,2,2); imshow(I2); title('V分量均衡化'); 图2 彩色直方图均衡化 %灰度图像伪彩色处理(如图3(a)) I=imread('C:\Users\bjut\Desktop\机器视觉\北工大灰度.jpg'); figure(3); imshow(I); title('灰度图像'); I=im2double(I);%图像数据转换成double型 [W,H]=size(I); R=zeros(W,H); G=zeros(W,H); B=zeros(W,H); L=1; %设置色彩变换函数

机器视觉—三维重建技术简介

三维重建技术简介 一、视觉理论框架 1982年,Marr立足于计算机科学,首次从信息处理的角度系统的概括了心理生理学、神经生理学等方面已经取得的重要成果,提出了一个迄今为止比较理想的视觉理论框架。尽管Marr提出的这个视觉理论框架仍然有可以进行改进和完善的瑕疵,但是在近些年,人们认为,计算机视觉这门学科的形成和发展和该框架密不可分。 第一方面,视觉系统研究的三个层次。 Marr认为,视觉是一个信息处理系统,对此系统研究应分为三个层次:计算理论层次,表示与算法层次,硬件实现层次,如下图所示: 计算机理论层次是在研究视觉系统时首先要进行研究的一层。在计算机理论层次,要求研究者回答系统每个部分的计算目的与计算策略,即视觉系统的输入和输出是什么,如何由系统的输入求出系统的输出。在这个层次上,将会建立输入信息和输出信息的一个映射关系,比如,系统输入是二维灰度图像,输出则是灰度图像场景中物体的三维信息。视觉系统的任务就是研究如何建立输入输出之间的关系和约束,如何由二维灰度图像恢复物体的三维信息。 在表示与算法层次,要给出第一层中提到的各部分的输入信息、输出信息和内部信息的表达,还要给出实现计算理论所对应的功能的算法。对于同样的输入,如果计算理论不同,可能会产生不同的输出结果。 最后一个层次是硬件实现层次。在该层次,要解决的主要问题就是将表示与算法层次所提出的算法用硬件进行实现。 第二方面,视觉信息处理的三个阶段。 Marr认为,视觉过程分为三个阶段,如表所示:

第一阶段,也称为早期阶段,该阶段是求取基元图的阶段,该阶段对原始图像进行处理,提取出那些能够描述图像大致三维形状二维特征,这些特征的集合构成所构成的就是基元图(primary sketch)"。 第二阶段也称中期阶段,是对环境的2.5维描述,这个阶段以观察者或者摄像机为中心,用基元图还原场景的深度信息,法线方向(或一说物体表面方向)等,但是在该阶段并没有对物体进行真正的三维恢复,因此称为2.5维。 第三阶段也称为后期阶段,在一个固定的坐标系下对2.5维图进行变换,最终构造出场景或物体的三维模型。 二、三维重建技术现状 目前三维重建的方法大致可分为三类,即:用建模软件构造的方式,多幅二维图像匹配重建的方式以及三维扫描重建的方式。 对于第一种方式,目前使用比较广泛的是3D Max, Maya, Auto Cad以及MultiGen-Creator等软件。这些三维建模软件,一般都是利用软件提供的一些基本几何模型进行布尔操作或者平移旋转缩放等操作,来创建比较复杂的三维模型。这样所构建出来的模型,比较美观,而且大小比例等非常精确。然而,这需要建模者精确知道三维场景的尺寸、物体位置等信息,如果没有这些信息,就无法建立精准的模型。 第二种方式是利用实时拍摄的图像或者视频恢复场景的三维信息。这种方式是基于双目立体视觉,对同一物体拍摄不同角度的图像,对这些图像进行立体匹

基于MATLAB的CT图像三维重建的研究与实现

基于MATLAB的CT图像三维重建的研究与实现 作者:张振东 来源:《电子世界》2013年第03期 【摘要】介绍了利用MATLAB软件对CT切片图像进行三维重建的方法与程序实现。分别对体绘制法、面绘制法实现的三维重建进行了研究与讨论。利用MATLAB软件制作GUI界面,实现对肺部CT图像的三维重建以及切分操作。 【关键词】体绘制;面绘制;三维重建;GUI界面 CT(Computed Tomography)技术是指利用计算机技术对被测物体断层扫描图像进行重建获得三维断层图像的扫描方式。自从CT被发明后,CT已经变成一个医学影像重要的工具,虽然价格昂贵,医用X-CT至今依然是诊断多种疾病的黄金准则。利用X射线进行人体病灶部位的断层扫描,可以得到相应的CT切片图像。医生可以通过对连续多张CT切片图像的观察,来确定有无病变。应用三维重建技术可以将连续的二维CT切片图像合成三维可视化图像,便于观察研究。医学图像的三维建在判断病情、手术设计、医患沟通和医学教学等方面具有很高的研究价值。CT图像通常是以DICOM格式存储,实验中通常需要转换格式。本文分别研究讨论了利用MATLAB软件实现对JPG格式的CT切片三维重建的两种常用方法,并制作GUI界面实现切分操作。 1.MATLAB软件在生物切片图像三维重建中的应用 MATLAB7.O提供了20类图像处理函数,涵盖了图像处理包括近期研究成果在内的几乎所有的技术方法,是学习和研究图像处理的人员难得的宝贵资料和加工工具箱。 Matlab软件环境提供了各种矩阵运算、操作和图象显现工具。它已经在生物医学工程,图象处理,统计分析等领域得到了广泛的应用。在三维重建方面,使用的数据量相对较大,同时涉及到大量的矩阵、光线、色彩、阴影和观察视角的计算,对于非计算机专业研究人员来讲,难度很大。利用MATLAB软件中的图像处理函数、工具箱操作,可以大大简化研究。 2.常用的三维重建方法 2.1 面绘制 面绘制法是指利用几何单元拼接拟合物体表面来描述物体的三维结构,实现三维重建,也被称为间接绘制方法。

CT图像三维重建(附源码)

程序流图: MATLAB 源码: clc; clear all; close all; % load mri %载入mri 数据,是matlab 自带库 % ph = squeeze(D); %压缩载入的数据D ,并赋值给ph ph = phantom3d(128); prompt={'Enter the Piece num(1 to 128):'}; %提示信息“输入1到27的片的数字” name='Input number'; %弹出框名称 defaultanswer={'1'}; %默认数字 numInput=inputdlg(prompt,name,1,defaultanswer) %弹出框,并得到用户的输入信息 P= squeeze(ph(:,:,str2num(cell2mat(numInput))));%将用户的输入信息转换成数字,并从ph 中得到相应的片信息P imshow(P) %展示图片P D = 250; %将D 赋值为250,是从扇束顶点到旋转中心的像素距离。 dsensor1 = 2; %正实数指定扇束传感器的间距2 F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1); %通过P ,D 等计算扇束的数据值 dsensor2 = 1; %正实数指定扇束传感器的间距1 F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2); %通过P ,D 等计算扇束的数据值 dsensor3 = 0.25 %正实数指定扇束传感器的间距0.25 [F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,... 'FanSensorSpacing',dsensor3); %通过P ,D 等计算扇束的数据值,并得到扇束传感器的位置sensor_pos3和旋转角度fan_rot_angles3 figure, %创建窗口 imagesc(fan_rot_angles3, sensor_pos3, F3) %根据计算出的位置和角度展示F3的图片 colormap(hot); %设置色图为hot colorbar; %显示色栏 xlabel('Fan Rotation Angle (degrees)') %定义x 坐标轴 ylabel('Fan Sensor Position (degrees)') %定义y 坐标轴 output_size = max(size(P)); %得到P 维数的最大值,并赋值给output_size Ifan1 = ifanbeam(F1,D, ... 'FanSensorSpacing',dsensor1,'OutputSize',output_size); %根据扇束投影数据F1及D 等数据重建图像 figure, imshow(Ifan1) %创建窗口,并展示图片Ifan1 title('图一'); disp('图一和原图的性噪比为:'); result=psnr1(Ifan1,P); Ifan2 = ifanbeam(F2,D, ... 'FanSensorSpacing',dsensor2,'OutputSize',output_size); %根据扇束投影数据F2及D 等数据重建图像 figure, imshow(Ifan2) %创建窗口,并展示图片Ifan2 disp('图二和原图的性噪比为:'); result=psnr1(Ifan2,P); title('图二'); Ifan3 = ifanbeam(F3,D, ... 生成128的输入图片数字对图片信息进行预处 用函数fanbeam 进行映射,得到扇束的数据,并用函数ifanbeam 根据扇束投影数据重建图像,并计算重建图像和原图的 结束

三维重建与可视化技术的进展

医学图像的三维重建与可视化技术的进展随着20世纪七十年代计算机断层技术(Computerized Tomography, CT)、核磁共振成像(Magnetic Resonance Imaging, MRI)等医学影像技术的应用,可以得到病人病变部位的一组二维断层图像,通过这些二维断层图像医生可以对病变部位进行分析,从而使得医学诊断和治疗技术取得了很大的发展。 但是,这些医疗仪器只能提供人体内部的二维图像,二维断层图像只是表达某一界面的解剖信息,医生们只能凭经验由多幅二维图像去估计病灶的大小及形状,“构思”病灶与其周围组织的三维几何关系,这就给治疗带来了困难。在放射治疗应用中,仅由二维断层图像上某些解剖部位进行简单的坐标叠加,也不能给出准确的三维影像,造成病变定位的失真和畸变。 三维重建与可视化技术利用一系列的二维图像重建为具有直观、立体效果三维图像模型,并进行定性、定量分析。该技术不仅给医生提供了具有真实感的三维图形,并让医生从任意角度观察图像,还可以从二维图像中获取三维结构信息,提供很多用传统手段无法获得的解剖结构信息,帮助医生对病变体和周围组织进行分析,极大地提高医疗诊断的准确性和科学性,从而提高医疗诊断水平。同时,三维重建与可视化技术还在矫形手术、放射治疗、手术规划与模拟、解剖教育和医学研究中发挥着重要作用。 本文首先介绍了医学图像三维重建的几种经典方法,以对该技术有个总体性的大致的了解;然后结合相关文献,深入研究了一个改进的MC(Marching Cubes)算法以及基于寰椎的X线图像的三维形态重建。 一、医学图像的三维重建的几种常见方法 目前,医学图像三维重建的方法主要有两大类:一类是通过几何单元拼接拟合物体表面来描述物体的三维结构,称为基于表面的面绘制方法;另一类是直接将体素投影到显示平面的方法,称为基于体数据的体绘制方法,又称直接体绘制方法。其中面绘制方法是基于二维图像边缘或轮廓线提取,并借助传统图形学技术及硬件实现的,而体绘制方法则是直接应用视觉原理,通过对体数据重新采样来合成产生三维图像。近来,产生了结合面绘制和体绘制两者特点的混合绘制方法,可以称为第三类三维重建方法。

机器视觉技术的发展及其应用

机器视觉技术的发展及其应用 秦亚航1,苏建欢2,余荣川1 ( 1.广西科技大学电气与信息工程学院,广西柳州545006;2.河池学院,广西宜州643006) 【摘要】机器视觉系统的特点是提高生产的柔性和自动化程度。随着信号处理理论和计算机技术的发展,该技术迅速发展。本文介绍了机器视觉的关键技术的发展现状,其中包括光源照明技术、光学镜头、摄像机及图像采集卡、图像信号处理、执行机构等,并论述了其主要的应用领域以及存在的一些问题。 【关键词】机器视觉;图像采集;图像处理 Development of Machine Vision and Applications QIN Ya-hang1,QIN Wei-nian,SU Jian-huan2,YU Rong-chuan1 (College of Electrical and Information Engineering ,Guangxi University of Science and Technology,Liuzhou 545006,China;He Chi Universiry,Yizhou643006,China) 【Abstract】The characteristics of the machine vision system is to improve the flexibility and automation of production. With the development of signal processing theory and computer technology, the technology is developing rapidly. This paper introduces the development status of the key technology of machine vision, including lighting technology, optical lens, camera and image acquisition card, image signal processing, actuators, etc,and discusses its main application field and some problems. 【Keywords】Machine vision; Image acquisition; The image processing 0前言 机器视觉可以理解为基于视觉技术的机器系统或学科。美国制造工程协会机器视觉分会 和美国机器人工业协会的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学装 置和非接触的传感器自动地接受和处理一个真实物体的图像,通过分析图像获得所需信息或 用于控制机器运动的装置”[1]。机器视觉是计算机学科的一个重要分支,它综合了光学、机 械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、 信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推 动了机器视觉的发展。

3D机器视觉应用解决方案

3D机器视觉应用解决方案

3D视觉 R G B + XYZ 机器需要显性的三维数据以更好地理解物理世界 2D机器视觉开始逐步普及 3D机器视觉刚刚开始落地

3D机器视觉普及的关键障碍 ?光学:精度、分辨率、量程等 硬件核心规格 ?电学:速度、接口、传输等 ?尺寸、功耗、结构等 硬件物理指标 ?工况条件适应性、稳定性 ?相机价格、上位机成本、软件成本 系统实施成本 ?使用和维护成本 ?3D视觉算法和软件的稀缺性 软件完整成熟 ?软件工程优化和实际使用场景下的成熟度商业软件和开源软件在硬件大量普及的基础上预期发展会加速起来

3D 相机硬件综述 高度标准化的硬件模组 低性能小尺寸极低价 工业场景不适用 2D大厂、3D创新极其缓慢 特殊规格顶级相机,价格昂贵 应用场景非常有限,出货量少 工业级硬件+ 软件方案 合适精度、超低成本、小型化 新的产业需求,致力3D无处不在 传统机器视觉大厂消费类3D视觉 3D在工业的普及应用 图漾已经在此占据明显的领先优势

1-硬件价格和系统成本 ?必须突破2年投入回报期的决策困局,为客户带来超预期的性价比 ?>2年回报期:少量非用不可的节点 ?<1年回报期:大规模普及应用 ?硬件成本三大件= 手+ 眼+ 脑 ?脑:计算单元成本相对透明合理,比较标准化,选择多 ?手:进口和国产机器人齐头并进,性价比趋于合理,比较标准化 ?眼:技术和研发难度大,软件占比高,国外产品成本虚高 ?机器视觉之眼 ?2D:国产工业相机在起步,国内软件在起来,应用集成类上市公司在涌现 ?3D:国内核心技术有突破,应用环节也应该走在全球前沿

CT图像三维重建(附源码)

程序流图: MATLAB 源码: clc; clear all; close all; % load mri %载入mri 数据,是matlab 自带库 % ph = squeeze(D); %压缩载入的数据D ,并赋值给ph ph = phantom3d(128); prompt={'Enter the Piece num(1 to 128):'}; %提示信息“输入1到27的片的数字” name='Input number'; %弹出框名称 defaultanswer={'1'}; %默认数字 numInput=inputdlg(prompt,name,1,defaultanswer) %弹出框,并得到用户的输入信息 P= squeeze(ph(:,:,str2num(cell2mat(numInput))));%将用户的输入信息转换成数字,并从ph 中得到相应的片信息P imshow(P) %展示图片P D = 250; %将D 赋值为250,是从扇束顶点到旋转中心的像素距离。 生成128的图片信息 输入图片数字选择 对图片信息进行预处理,并进行展示 用函数fanbeam 进行映射,得到扇束的数据,并展示 用函数ifanbeam 根据扇 束投影数据重建图像,并 展示 计算重建图像和原图的性噪比,并进行输出 结束

dsensor1 = 2; %正实数指定扇束传感器的间距2 F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1); %通过P,D等计算扇束的数据值 dsensor2 = 1; %正实数指定扇束传感器的间距1 F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2); %通过P,D等计算扇束的数据值 dsensor3 = 0.25 %正实数指定扇束传感器的间距0.25 [F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,... 'FanSensorSpacing',dsensor3); %通过P,D等计算扇束的数据值,并得到扇束传感器的位置sensor_pos3和旋转角度fan_rot_angles3 figure, %创建窗口 imagesc(fan_rot_angles3, sensor_pos3, F3) %根据计算出的位置和角度展示F3的图片 colormap(hot); %设置色图为hot colorbar; %显示色栏 xlabel('Fan Rotation Angle (degrees)') %定义x坐标轴 ylabel('Fan Sensor Position (degrees)') %定义y坐标轴 output_size = max(size(P)); %得到P维数的最大值,并赋值给output_size Ifan1 = ifanbeam(F1,D, ... 'FanSensorSpacing',dsensor1,'OutputSize',output_size); %根据扇束投影数据F1及D等数据重建图像 figure, imshow(Ifan1) %创建窗口,并展示图片Ifan1 title('图一'); disp('图一和原图的性噪比为:'); result=psnr1(Ifan1,P); Ifan2 = ifanbeam(F2,D, ... 'FanSensorSpacing',dsensor2,'OutputSize',output_size); %根据扇束投影数据F2及D等数据重建图像 figure, imshow(Ifan2) %创建窗口,并展示图片Ifan2 disp('图二和原图的性噪比为:'); result=psnr1(Ifan2,P); title('图二'); Ifan3 = ifanbeam(F3,D, ... 'FanSensorSpacing',dsensor3,'OutputSize',output_size); %根据扇束投影数据F3及D等数据重建图像 figure, imshow(Ifan3) %创建窗口,并展示图片Ifan3 title('图三'); disp('图三和原图的性噪比为:');

一种基于机器视觉的结构光三维扫描系统

一种基于机器视觉的结构光三维扫描系统 0 引言 随着制造技术的快速发展和制造领域的不断扩大,使得对制造产品的质量要求也越来越高。传统意义上很多对产品的检测方法已经不能适应现代制造业的要求。计算机视觉检测技术具有操作、维护简单,测量速度快,精度高,测量范围广等众多无可比拟的优点,被认为是检测技术领域中最具有发展潜力的技术。机器视觉被称为自动化的眼睛,在国民经济、科学研究及国防建设上都有着广泛的应用。机器视觉不但可以实现无接触观测,还可以长时间保持精度,因此,机器视觉系统可以广泛应用于长时间的、恶劣的环境。 在此探讨了线性结构光三维扫描系统的特点。设计一种能够测量物体深度的结构光三维扫描系统,通过图像处理技术对激光条纹进行提取,并建立数学模型,采用三角法测量方法获取深度信息,对工件图像进行重建。最后,实验结果验证了该系统的有效性。 1 基于机器视觉的结构光三维扫描系统模型结构光测量是将激光器发出的光束经过光学系统形成某种形式的光,包括点、单线、多线、单圆、同心多圆、网格、十字交叉、灰度编码图案、颜色编码图案和随机纹理投影等投向景物,在景物上形成特定的图案,并通过图像处理,对图案进行提取,然后根据三角法进行计算,从而得到景物表面的深度信息。根据投射光图案的种类可分为单点法、单线法和图案法。1.1 系统的硬件结构设计 如图 1 所示,文中所设计的结构光三维扫描系统由3大部分组成,分别 是运动平台、激光器和摄像机。系统的运动平台由导轨丝杠机构成,丝杠上的滑块带动工件左右运动,丝杠由伺服马达驱动。摄像机垂直于导轨运动平面。激光器和摄像机与摄像机呈固定角度安装。激光器所射出的线形光斑垂直于工件的运动方向。激光器与摄像机的相对角度可以调节,调节范围由20~?45。之间。运动平台行程为100 mm,图像分辨率为0. 2 mm/pixel。 1.2 系统的数学模型建立 系统的数学模型如图2所示。工件放置于运动平台上,摄像机垂直安装在运动平台正上方,激光与水平面的夹角B,激光器产生一字的线性结构光, 由于物体表面与运动平台的高度差,条形光斑同时照射在物体上的A处和平台的B处。用摄像机获得光斑的图像,经图像采集卡输入至计算机,经过图像处理,可以测量出点A与点B的距离d,根据三角法公式tan 9 =H/d,可以通过光斑间距d 计算出工件的高度H。因此物坐标和像坐标对应关系为:其中:xg,yg,zg 分别为物坐标;k 为像素一毫米转换系数;xi ,yi 分别为图像坐标。 2 结构光光斑提取的相关理论与方法 从系统的数学模型可知,物体的深度信息H主要受9和d的影响,而9主要表现为系统误差。因此,有必要对条纹间距d进行深入研究,以提高系统的精度。其主要包括:图像增强、图像二值化以及图像细化。 2.1 图像增强图像增强主要增加图像的对比度,突出图像中的高频部分。算法描述为:设原图像的灰度级为x,其最大和最小灰度级分别为xmax和xmin期望图像

机器视觉的应用与发展

机器视觉的应用及发展 一台机器为什么能看到你?因为它有了自己的视觉。机器视觉技术是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制,技术最大的特点是速度快、信息量大、功能多。机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。一个典型的工业机器视觉应用系统,包括数字图像处理技术、机械工程技术、控制技术、光源照明技术、光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。 全球应用情况 在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。除此之外,机器视觉还用于其他各个领域。 而在中国,视觉技术的应用开始于90年代,因为行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白。目前国内机器视觉大多为国外品牌像德国的basler、SONY、美国TEO等随着机器视觉的不断应用,公司规模慢慢做大,技术上已经逐渐成熟。 在行业应用方面,主要有制药、包装、电子、汽车制造、半导体、纺织、烟草、交通、物流等行业,用机器视觉技术取代人工,可以提供生产效率和产品质量。例如在物流行业,可以使用机器视觉技术进行快递的分拣分类,不会出现大多快递公司人工进行分拣,减少物品的损坏率,可以提高分拣效率,减少人工劳动。 主要问题和发展瓶颈 机器视觉可以看作是与人工智能和模式识别密切相关的一个子学科或子领域。限制机器视觉发展的瓶颈是多方面的,其中最重要的可以归结为三个方面:计算能力不足、认知理论未明以及精确识别与模糊特征之间的自相矛盾。 1.机器视觉面向的研究对象主要是图像和视频,其特点是数据量庞大、冗余信息多、特征空间维度高,同时考虑到真正的机器视觉面对的对象和问题的多样性,单一的简单特征提取算法(如颜色、空间朝向与频率、边界形状等等)难以满足算法对普适性的要求,因此在设计普适性的特征提取算法时对计算能力和存储速度的要求是十分巨大的,这就造成了开发成本的大幅度提高。 2. 如何让机器认知这个世界?这一问题目前没有成熟的答案,早期的人工智能理论发展经历了符号主义学派、行为主义学派、连接主义学派等一系列的发展但都没有找到令人满意的答案,目前较新的思想认为应该从分析、了解和模拟人类

医学图像三维重建中的关键算法

医学图像三维重建中的关键算法 罗东礼,徐大宏,赵于前 (中南大学信息物理工程学院生物医学工程研究所,长沙410083) 摘要:本文主要讨论了基于序列图像的三维重建中的两个关键算法:特征数据点列的重采样算法与三角化算法。本文把Douglas-Peucker线性简化算法应用在特征边界的重采样上,数据的压缩比得到了明显的改善,也显著地提高了可视化速度。并使用一种简单的三角化算法,对重采样后的数据点列进行三角化,实现目标的三维重建。 关键词:图像序列,三维重建,重采样,三角化 The Algorithm about 3D Reconstruction of Image Sequences Luo Dongli,Xu Dahong,Zhao Yuqian (Institute of biomedical Engineering, School of Info-Physics Geomatics Engineering, CSU, Changsha 410083) Abstract This paper discusses two important algorithms in 3D reconstruction of image sequences, i.e. re-sampling algorithm and triangulation algorithm. An improved algorithm for Doulas-Peucker Line-Simplification is presented. This algorithm can improve the performance of re-sampling and 3D data field visualization. Triangulation is implemented by using a simple triangulation algorithm. Sequentially, 3D object reconstruction is achieved. Keywords Image Sequence, 3D Reconstruction, re-sampling, Triangulation 0 引言 随着计算机软硬件技术,以及医学成像技术的日益发展,基于数字图像技术的医学应用系统也逐渐得到了长足的发展。在这些医学应用系统中,在有效精确地提取出医学图像中相应目标特征量的基础上,进行人体组织或器官的三维重建[1,2],是很多实用系统的基础,如基于图像的病理分析[3]、基于图像的手术导引与增强[4,5,6,8]、虚拟手术平台[7]等应用系统,因此医学图像的三维重建一直是国内外医学界及图像领域的研究与应用热点之一。 三维重建的目的是从一系列二维切片数据(图像)中得到物体的三维表示,一般使用网格的形式来表示。目前,三维重建过程中经常延用的一种经典算法是Lorensen等人于1987年提出的Marching Cubes方法[10],其原理简单,易于实现。但这种方法计算效率低,输出的三角网格数量巨大。因此近些年来,仍然有研究者们从不同角度对该算法进行改进[9,11,12]。本文在文献[13]的基础上提出了一种改进重采样算法结合文献[9]基于轮廓的三维重建方法,运用并改进了相关算法,与直接运用文献[9]所提出的算法相比较,本文所提出并改进的方法处理速度更快,输出的三角网格数量也较少,而且三角网格的形态也比较理想。 在第1小节中对算法作了描述,第2小节总结并分析了本文所提出方法的一些性能。 1 算法描述 作者实现基于序列图像三维重建的主要思路如下: (1) 特征提取:在序列图像中提取出需要重建目标的轮廓;

相关文档
相关文档 最新文档