文档库 最新最全的文档下载
当前位置:文档库 › 基于PLC控制的多段调速系统实现

基于PLC控制的多段调速系统实现

基于PLC控制的多段调速系统实现
基于PLC控制的多段调速系统实现

摘要

随着工业控制要求的发展,对电机速度的控制越来越高。传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。

关键字:PLC;RS-485;多段调速;光电编码器

Abstract

With the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.

Key words: PLC; RS-485; multistage speed; encoder

目录

第一章概述 (4)

1.1 课题研究的背景及意义 (4)

1.2 课题研究现状 (5)

1.3 本课题研究的主要内容 (6)

第二章系统分析 (7)

2.1 PLC基本知识 (7)

2.1.1 PLC的基本功能 (8)

2.1.2 PLC的特点 (9)

2.1.3 PLC的展望 (11)

2.2 变频器基本知识 (12)

2.2.1 变频器的应用 (12)

2.2.2 变频器的分类 (13)

2.2.3 变频器控制的展望 (14)

2.3 光电编码器 (15)

2.3.1 增量式编码器 (15)

2.3.2 绝对式编码器 (16)

第三章系统设计 (19)

3.1 总体方案 (19)

3.2 硬件设计 (19)

3.2.1 变频器的连接 (20)

3.2.2 光电编码器的配置 (20)

3.2.3 PLC输入输出口分配 (21)

3.3 软件设计 (21)

3.3.1 变频器的参数设置 (22)

3.3.2 PLC的设计 (23)

第四章结论 (28)

结束语 (29)

致谢 (30)

参考文献 (31)

第一章概述

1.1 课题研究的背景及意义

随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。 PLC有着运算速度高、指令丰富、功能强大、可靠性高、使用方便、编程灵活、抗干扰能力强等特点,常常被用来作为现场数据的采集和设备的控制。组态软件技术作为用户可定制功能的软件平台工具,在PC机上可开发出友好人机界面,通过PLC可以对自动化设备进行“智能”控制。近几年,各行业对其生产设备和系统的自动化程度要求越来越高,采用现代自动化控制技术对减轻劳动强度、优化生产工艺、提高劳动生产率和降低生产成本起着很重要的作用。

随着工业控制要求的不断发展,对电机速度控制的要求也越来越高,一般需进行闭环控制,尤其是闭环控制的变频节能系统用途很广,常需要用闭环控制方式来控制温度、压力、流量等的变化。可以消除偏差以获得预期的系统性能执行机构进行控制。现在控制领域采用通信的方式实现PLC对变频变频器的控制作为工控行业的主流产品,PLC与变频器在各种机械设置上的应用可谓无处不在。常见的用法是使用模拟信号(一般是电压)来完成对变频器的控制。这种方法的缺点是成本高,易受干扰(电压方式),控制精度也很难控制,而采用通信方式就可以很好地避免这个缺点。PLC作为一种新型的工业控制装置,以其高抗干扰能力、高可靠性、高性价比且编程简单,不仅能实现复杂的逻辑控制,还能完成各种顺序或定时的闭环控制功能。在诸多领域得到了越来越广泛地应用,采用PLC与变频器组合来构成闭环调速控制系统则能达到理想的效果,大大地节省成本。

1.2 课题研究现状

变频器的用途不仅仅是速度控制,目前在我国应用较多的是保护环境。电动机驱动是电能消耗的大户,在中国占全部用电量的60%以上。过度的电力消耗使得煤炭和石油(天然气)燃料枯竭,同时由于CO2和NO2的大量排放,造成污染环境,破坏臭氧层,影响甚至危及人类的生存。因此国家大力提倡环境保护措施,据分析,牵引变频机车应用,不用燃煤和烧油,减少排放污染、发展城市轨道交通(地铁和磁悬浮列车)和燃料电池汽车,减少CO2排放、推广风机水泵变频调速节能技术可达到20%~30%的节电率,这样可以少建火电厂,少发电,即少排放SO2、SO、CO2及灰尘,减少大气环境污染,并着重推荐了变频调速技术。

目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。导致发达国家的技术开发起步早,并具有相当大的产业化规模,产生国内外的发展差异。如今,我国有较多高压大功率变频器生产厂家,变频器在功能上,利用先进的控制理论,使应用系统的构成更加方便和容易,使变频器的应用技术提高到一个新的水平。已经完全取代了直流调速技术,近年来发展很快,基于RS485网络的多机控制,与计算机和PLC 联网组成复杂的控制系统的这一技术深入到不同的领域中。在能源紧缺、环境问题日益严重的今天,随着变频高速技术的发展与综合利用,使变频器行业在水泥、电梯、印刷、电力等现代化以及医学、通讯、交通、运输、电力、电子、环保等领域得到空前的发展和应用,是提高国民经济发展的需求。

随着科技的不断发展,控制系统对转速也有了更高的要求。所以转速是各类电机的一个重要物理量,目前国内外常用测量的转速的方法有离心式转速表测速法,微电机测速法。他们的测速都有现成的仪表,但转速表要和电机同轴连接,增加了电机组的安装难度,另一方面有些电机功率很小,转速表和测速机消耗的功率占了电机的大部分。综合考虑光电编码器是一种体积小、精度高、响应速度快和性能稳定的转速与位置传感器,广泛应用在机器人、旋转平台、飞机舰船舵位、导弹发射角度、水位料位、织物计长、电梯楼层肩停、机床刀具定位等等。

于是光电编码器在测控领域得到了广泛的应用。

光电编码器按工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,光电编码器作为一种光电检测元件,目前在电机速度测量中应用广泛,电机的速度检测在电机控制中是十分重要的。增量式光电编码器起到了很好的作用,增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位置变化的方向用计数器对脉冲进行加/减计数,以此达到位置检测的目的。通过采样固定时间的脉冲数,经过转换获得转速,常常通过M法、T法、M/T 法进行速度测量提高控制系统的精确性来实现控制系统的要求。

目前大多数生产控制系统需要实时获得电机的位置和转速信息,从而实现高速、高精度的控制电路来实现各种企业的工作需要。系统在闭环控制系统中需要实时获得电机的位置和转速信息来获得更高精度要求,可以在广泛的领域中能够更进一步的保证了工作的正常运行,为科技的发展奠定了坚实的基础。

1.3 本课题研究的主要内容

通过对变频器的调节和编码器的使用,利用RS-485接口和通信方式将可编程控制器和变频器进行通信联接实现三相异步电动机的段速控制,通过PLC自带的PID控制指令实现电机转速的速度调节,采用光电编码器采集转速实现闭环控制。

第二章系统分析

2.1 PLC基本知识

PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器。PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。可编程控制器的构成和计算机是一样的,都由中央处理器(CPU)、存贮器和输入/输出接口等构成。其硬件系统如图2.1所示

图2.1 PLC硬件系统简化图

2.1.1 PLC的基本功能

PLC的功能非常丰富,大致可分为如下方面。

1.逻辑控制功能。逻辑控制功能实际上就是位处理功能,是PLC的最基本功能之一。PLC设置有与、或、非等逻辑指令,利用这些指令,根据外部现场在状态,按照指定的逻辑进行运算处理后,将结果输出到现场的被控对象。因此,PLC 可供替继电器进行开关控制,完成触点的串联、并联、串并联等各种连接。另外,在PLC中一个逻辑位的状态可以无限次地使用,逻辑关系的修改十分方便。

2.定时控制功能。定时控制功能是PLC的最基本功能之一。PLC中有许多可供用户使用的定时器,其功能类似于继电器线路中的时间继电器。定时器的设定值可以在编程时设定,可以在运行过程中根据需要进行修改,使用方便灵活。程序执行时,PLC将根据用户用定时器指令指定的定时器对某个操作进行限时或延时控制,以满足生产工艺的要求。

3.计数控制功能。计数控制功能是PLC的最基本功能之一。PLC为用户提供了许多计数器,计数器计数到某一数值时,产生一个状态信号,利用该状态信号实现对某个操作的计数控制。计数器的设定可以在编程时设定,也可以在运行过程中根据需要进行修改。程序执行时,PLC将根据用户计数器指令指定的计数器对某个控制信号的状态改变次数进行计数,以完成对某个工作过程的计数控制。

4.步进控制功能。PLC为用户提供了若干个移位寄存器,可以实现由时间、计数或其他指定逻辑信号为转步条件的步进控制。即在一道工序完成以后,在转步条件控制下,自动进行下一道工序。有些PLC还专门设置了用于步进控制的步进指令和鼓形控制器操作指令,编程和使用都极为方便。

5.数据处理功能。大部分PLC都具有数据处理功能,可以实现算术运算、数据比较、数据传送、数据移位、数制转换、译码编码等操作。中、大型PLC数据处理功能更加齐全,可完成开方、PID运算、浮点运算等操作。还可以和CRT、打印机相连,实现程序、数据的显示和打印。

6.回程控制功能。许多PLC具有A/D、D/A转换功能,可以方便地完成对模

拟量的控制和调节。

7.通信联网功能。许多PLC采用通信技术,实现远程I/O控制、多台PLC 之间的同位链接、PLC与计算机之间的通信等。

8.监控功能。PLC设置了较强的监控功能。利用编程器或监视器,操作人员可对PLC有关部分的运行状态进行监视。利用编程器,可以调整定时器、计数器的设定值和当前值,并可以根据需要改变PLC内部逻辑信号的状态及数据区的数据内容,为调试和维护提供了极大的方便。

9.停电记忆功能。PLC内部的部分存储器所使用的RAM设置了停电保持器件,以保证断电后这部分存储器中的信息能够长期保存。利用某些记忆指令,可以对工作状态进行记忆,以保持PLC断电后的数据内容不变。PLC电源恢复后,可以在原工作基础上继续工作。

10.故障诊断功能。PLC可以对系统构成、某些硬件状态、指令的合法性等进行自诊断,发现异常情况,发出报警并显示错误类型,如属严重错误则自动停止运行。PLC的故障自诊断功能,大大提高了PLC控制系统的安全性和可维护性。

为了实现PLC所承担的各种功能,PLC的工作速度要快。速度快、执行指令时间短,是PLC实现控制的基础。事实上,它的速度是很快的,执行一条指令,多的几微秒、几十微秒,少的才零点几,或零点零几微秒。而且这个速度还在不断提高中。

2.1.2 PLC的特点

PLC的主要特点如下:

1.梯形图是使用得最多的PLC和编程语言,其电路符号和表达方式与继电器电路原理图相似,梯形图语言形象直观,易学易用,熟悉继电器电路图的电气技术人员只需花几天时间就可以熟悉梯形图语言,并用来编制用户程序。

2.功能强,性能价格比高。一台小型PLC内有成百上千个可供用户使用的编程元件,可以实现非常复杂的控制功能与相同的继电器系统相比,具有很高的性价比。PLC可以通过通信联网,实现分散控制,集中管理。

3.硬件配套齐全,用户使用方便,适应性强。PLC产品已经标准化、系列化、模块化,配备有品种齐全的硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。PLC的安装接线也很方便,一般用接线端子连接外部接线。

配件配置确定后,通过修改用户程序,就可以方便快速地适应工艺条件的变化。

4.可靠性高,抗干扰能力强。PLC用软件代替继电器控制系统中大量的中间继电器和时间继电器,接线可减少到继电器控制系统的十分之一以下,大大减少了因触点接触不良造成的故障。

PLC使用了一系列硬件和软件抗干扰措施,具有很强的抗干扰能力,可以直接用于有强烈干扰的工业生产现场,PLC已被广大用户公认为最可靠的工业控制设备之一。

5.系统的设计、安装、调试工作量少。PLC用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,使控制柜的设计、安装、接线工作量大大减少。

PLC的梯形图程序可以用顺序控制设计法来设计。这种设计方法很有规律,很容易掌握。用这种方法设计梯形图的时间比设计继电器系统电路图的时间要少得多。

可以在实验室模拟调试PLC的用户程序,用小开关来模拟输入信号,勇冠各输出点对应的发光二极管的状态来观察输出信号的状态,系统的调试时间要比继电器系统少得多。

6.维修工作量少,维修方便。PLC的故障率很低,并且有完善的故障诊断功能。PLC或外部的输入装置和执行机构发生故障时,根据PLC上的发光二极管或编程软件提供的信息,可以很方便地查明故障的原因,用更换模块的方法可以迅速地排除故障。

7.体积小,能耗低。对于复杂的控制系统,使用PLC后,由于减少了大量的中间继电器和时间继电器,开关柜的体积比继电器控制系统小得多。

图为本例中用到的PLC。

图2.2 三菱FX2n系列PLC

2.1.3 PLC的展望

由于工业生产对自动控制系统需求的多样性,PLC的发展方向有两个:

一是朝着小型、简易、、价格低廉的方向发展。单片机的出现,促进了PLC 向紧凑型发展,体积减小,价格降低,可靠性不断提高。这种PLC可以广泛取代继电器控制系统,应用于单片机和规模比较小的自动化控制。

二是朝着大型、高速、多功能方向发展。大型PLC一般为多处理器系统,由字处理器、位处理器和浮点处理器等组成,有较大的存储能力和和功能很强的输入输出接口,通过丰富的智能外围接口,可以独立完成位置控制、闭环调节等特殊功能;通过网络接口,可以级连不同类型的PLC和计算机,从而组成控制范围很大的局部网络,适用于大型自动化控制系统。

PLC总的发展趋势是:

1.CPU处理速度进一步加快。

2.控制系统将分散化。

3.可靠性进一步提高。

4.控制与管理功能一体化。

为了满足现代化大生产的控制与管理的需要,PLC将广泛采用计算机信息处理技术、网络通信技术和图形显示技术,使PLC系统的生产控制功能和信息管理功能融为一体

从PLC的发展趋势来看,PLC控制技术将成为今后工业自动化的主要手段。在未来的工业生产中,PLC技术、机器人技术和CAD/CAM技术将成为实现工业生产自动化的三大支柱。

2.2 变频器基本知识

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

2.2.1 变频器的应用

变频器的应用范围和优点很广泛。

1.控制电机的启动电流。当电机通过工频直接启动时它将会产生7到8倍的电机额定电流,这个电流值将大大增加电机绕组的电应力并产生热量,从而降低电机的寿命。而变频调速则可以在零速零电压启动(当然可以适当加转矩提升)一旦频率和电压的关系建立变频器就可以按照V/F 或矢量控制方式带动负载进行工作使用变频调速,能充分降低启动电流提高绕组承受力。用户最直接的好处就是电机的维护成本将进一步降低电机的寿命则相应增加。

2.降低电力线路电压波动。在电机工频启动时电流剧增的同时电压也会大幅度波动,电压下降的幅度将取决于启动电机的功率大小和配电网的容量。电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常,如PC机传感器接近开关和接触器等均会动作出错,而采用变频调速后由于能在零频零压时逐步启动则能最大程度上消除电压下降。

3.启动时需要的功率更低。电机功率与电流和电压的乘积成正比,那么通过工频直接启动的电机消耗的功率将大大高于变频启动所需要的功率,在一些工况

下其配电系统已经达到了最高极限,其直接工频启动电机所产生的电涌就会对同网上的其他用户产生严重的影响,从而将受到电网运行商的警告,甚至罚款如果采用变频器进行电机起停,就不会产生类似的问题。

4.可控的加速功能。变频调速能在零速启动并按照用户的需要进行光滑地加速而且其加速曲线也可以选择(直线加速S形加速或者自动加速),而通过工频启动时对电机或相连的机械部分轴或齿轮都会产生剧烈的振动,这种振动将进一步加剧机械磨损和损耗降低机械部件和电机的寿命,另外变频启动还能应用在类似灌装线上以防止瓶子倒翻或损坏。

5.可调的运行速度。运用变频调速能优化工艺过程,并能根据工艺过程迅速改变,还能通过远控PLC或其他控制器来实现速度变化。

6.可调的转矩极限。通过变频调速后能够设置相应的转矩极限来保护机械不致损坏从而保证工艺过程的连续性和产品的可靠性。目前的变频技术使得转矩极限可调甚至转矩的控制精度都能达到在工频状态下电机只能通过检测电流值或热保护来进行控制而无法像在变频控制一样设置精确的转矩值来动作。

7.受控的停止方式。如同可控的加速一样,在变频调速中,停止方式可以受控并且有不同的停止方式可以选择(减速停车自由停车减速停车直流制动),同样它能减少对机械部件和电机的冲击,从而使整个系统使用寿命也会相应增加。

8.节能。离心风机或水泵采用变频器后都能大幅度地降低能耗,这在十几年的工程经验中已经得到体现。由于最终的能耗是与电机的转速成立方比,所以采用变频后,投资回报就更快厂家也乐意接受。

9.可逆运行控制。在变频器控制中要实现可逆运行控制无须额外的可逆控制装置只需要改变输出电压的相序即可,这样就能降低维护成本和节省安装空间。

10.减少机械传动部件。由于目前矢量控制变频器加上同步电机就能实现高效的转矩输出,从而节省齿轮箱等机械传动部件,最终构成直接变频传动系统从而就能降低成本和空间,提高稳定性。

2.2.2 变频器的分类

变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频

器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制、最优控制等。图为三菱RF-A540系列变频器。

图2.3 三菱RF-A540系列变频器

2.2.3 变频器控制的展望

随着电力电子技术、微电子技术、计算机网络等高新技术的发展,变频器的控制方式今后将向以下几个方面发展。

1.数字控制变频器的实现。现在,变频器的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向,目前进行变频器数字化主要采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能。

2.多种控制方式的结合。单一的控制方式有着各自的优缺点,并没有“万能”的控制方式,在有些控制场合,需要将一些控制方式结合起来,例如将学习控制与神经网络控制相结合,自适应控制与模糊控制相结合,直接转矩控制与神经网络控制相结合,或者称之为“混合控制”,这样取长补短,控制效果将会更好。

3.远程控制的实现。计算机网络的发展,使“天涯若咫尺”,依靠计算机网络对变频器进行远程控制也是一个发展方向。通过RS485接口及一些网络协议对变频器进行远程控制,这样在有些不适合于人类进行现场操作的场合,也可以很

容易的实现控制目标。

4.绿色变频器。随着可持续发展战略的提出,对于环境的保护越来越受到人们的重视。变频器产生的高次谐波对电网会带来污染,降低变频器工作时的噪声以及增强其工作的可靠性、安全性等等这些问题,都试图通过采取合适的控制方式来解决,设计出绿色变频器。

2.3 光电编码器

光电编码器是一种码盘式角度—数字检测元件。它有两种基本类型:一种是增量式编码器,一种是绝对式编码器。增量式编码器具有结构简单、价格低、精度易于保证等优点,所以目前采用最多。绝对式编码器能直接给出对应于每个转角的数字信息,便于计算机处理,但当进给数大于一转时,须作特别处理,而且必须用减速齿轮将两个以上的编码器连接起来,组成多级检测装置,使其结构复杂、成本高。

2.3.1 增量式编码器

增量式编码器是指随转轴旋转的码盘给出一系列脉冲,然后根据旋转方向用计数器对这些脉冲进行加减计数,以此来表示转过的角位移量。增量式编码器的工作原理如图2.4所示。

它由主码盘、鉴向盘、光学系统和光电变换器组成。在图形的主码盘(光电盘)周边上刻有节距相等的辐射状窄缝,形成均匀分布的透明区和不透明区。鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。经逻辑电路处理就可以测出被测轴的相对转角和转动方向。

利用增量式编码器还可以测量轴的转速。方法有两种,分别应用测量脉冲的频率和周期的原理。

2.3.2 绝对式编码器

绝对式编码器是把被测转角通过读取码盘上的图案信息直接转换成相应代码的检测元件。编码盘有光电式、接触式和电磁式三种。

光电式码盘是目前应用较多的一种,它是在透明材料的圆盘上精确地印制上二进制编码。图2.5所示为四位二进制的码盘,码盘上各圈圆环分别代表一位二进制的数字码道,在同一个码道上印制黑白等间隔图案,形成一套编码。黑色不透光区和白色透光区分别代表二进制的“0”和“1”。在一个四位光电码盘上,有四圈数字码道,每一个码道表示二进制的一位,里侧是高位,外侧是低位,在360°范围内可编数码数为24=16个。

图2.5 四位二进制的码盘

工作时,码盘的一侧放置电源,另一边放置光电接受装置,每个码道都对应有一个光电管及放大、整形电路。码盘转到不同位置,光电元件接受光信号,并转成相应的电信号,经放大整形后,成为相应数码电信号。但由于制造和安装精度的影响,当码盘回转在两码段交替过程中,会产生读数误差。例如,当码盘顺时针方向旋转,由位置“0111”变为“1000”时,这四位数要同时都变化,可能将数码误读成16种代码中的任意一种,如读成1111、1011、1101、…0001等,产生了无法估计的很大的数值误差,这种误差称非单值性误差。

为了消除非单值性误差,可采用以下的方法。

图2.6 四位二进制循环码盘

循环码习惯上又称格雷码,它也是一种二进制编码,只有“0”和“1”两个数。图2.6所示为四位二进制循环码。这种编码的特点是任意相邻的两个代码间只有一位代码有变化,即“0”变为“1”或“1”变为“0”。因此,在两数变换过程中,所产生的读数误差最多不超过“1”,只可能读成相邻两个数中的一个数。所以,它是消除非单值性误差的一种有效方法。

2.带判位光电装置的二进制循环码盘

这种码盘是在四位二进制循环码盘的最外圈再增加一圈信号位。图2.7所示就是带判位光电装置的二进制循环码盘。该码盘最外圈上的信号位的位置正好与

图2.7 带判位光电装置的二进制循环码盘

第三章系统设计

3.1 总体方案

根据设计要求,系统主要有PLC、变频器、编码器等组成。其工作原理为给定的速度与经过PLC的高速计数器反馈回来的实际速度相减产生误差,经过PLC 的PID得到控制量,经过转换为变频器能识别的ASCII码,再由RS-485接口输出到变频器,通过改变变频器频率而改变电机转速,从而达到闭环调节电机转速的目的。

图3.1 系统总体方案

3.2 硬件设计

本系统硬件主要由PLC、变频器、光电编码器、通信接口和电缆组成。PLC 与变频器FR-A540间通过FX2N-485-BD通信板卡使用RS485通信电缆连接,光电编码器通过屏蔽电缆连接PLC。

三菱变频器的操作面板接口即PU口是一个RS-485串行数据通讯接口,在三菱FX系列PLC通信扩展口上安插一个RS-485通讯板卡(型号:FX2N-485-BD),再配备1根5芯的通讯电缆,将变频器485通讯接同PLC的485通讯板卡相连接,就能够实现PLC与变频器的RS-485通讯。

3.2.1 变频器的连接

本设计采用PU接口与PLC连接,从变频器正面看,PU接口插针号如图3.2所示。

图3.2 PU接口插针号

两者之间通过网线连接(网线的RJ45插头和变频器的PU插座接),使用两对导线连接,即将变频器的SDA与PLC通讯板(FX2N-485-BD)的RDA接,变频器的SDB与PLC通讯板(FX2N-485-BD)的RDB接,变频器的RDA与PLC通讯板(FX2N-485-BD)的SDA接,变频器的RDB与PLC通讯板(FX2N-485-BD)的SDB接,变频器的SG与PLC通讯板(FX2N-485-BD)的SG接。具体连接方式如图3.3所示。

图3.3 电缆连接及信号方向

3.2.2 光电编码器的配置

增量型光电编码器安装在交流电动机轴上,编码器的输出脉冲接入PLC的

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

基于PLC的液位控制系统设计论文

题目:基于PLC的液位控制系统设计姓名: 学号: 系别: 专业: 年级班级: 指导教师: 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。矚慫润厲钐瘗睞枥庑赖。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。聞創沟燴鐺險爱氇谴净。 本毕业论文内容不涉及国家机密。 论文题目: 作者单位: 作者签名: 年月日

目录 摘要............................................................................................................. 1残骛楼諍锩瀨濟溆塹籟。引言............................................................................................................. 1酽锕极額閉镇桧猪訣锥。 1.研究现状分析 ................................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.1题研究背景、意义和目的 ...................................................... 2謀荞抟箧飆鐸怼类蒋薔。 1.2液位控制系统的发展状况 ...................................................... 3厦礴恳蹒骈時盡继價骚。 1.3课题研究的主要内容................................................................ 4茕桢广鳓鯡选块网羈泪。 2.控制方案设计 ................................................................................... 4鹅娅尽損鹌惨歷茏鴛賴。 2.1系统设计 ...................................................................................... 4籟丛妈羥为贍偾蛏练淨。 2.2单容水箱对象特性 .................................................................... 6預頌圣鉉儐歲龈讶骅籴。 3.硬件配置 .............................................................................................. 8渗釤呛俨匀谔鱉调硯錦。 3.1控制单元 ...................................................................................... 8铙誅卧泻噦圣骋贶頂廡。 3.2检测单元 ...................................................................................... 9擁締凤袜备訊顎轮烂蔷。 3.3执行单元 ...................................................................................... 9贓熱俣阃歲匱阊邺镓騷。 4.软件设计 .............................................................................................. 9坛摶乡囂忏蒌鍥铃氈淚。 4.1STEP 7-Micro/WIN编程软件简介 ........................................ 9蜡變黲癟報伥铉锚鈰赘。 4.2参数设定及I/O分配 .............................................................. 10買鲷鴯譖昙膚遙闫撷凄。 5.程序编程和系统仿真.................................................................. 12綾镝鯛駕櫬鹕踪韦辚糴。 5.1程序设计 .................................................................................... 12驅踬髏彦浃绥譎饴憂锦。 5.2程序仿真和分析....................................................................... 13猫虿驢绘燈鮒诛髅貺庑。 6.结论....................................................................................................... 16锹籁饗迳琐筆襖鸥娅薔。参考文献................................................................................................ 17構氽頑黉碩饨荠龈话骛。附录........................................................................................................... 19輒峄陽檉簖疖網儂號泶。致谢........................................................................................................... 22尧侧閆繭絳闕绚勵蜆贅。

PLC梯形图基本基本原理

前言、PLC的发展背景及其功能概述 PLC,(Programmable Logic Controller),乃是一种电子装置,早期称为顺序控制器“Sequence Controller”,1978 NEMA(National Electrical Manufacture Association)美国国家电气协会正式命名为Programmable Logic Controller,PLC),其定义为一种电子装置,主要将外部的输入装置如:按键、感应器、开关及脉冲等的状态读取后,依据这些输入信号的状态或数值并根据内部储存预先编写的程序,以微处理机执行逻辑、顺序、定时、计数及算式运算,产生相对应的输出信号到输出装置如:继电器(Relay)的开关、电磁阀及电机驱动器,控制机械或程序的操作,达到机械控制自动化或加工程序的目的。并藉由其外围的装置(个人计算机/程序书写器)轻易地编辑/修改程序及监控装置状态,进行现场程序的维护及试机调整。而普遍使用于PLC程序设计的语言,即是梯形图(Ladder Diagram)程序语言。 而随着电子科技的发展及产业应用的需要,PLC的功能也日益强大,例如位置控制及网络功能等,输出/入信号也包含了DI (Digital Input)、AI (Analog Input)、PI (Pulse Input)及NI (Numerical Input),DO (Digital Output)、AO (Analog Output)、PO (Pulse Output)及NO (Numerical Output),因此PLC在未来的工业控制中,仍将扮演举足轻重的角色。 1.1 梯形图工作原理 梯形图为二次世界大战期间所发展出来的自动控制图形语言,是历史最久、使用最广的自动控制语言,最初只有A(常开)接点、B(常闭)接点、输出线圈、定时器、计数器等基本机构装置(今日仍在使用的配电盘即是),直到可程控器PLC出现后,梯形图之中可表示的装置,除上述外,另增加了诸如微分接点、保持线圈等装置以及传统配电盘无法达成的应用指令,如加、减、乘及除等数值运算功能。 无论传统梯形图或PLC梯形图其工作原理均相同,只是在符号表示上传统梯形图比较接近实体的符号表示,而PLC则采用较简明且易于计算机或报表上表示的符号表示。在梯形图逻辑方面可分为组合逻辑和顺序逻辑两种,分述如下: 1. 组合逻辑: 分别以传统梯形图及PLC梯形图表示组合逻辑的范例。 传统梯形图PLC梯形图 X0 Y0 X1 Y1 Y2 X2 X3 X4 行1:使用一常开开关X0(NO:Normally Open)亦即一般所谓的〝A〞开关或接点。其特性是在平常(未按下)时,其接点为开路(Off)状态,故Y0不导通,而在开关动作(按下按钮)时,其接点变为导通(On),故Y0导通。 行2:使用一常闭开关X1(NC:Normally Close)亦即一般所称的〝B〞开关或接点,其特性是在平常时,其接点为导通,故Y1导通,而在开关动作时,其接点反而变成开路,故Y1不导通。

PWM控制直流电机调速

毕业设计论文PWM控制直流电机调速 绪论 脉宽调制(PWM)控制技术,是利用半导体开关器件的导通和关断,把直流电压变成电压脉冲序列,并控制电压脉冲的宽度和脉冲序列的周期以达到变压变频目的的一种控制技术。PWM控制技术广泛地应用于开关稳压电源,不间断电源(UPS),以及交直流电动机传动等领。本文阐述了PWM变频调速系统的基本原理和特点,并在此基础上给出了一种基于Mitel SA866DE三相PWM波形发生器和绝缘栅双极功率晶体管(IGBT)的变频调速设计方案。直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电动机的转速调节主要有三种方法:调节电枢供电的电压、减弱励磁磁通和改变电枢回路电阻。针对三种调速方法,都有各自的特点,也存在一定的缺陷。例如改变电枢回路电阻调速只能实现有级调速,减弱磁通虽然能够平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。所以,在直流调速系统中,都是以变压调速为主。其中,在变压调速系统中,大体上又可分为可控整流式调速系统和直流PWM调速系统两种。直流PWM调速系统与可控整流式调速系统相比有下列优点:由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好,稳速精度高,调速范围宽,可达1:10000左右;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高;直流电源采用不控整流时,电网功率因数比相控整流器高。 正因为直流PWM调速系统有以上的优点,并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。传统的模拟和数字电路PWM已被大规模集成电路所取代,这就使得数字调制技术成为可能。目前,在该领域中大部分应用的是数字脉宽调制器与微处理器集为一体的专用控制芯片, 如TI公司生产的TMS320C24X系列芯片。电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。

基于PLC系统的中央空调控制系统毕业设计论文

哈尔滨理工大学毕业设计 题目:基于PLC的中央空调控制系统设计院、系:自动化学院自动化系 姓名: 指导教师: 系主任: 2012年06月25 日

哈尔滨理工大学毕业设计(论文)任务书 学生姓名:学号: 学院:自动化学院专业:自动化 任务起止时间:2012 年 2 月27 日至2012 年 6 月25 日 毕业设计(论文)题目: 基于PLC的中央空调控制系统设计 毕业设计工作内容: 1.第1~2周,查阅相关资料并翻译外文资料; 2.第3~4周,了解课题目前在国内外的研究现状、发展趋势,确定中央空调所要实现的功能和了解整个系统的结构框架; 3.第5~8周,进一步了解中央空调的所要实现的具体功能,确定系统中所要用到的原器件,并进行最初的硬件电路的设计,为软件编程做准备; 4.第9~11周,学习PLC程序的设计与开发,确定最终的硬件电路的设计; 5.第12~13周,编写PLC程序,并和硬件一起进行程序调试,来检查程序的可行性; 6.第14~15周,修改必要的程序部分来完善系统,并书写论文的初稿;7.第16~17周,修改并完成书面论文,准备答辩。 资料: 1.王卫兵,高俊山. 可编程控制器原理及应用.第二版.机械工业出版社,2005 2.任光.可编程序控制器(PC)应用技术与实例.华南理工大学出版社,2001 3.汤蕴缪,史乃. 电机学.机械工业出版社,1999 4.康贤永,万大福. 可编程控制器及其应用. 重庆大学出版社,1998 5.梅晓榕,柏桂珍. 自动控制元件及线路. 科学出版社,2005 6.刘金琨. 先进PID控制Matlab仿真(第二版). 电子工业出版社,2004 指导教师意见: 签名: 年月日系主任意见: 签名: 年月日 教务处制表

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

基于PLC的电动机顺序起动停止控制设计汇总

物理与电子工程学院 《PLC原理与应用》 课程设计报告书 设计题目:基于PLC的电动机顺序起动/停止控制设计专业:自动化 班级:XX 学生姓名:XX 学号:XXXX 指导教师:XX 2013年12月17日

物理与电子工程学院课程设计任务书 专业:自动化班级: 2班

本文介绍了基于电力拖动的3台电动机的顺序启动停止的设计方案。我们运用其原理的思路是:用三套异步电机M1、M2和M3,顺序启动、停止控制电路是在一个设备启动之后另一个设备才能启动运行的一种控制方法,常用于主、辅设备之间的控制,我们使用了PLC进行控制,当按下SB1时,电动机M1会立即启动,而M2会延迟几秒启动,再延迟几秒M3启动。当按下SB2时。电动机M3会停止,而M2会延迟几秒钟停止,再延迟几秒M1会停止。用PLC进行控本设计两台电动机的顺序启动/停止可以运用到生活的各个方面这也充分体现了PLC在当今社会对生活的重要之处。本设计在顺序控制的基础上采用PLC对电动机的控制通过合理的选择和设计提高了电动机的控制水平使电动机达到了较为理想的控制效果。根据顺序功能图的设计法联系到现实做出了本设计两台电动机顺序启动/停止控制的PLC系统设计。 关键词:接触器;PLC控制;顺序启停

1 课程设计背景 (1) 1.1 课程设计的定义 (1) 1.2 课程设计的目的及意义 (1) 1.3 可编程逻辑控制器简介 (1) 2 基于PLC的电动机顺序起动/停止控制设计的硬件设计 (3) 2.1 控制对象及要求 (3) 2.2 硬件选型 (3) 2.3 系统I/O分配 (5) 2.4 PLC端子接线图 (5) 3基于PLC的电动机顺序起动/停止控制设计的软件设计 (5) 3.1 编程软件介绍 (5) 3.2 程序流程图 (8) 3.3程序调试 (8) 4心得体会 (9) 参考文献 (10) 附录 (11)

PLC论文 控制系统设计

基于PLC的霓虹灯控制系统设计 目录 第一章绪论 (1) 第二章霓虹灯变压器 (2) 2、1霓虹灯的工作原理 (2) 2、2霓虹灯的结构与部件 (2) 第三章可编程序控制器简介 (3) 3、1 PLC简介 (3) 3、2 PLC的结构 (4) 3、3 PLC的工作原理 (4) 3、4控制器简介:S7-200系列PLC (5) 3、5 PLC应用特点 (5) 第四章霓虹灯控制系统设计 (6) 4、1任务分析及功能阐述 (6) 4、2 PLC接线图 (7) 4、3 I\O分配表 (8) 4、4控制流程的设计 (9) 4、5梯形图的设计 (10) 总结 (14)

第一章绪论 在现阶段,可编程控制器在工业控制领域已经起着举足轻重的作用,其方便快捷,准确等功能决定了它的主导地位,它将逐渐发展成以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型工业自动控制装置。本课题可以说就是对可编程控制器在自动控制方面的一个简单的应用。 随着改革的不断深入,社会主义市场经济的不断繁荣与发展,大中小城市都在进行亮化工程。企业为展现自己的形象与产品,一般都会采用通过霓虹灯广告屏来这种广告手法,所以当我们夜晚走在大街上,马路两旁各色各样的霓虹灯广告随处可见,一种就是采用霓虹灯管做成的各种形状与多种彩色的灯管,另一种为日光等管或白炽灯管作为光源,另配大型广告语或宣传画来达到宣传的效果,大部分就是采用霓虹灯。这就涉及到如何去控制霓虹灯的亮灭、闪烁时间及流动方向等诸多控制问题,如何去快捷、可靠、简单的去控制,成为人们考虑的重点,在这我认为PLC最适合去解决这些问题。 可编程控制器PLC英文全称Programmable Logic Controller,就是一种数字运算操作的电子系统,专为工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等方面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。作为自动控制装置的核心,它具有功能强,可靠性高等诸多优点,PLC实验装置采用的式模块化结构,主要模块有可编程序控制器、编程器模块,九种实验模块,按钮、开关输入模块与继电器输出模块,以及四层电梯模型。该装置可以完成各种指令系统以及多种控制对象的程序设计训练。因为PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。并且PLC在工业自动化控制特别就是顺序控制中的方面具有比较突出的优势,在现实中人们也就是多通过PLC去控制霓虹灯的。以上就就是我选择此题目作为本学期PLC应用系统设计的意义。 本次设计的主要任务就是利用可编程控制器对霓虹灯进行控制,采用的就是SIEMENS公司生产的S7-200系列可编程控制器,与其对应的编程软件就是STEP7-Micro/WIN。

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

直流电动机调速控制系统论文

安徽三联学院 年度论文 直流电动机调速系统的研究 Dc motor speed control system research 专业:电气工程及其自动化 姓名:薄朋_____________ 学号: 1002164___________ 指导老师:张金翰________ 2013年1月10日 信息与通信技术系

【摘要】直流电动机诞生与19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。直流调速系统具有优良的启动、制动性能,宜于在宽广范围内平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。电动机拖动生产机械运行时,系统的速度需要根据工作状态和工艺要求的不同进行调节,使生产机械以最合理的速度工作,从而提高产品和生产效率,这就要求人为采取一定的方法来改变生产机械的工作速度,以满足生产的需要。 关键字:直流电动机调速 【abstract 】Dc motor was born in the 19th century, more than 100 years of history, and has become the main drive power machinery. Dc speed control system has good start, braking performance, like in the wide range smoothing speed and are in need of high performance controlled electric drive field has been widely used in the field. Motor drive production machine operation, the speed of the system need according to the working status and technological requirements of different carries on the adjustment, production machinery with the most reasonable speed work, so as to improve the products and production efficiency, this requires people to take certain method to change the production machinery working speed, in order to meet production need. Key words: Dc motor speed regulation

基于plc电梯控制系统设计毕业论文_1

第1章绪论 1.1 论文的背景及意义 随着科学技术的发展、城市现代化进程的突飞猛进,电梯作为一种高效、迅捷、安全、可靠的垂直运输设备,成为了人们不可缺少的运输工具。现代高层建筑中各办公大楼、住宅、宾馆、医院、工矿企业、仓库、码头、大型货轮等都离不开它。据统计,在美国乘其他交通工具的人数每年约为80亿人次,而乘电梯的人数每年却有540亿人次之多。电梯服务中国已有100多年历史,特别在改革开放以后,我国电梯的使用数量快速增长。尤其是现阶段,随着经济日新月异的发展,人们生活水平不断提高,城市建筑不断增多,楼房也越来越高,与此相应,电梯也得到迅猛的发展。现在,电梯已完全融入我们的生产、生活中,满足人们生活、工作及学习的需要。据统计,我国在用电梯已达40多万台,每年还以约5万~6万台的速度增长[1][2]。 电梯的作用越来越显著,电梯的需求越来越大。而目前我国使用的先进的电梯系统基本上都是国外设计制造,其核心技术并不公开。国内具有自主知识产权的控制方法和技术在实际中的应用还比较少,与国外先进技术相比还有较大的差距。尽快研究和掌握先进的控制技术,对国内电梯工业的发展会有很大的促进作用。 早期的电梯自动控制系统中,信号的逻辑控制一般是由继电器—接触器电路来实现。由于继电器、接触器都是有触点的电气元件,体积庞大,弧光放电较严重,使用寿命有限;在电梯这种较复杂控制系统中可靠性不高,施工过程中接线复杂,当控制要求改变时必须改变硬件接线,使得通用性和灵活性不够,生产周期加长;另外,继电器、接触器触点数目有限,可扩展性较差;继电器—接触器控制系统依靠触点的机械动作实现控制,工作频率低且机械触点还会出现抖动问题;继电器控制逻辑一般不具备计数功能;同时随着楼宇层数的增加,继电器—接触器控制系统过于庞大,给设计带来不便。基于以上多种原因,导致电梯控制系统的工艺性、运行的可靠性与安全性降低,故目前己被逐步淘汰。 目前电梯的控制普遍采用两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能。微机控制是电梯控制技术的发展方向,目前已有一些由微机控制的电梯新机型相继推出,使控制功能得到增强,性能得到改善。微机控制系统虽然在智能控制方面有较强大的功能,但也存在一定的不足之处,一方面微机控制抗干扰能力较差、

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

基于PLC系统的全自动洗衣机控制系统毕业设计论文

毕业设计(论文) 基于PLC的全自动洗衣机控制系统设计论文 学生 指导教师 专业机电一体化 层次 班级 学号 日期

原创性声明 本人声明所呈交的毕业论文(设计)是我个人进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,已在毕业论文(设计)中作了明确的说明并表示了谢意。 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解《江西农业工程职业学院本、专科毕业论文(设计)工作条例(暂行规定)》对:“成绩为优秀毕业论文(设计),江西农业工程职业学院将有权选取部分论文(设计)全文汇编成集或者在网上公开发布。如因著作权发生纠纷,由学生本人负责”完全认可,并同意江西农业工程职业学院可以以不同方式在不同媒体上发表、传播毕业论文(设计)的全部或部分内容。江西农业工程职业有权保留送交论文(设计)的复印件和磁盘,允许论文(设计)被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编论文(设计)。 [保密的毕业论文(设计)在解密后应遵守此协议] 学生签名: 时间:年月日 密级:

摘要 本文介绍了利用三菱FX2N系列PLC对全自动洗衣机控制系统总体控制,阐述了控制方案。实现全自动洗衣机控制系统总体控制有多种,可以采用早期的模拟电路、数字电路或模数混合电路。近年来随着科技的飞速发展,单片机、PLC的应用不断地走向深入,同时带动传统的控制检测技术的不断更新。本文采用日本三菱公司生产的FX2N-48MR型PLC 作为核心控制器进行全自动洗衣机控制系统的设计,并且设计出了系统结构图、程序指令、梯形图以及输入输出端子的分配方案。同时根据全自动洗衣机控制系统总体控制要求和特点,确定PLC 的输入输出分配,并进行现场调试 关键字:PLC 全自动洗衣机控制系统 PLC程序设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

相关文档
相关文档 最新文档