文档库 最新最全的文档下载
当前位置:文档库 › TTL集成逻辑门的逻辑功能与参数测试

TTL集成逻辑门的逻辑功能与参数测试

TTL集成逻辑门的逻辑功能与参数测试
TTL集成逻辑门的逻辑功能与参数测试

实验二 TTL集成逻辑门的逻辑功能与参数测试

一、实验目的

1.掌握TTL与非门逻辑功能的测试方法;

2.熟悉TTL与非门主要参数的测量方法;

3.熟悉TH-SZ型数字电路实验箱的结构和使用方法;

二、预习要求

1.什么叫TTL集成电路?它使用的电源电压是多少?

2.说明TTL与非门不使用的输入端应如何处置?

3.复习TTL与非门的逻辑功能,主要参数的概念和测量方法;

4.TTL与非门的输出特性曲线?从中读取相关的参数值;

三、实验原理

1.与非门的逻辑功能

当输入端中有一个或一个以上是低电平时,输出端为高电平;只有当输入端全部为高电平时,输出端才是低电平。即有“0”得“1”,全“1得“0”.其逻辑表达式为Y=

AB.2.本实验采用4输入双与非门74LS20,即在一块集成块内含有两个互相独立的与非门,每个与非门有4个输入端。其逻辑符号及引脚排列如图2-1 (a) (b)所示:

Y=ABCD 1 2 3 4 5 6 7

(a)国家标准逻辑符号(b) 74LS20引脚排列

图2-1 74LS20国家标准逻辑符号及引脚排列

四、实验器件

1.TH-SZ型数字电路实验箱

2.数字万用表UT56

3.TTL与非门74LS20

4.若干导线

五、实验内容

1.验证TTL与非门74LS20的逻辑功能

在合适的位置选取一个14脚的集成块插座,按图2—2接好线。

每个门的4个输入端(假设为A, B, C, D)接逻辑开关输出插口,以提供“0”与“1”电平信号(开关向上,输出“1”;向下为“0”)。门的输出端(假设为Y)接LED发光二极管,LED亮为输出“1”,灭为输出“0”。按表2-1的真值表逐个测试集成块中2个与非门的逻辑功能。

图2-2 74LS20逻辑功能测试电路

2.74LS20主要参数的测试(将测试值填入表2-2)

低电平输出电源电流I CCL、高电平输出电源电流I CCH、74LS20总的静态功耗、低电平输入电流I iL,高电平输入电流I iH(I iH很小,可不测)扇出系数No(先测出允许灌入的最大负载电流I OL)

(a)(b)(c)(d)

图2-3 74LS20主要参数测试电路

(1)低电平输出电源电流I CCL

指所有输入端悬空,输出端空载,74LS20输出低电平时,电源提供给器件的电流。测试电路如图2-3 (a)所示。

(2)高电平输出电源电流I CCH

指每个门各有一个以上的输入端接地(最好全部接地),输出端空载,74LS20输出高电平时,电源提供的电流。测试电路如图2-3 (b)示。

(3)计算74LS20总的静态功耗

I CCL和I CCH标志着器件静态功耗的大小,通常I CCL>I CCH,所以静态功耗为P CCL=V CC I CCH。

(4)低电平输入电流I iL

指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流值。希望I iL越小越好。测试电路如图2-3 (c)示。

(5)高电平输入电流I iH

指被测输入端接高电平,其余输入端接地,流入被测输入端的电流值。希望I iH越小越好。测试电路如图2-3 (d)示(因为I iH很小,微安级,一般免于测试。本实验也不测)。

(6)扇出系数N0

指门电路能驱动同类门的个数,它是衡量门电路带负载能力的一个参数。

N0= I0L/I iL 一般N0>8

其中:I oL是指当V OL达到规定输出的低电平的规范值(一般为0.4V)时,门电路允许灌入的最大负载电流。I OL测试电路如图2-4示:

图2-4 扇出系数测试电路图2-5 电压传输特性测试电路

表2-2 主要参数测试结果

3.电压传输特性

门的输出电压U0随输入电压Ui而变化的曲线称为门的电压传输特性,通过它可以读得门电路的一些重要参数,如输出高电平U OH、输出低电平U OL、关门电平U OFF、开门电平U ON、门限电平U TH等值。测试电路如图2-5所示:

(1)采用逐点测试法,即调节Rw,按表2-3逐点测得Ui及U0的值,然后绘制曲线。

(2)绘制电压传输特性曲线,并读出输出高电平U OH、输出低电平U OL、关门电平U OFF、开门电平U ON、门限电平U T的值,填入表2-4。

表2-4 门电路有关的重要参数

六、实验报告要求

1.回答预习要求中提出的问题;

2.记录、整理实验结果,并对结果进行分析;

3.画出实测的电压传输特性曲线,从中读出输出高电平U OH、输出低电平U OL、关门电平U OFF、开门电平U ON、门限电平U TH的值,并在图中标出。

七、实验注意事项

1.TTL电源电压使用范围为+4.5V---+5.5V之间,超过5. 5V将损坏器件;低于4. 5V 器件的逻辑功能将不正常。实验中要求使用+5V。电源极性绝对不允许接错。

2.接插集成块时,要认清定位标记,不得插反。

3.连线之前,先用万用表测量导线是否导通。

4.输出端不允许直接接地或直接接+5V电源,否则将损坏器件。

5.TTL与非门74LS20不用的输入端可以悬空,示为“1”输入。为了保证逻辑的绝对可靠,最好将不用端全部接+5V电源。

实验三组合逻辑电路实验分析

一、实验目的

1.掌握组合逻辑电路的分析方法与测试方法;

2.了解组合电路的冒险现象及消除方法;

3.验证半加器、全加器的逻辑功能。

二、预习要求

1.复习组合逻辑电路的分析方法;

2.复习用与非门和异或门等构成的半加器、全加器的工作原理;

3.复习组合电路冒险现象(险象)的种类、产生原因,如何消除?

三、实验原理

1.组合逻辑电路

由很多常用的门电路组合在一起,实现某种功能的电路,它在任意时刻的输出,仅取决于该时刻输入信号的逻辑取值,而与信号作用前电路原来的状态无关。

2.组合逻辑电路的分析

是指根据所给的逻辑电路,写出其输入与输出之间的逻辑函数表达式或真值表,从而确定该电路的逻辑功能。其分析步骤为:

3.组合电路的冒险现象

(1)实际情况下,由于器件的延时效应,在一个组合电路中,输入信号发生变化时,输出出现瞬时错误的现象,把这现象叫做组合电路中的冒险现象,简称险象。这里研究静态险象,即电路达到稳定时,出现的险象。可分为0型静态险象(如图3-1)和1型静态险象(如图3-2):

图3-1 0型静态险象

其输出函数Y=A+A,在电路达到稳定时,即静态时,输出Y总是1。然而在输入A变化时,输出Y的某些瞬间会出现0,Y出现窄脉冲,存在有静态0型险象。

图3-2 1型静态险象

其输出函数Y=A+A,在电路达到稳定时,即静态时,输出Y总是O。然而在输入A变化时,在输出Y的某些瞬间会出现1,Y出现窄脉冲,存在有静态1型险象。

(2)进一步研究得知,对于任何复杂的组合逻辑电路,只要能成为A+A或A A的形式,必然存在险象。为了消除险象,通常用增加校正项的方法,如果表达式中出现A+A形式的电路,校正项为被赋值各变量的“乘积项”;表达式中出现A A形式的电路,校正项为被赋值各变量的“和项”。

例如:逻辑电路的表达式为Y=A B+AC;当B=C=1时,Y=A+A,Y正常情况下,稳定后应输出1,但实际中出现了0型静态险象。这时可以添加校正项BC,则Y A B+AC+ BC=A+A+1=1,从而消除了险象。

四、实验器件

1.TH-SZ型数字电路实验箱 2.双踪示波器YB4320G

3. 74LS00 74LS86 74LS02

4.若干导线

五、实验内容

1.分析、测试用与非门74LS00组成的半加器的逻辑功能

(1)写出图3-3的逻辑表达式

图3-3由与非门74LS00组成的半加器电路

(2)根据表达式列出真值表3-1,并写出最简函数表达式

(3)根据图3-3,在实验箱上选定两个14脚的插座,插好两片74LS00,并接好连线,A, B 两输入接至逻辑开关的输出插口。S, C 分别接至逻辑电平显示输入插口。按表3-2的要求进行逻辑状态的测试,将结果填入表3-2,与表3-1进行比较,看两者是否一致。

表3.2 半加器理论值 表3.2 实验测量结果

S= C=

2.分析、测试用异或门74LS86和与非门74LS00组成的半加器的逻辑功能,填入表3-3

表3.3 异或门组成的半加器

图3-4 异或门和与非门组成的半加器 S= C=

3.分析、测试用异或门74LS86、与非门74S00和或非门74LS02组成的全加器的逻辑功能

图3-5 全加器逻辑电路

(1)根据逻辑电路写出全加器的逻辑函数表达式,并化为最简。

Si= Si=

(2)按图3—5连线,Ai、Bi、Ci的值按表3-4输入,观察输出Si、Si的值,填入表3-4。

4.观察冒险现象并消除

(1)按图3-6接线,当B=C=1时,A输入矩形波(f=1 MHZ以上),用示波器观察、记录Y波形。

(2)用添加校正项的方法消除险象。画出校正后的电路图,观察、记录校正后Y输出波形。

图3-6 险象的消除

六、实验报告要求

1.整理实验数据、图表,并对实验结果进行分析讨论。

2.总结组合电路的分析与测试方法。

3.对险象进行讨论。

七、实验注意事项

1.实验中要求使用+5V,电源极性绝对不允许接错。

2.插集成块时,要认清定位标记,不得插反。

3.连线之前,先用万用表测量导线是否导通。

4.输出端不允许直接接地或直接接+5V电源,否则将损坏器件。

实验四计数器及其应用(设计性)

一、实验目的

1.学习集成触发器构成计数器的方法。

2.掌握中规模集成计数器的使用方法及功能侧试方法。

3.用集成电路计数器构成1/N分频器。

二、实验预习要求

1.复习计数器电路工作原理。

2.预习中规模集成电路计数器74LS192的逻辑功能及使用方法。

3.复习实现任意进制计数的方法。

三、实验原理

计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。计数器种类较多,按构成计数器中的多触发、器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器:根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等。本实验主要研究中规模十进制计数器74LS192的功能及应用。

1. 74LS192的主要原理

(1)74LS192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其逻辑符号及引脚排列如图4-1所示。

图4—1 74LS192逻辑符号及引脚排列

图中:CPU—加计数端CP D一减计数端/LD一置数端CR一清零端/CO一非

同步进位输出端/BO一非同步借位输出端D0、D1、D2、D3一数据输入端Q0、Q1、Q2、Q3一数据输出端74LS192功能如下表4—1:

74LS192、减计数的状态转换表如下表3—2:

加法计数(进位)

减法计数(借位)

2.计数器的级联使用

一个十进制计数器只能表示。0一9十个数,为扩大计数器范围,常用多个十进制计数器级联使用。同步计数器往往设有进位(或借位)输出端,所以可以选用其进位(或借位)输出信号驱动下一级计器。图4一2是由74LS192利用其进位输出/C0控制高一位的CPu端构成的加计数级联图。可以实现10*10=100进制(“00”一“99”)的计数;如果要构成减计数电路,则利用其借位输出/B0麟组高位的CP D端,实现(“99”一“00”)的减法计数,如果计数初始值为00—99其中一个数,则必须先在输入端D3—D0预置所要开始计数的初始值,令/LD=0,将此初始值预置完成,此后重新置/LD=1。

图4-2加计数级联图

3.任意进制计数的实现

(1)复位法获得任意进制计数器

假设已有N进制计数器,而需要得到一个M进制计数器时,只要M

图4-3采用复位法构成的5进制加法计数器图4-4采用复位法构成的60进制加法计数

(2)利用预置功能获得任意进制计数器

图4-5是一个用两片74LS192级联构成的特殊12进制加法计数器电路。在数字钟里,对时位的计数序列是1,2,3,…11,12;是12进制,而且没有0。即从1开始计数、显示到12为止,当计数到13时,通过与非门产生一个复位信号,使74LS192 (2)[时的十位]直接置成0000,而74LS192(1)〔时的个位〕直接置成0001,从而实现了1-12计数。

图4—5 采用预置法构成的特殊12进制加法计数器

四、实验仪器设备

1. TH-SZ型数字电路实验箱

2.两片74LS192 一片74LS00

五、实验内容

1.74LS192逻辑功能测试

74LS192的16脚接VCC=+5V,8脚接地,计数脉冲CPu和CP D由单次脉冲源提供,置数端(/LD)、数据输入端(D3—D0)分别接逻辑开关,输出端(Q3—Q0)接译码显示输入的相应孔A、B、C、D,同时接至逻辑电平LED显示插孔,/C0和/B0接逻辑电平LED 显示插孔。按表4—1逐项测试,判断该集成块的功能是否正常。

表3-1逐项测试,判断该集成块的功能是否正常,

(1)清零(CR)

令CR=1,其它输入端状态为任意态,,记录Q3Q2Q1Q0的状态和译码显示的数值。之后,置CR=0。

(2)置数(/CD)

当CR=0, /LD=0,CPu、CP D任意态时,74LS192处子置数状态。D3D2DlD0任给一组数据,输出Q3Q2QlQ0与D3D2DlD0数据相同,若:D3D2DlD0=G011,记录Q3Q2QIQ0的状态和译码显示的数值。

(3)加法计数

令CR=0,/LD=1,CP D=1, CPu接单次脉冲源。在清零后送入10个单次脉冲,观察输出状态变化是否发华在CPu的上升沿。记录译码依次显示数字的情况。

(4)减法计数

令CR=0,/LD=1,CPu=l,CP D接单次脉冲源。在清零后送入10个单次脉冲,观察输出状态变化是否发生在CP D的上升沿。记录译码依次显示数字的情况。

2.任意进制的实现

(1)用复位法获得9洲和78洲加法计数器,分别画出电路图,并连线验证其功能(可以参照图4-3和图4-4)。74LS192的16脚接VCC=+5V, 8脚接地;CP D =1, /LD=1,Q3—Q0接译码显示输入的相应插孔A, B, C、D。

(2)用预置法获得30进制(从1开始计数)加法计数器,画出电路图,并连线验证其功能可以参照图4-5)74LS192的16脚接VCC=+5V,8脚接地;CP D=1,/LD=1, Q3—Q0

接译码显示输入的相应插孔A、B、C、D。

六、思考题

将两位十进制加法计数器改为两位十进制减法计数器,实现由99一00递减计数。

数电实验__门电路逻辑功能及测试

一、实验目的 1、熟悉门电路逻辑功能。 2、学习数字电路实验的一般程序及方法。 3、熟悉数字电路设备的使用方法。 二、实验仪器及材料 1、数字万用表 2、器件: 74LS00 二输入端四“与非”门2片 4LS20 四输入端二“与非”门1片 74LS86 二输入端四“异或”门1片 三、预习要求 1、复习门电路的工作原理及相应的逻辑表达式。 2、熟悉所用集成电路的引脚位置及各引脚用途(功能)。 四、实验内容 实验前先检查设备的电源是否正常。然后选择实验用的集成电路,按设计的实验原理图(逻辑图)接好连线,特别注意V CC及地线(GND)不能接错。线接好后经检查无误方可通电实验。实验中改动接线须断开电源,改接好线后再通电实验。 1、测试门电路逻辑功能 ⑴、选用四输入端二“与非”门芯片74LS20一片,按图1.1接线。输入端接四只电平开关(电平开关输出插口),输出端接任意一个电平显示发光二极管。 ⑵、将电平开关按表1.1置位,分别测输出电压及逻辑状态。 2、异或门逻辑功能测试 ⑴、选二输入端四“异或”门芯片74LS86一片,按图1.2接线。输入端A、B、C、D接四只电平开关,E点、F点和输出端Y分别接三只电平显示发光二极管。 ⑵、将电平开关按表1.2置位,将结果填入表中。

4、用“与非”门组成其它门电路并测试验证⑴、组成“或非”门。用一片二输入端四“与非”门芯组成一个“或非”门:Y=A+B,画出逻辑电路图,测试并填表1.5。 ⑵、组成“异或”门。 A、将“异或”门表达式转化为“与非”门表达式。 B、画出逻辑电路图。 C、测试并填表1.6。

思考题: (1)、怎样判断门电路的逻辑功能是否正常? 答:门电路功能正常与否的判断:(1)按照门电路功能,根据输入和输出,列出真值表。(2)按真值表输入电平,查看它的输出是否符合真值表。(3)所有真值表输入状态时,它的输出都是符合真值表,则门电路功能正常;否则门电路功能不正常。 (2)、“与非”门的一个输入端接连续脉冲,其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过? 答:与非门接髙电平则其他信号可以通过,接低电平则输出恒为0,与非门的真值表是“有0出1,全1出0”。所以一个输入接时钟,就是用时钟控制与非门,当时钟脉冲为高电平时,允许信号通过,为低电平时关闭与非门。 (3)、“异或”门又称可控反相门,为什么? 答:“异或”函数当有奇数个输入变量为真时,输出为真! 当输入X=0,Y=0 时输出S=0 当输入X=0,Y=1 时输出S=1 0代表假1代表真 异或门主要用在数字电路的控制中! 实验小结 由于是第一次数字电路动手试验,操作不是很熟悉,搞得有些手忙脚乱,加之仪器有一点陈旧,电路板上有些地方被烧过,实验中稍不留神接到了烧过的电路板就很难得出正确的结果。 本次试验加深了我对门电路逻辑功能的掌握,对数字电路实验的一般程序及方法有了一定的了解,对数字电路设备的使用方法也有了初步掌握。 在以后的实验中,我会好好预习,认真思考,实验的时候小心仔细,对实验结果认真推敲,勤于思考勤于动手,锻炼自己的动手能力。

时序逻辑电路习题解答

5-1 分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。 CLK Z 图 题 5-1图 解:从给定的电路图写出驱动方程为: 0012 10 21()n n n n n D Q Q Q D Q D Q ?=??=?? =?? e 将驱动方程代入D 触发器的特征方程D Q n =+1 ,得到状态方程为: 10012110 12 1()n n n n n n n n Q Q Q Q Q Q Q Q +++?=??=??=??e 由电路图可知,输出方程为 2 n Z Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。 题解5-1(a )状态转换图

1 Q 2/Q Z Q 题解5-1(b )时序图 综上分析可知,该电路是一个四进制计数器。 5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入变量。 Y A 图 题 5-2图 解:首先从电路图写出驱动方程为: () 0110101()n n n n n D AQ D A Q Q A Q Q ?=? ?==+?? 将上式代入触发器的特征方程后得到状态方程 () 1011 10101()n n n n n n n Q AQ Q A Q Q A Q Q ++?=? ?==+?? 电路的输出方程为: 01n n Y AQ Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-2所示

Y A 题解5-2 状态转换图 综上分析可知该电路的逻辑功能为: 当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位; 当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。 5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。 X (a) 电路图 1234CLK 5678 X (b)输入波形 图 题 5-3图 解:电路的驱动方程、状态方程和输出方程分别为: 0010110001101101 1, ,n n n n n n n n n n J X K X J XQ K X Q X Q XQ X Q XQ Q XQ XQ XQ Y XQ ++?==??==???=+=?? ?=+=+?= 根据状态方程和输出方程,可分别做出11 10,n n Q Q ++和Y 的卡诺图,如表5-1所示。由此 做出的状态转换图如图题解5-3(a)所示,画出的时序图如图题解5-3(b )所示。

实验二 TTL与非门电路参数测试

实验二 TTL 与非门电路参数测试 一、实验目的 ·掌握TTL 与非门主要参数的测试方法。 ·掌握TTL 与非门电压传输特性的测试方法。 ·熟悉集成元器件管脚排列特点。 二、实验原理 TTL 集成与非门是数字电路中广泛使用的一种基本逻辑门,使用时必须对它的逻辑功能、主要参数和特性曲线进行测试,以确定其性能好坏。 本实验采用TTL 集成元器件74LS00与非门进行测试。它是一个2输人端4与非门,形状为双列直插式,逻辑表达式为F =A ·B ,其逻辑符号及外引线排列图如图 1—1(a)(b)(c)(d)所示。

1.TTL与非门主要参数 (1)输出高电平V OH和输出低电平V OL V OH是指与非门一个以上的输入端接低电平或接地时,输出电压的大小。此时门电路处于截止状态。如输出空载,V OH必须大于标准高电平(V SH=2.4V),一般在3.6V左右。当输出端接有拉电流负载时,V OH将降低。 V OL是指与非门的所有输人端均接高电平时,输出电压的大小。此时门电路处于导通状态。如输出空载,V OL必须低于标准低电平(V SL=0.4V),约为0.1V左右。接有灌电流负载时,V OL将上升。 (2)低电平输入电流I IL I IL是指当一个输入端接地,而其他输入端悬空时,输入端流向接地端的电流,又称为输入短路电流。I IL的大小关系到前一级门电路能带动负载的个数。 (3)高电平输入电流I IH I IH是指当一个输入端接高电平,而其他输入端接地时,流过接高电平输入端的电流,又称为交叉漏电流。它主要作为前级门输出为高电平时的拉电流。当I IH太大时,就会因为“拉出”电流太大,而使前级门输出高电平降低。 (4)输入开门电平V ON和关门电平V OFF V ON是指与非门输出端接额定负载时,使输出处于低电平状态时所允许的最小输入电压。换句话说,为了使与非门处于导通状态,输入电平必须大于V ON。 V OFF是指使与非门输出处于高电平状态所允许的最大输人电压。 (5)扇出系数N0 N0是说明输出端负载能力的一项参数,它表示驱动同类型门电路的数目。N0的大小主要受输出低电平时,输出端允许灌人的最大电流的限制,如灌人负载电流超出该数值,输出低电平将显著抬高,造成下一级逻辑电路的错误动作。

(完整版)时序逻辑电路习题与答案

第12章时序逻辑电路 自测题 一、填空题 1.时序逻辑电路按状态转换情况可分为时序电路和时序电路两大类。 2.按计数进制的不同,可将计数器分为、和N进制计数器等类型。 3.用来累计和寄存输入脉冲个数的电路称为。 4.时序逻辑电路在结构方面的特点是:由具有控制作用的电路和具记忆作用电路组成。、 5.、寄存器的作用是用于、、数码指令等信息。 6.按计数过程中数值的增减来分,可将计数器分为为、和三种。 二、选择题 1.如题图12.1所示电路为某寄存器的一位,该寄存器为 。 A、单拍接收数码寄存器; B、双拍接收数码寄存器; C、单向移位寄存器; D、双向移位寄存器。 2.下列电路不属于时序逻辑电路的是。 A、数码寄存器; B、编码器; C、触发器; D、可逆计数器。 3.下列逻辑电路不具有记忆功能的是。 A、译码器; B、RS触发器; C、寄存器; D、计数器。 4.时序逻辑电路特点中,下列叙述正确的是。 A、电路任一时刻的输出只与当时输入信号有关; B、电路任一时刻的输出只与电路原来状态有关; C、电路任一时刻的输出与输入信号和电路原来状态均有关; D、电路任一时刻的输出与输入信号和电路原来状态均无关。 5.具有记忆功能的逻辑电路是。 A、加法器; B、显示器; C、译码器; D、计数器。 6.数码寄存器采用的输入输出方式为。 A、并行输入、并行输出; B、串行输入、串行输出; C、并行输入、串行输出; D、并行输出、串行输入。 三、判断下面说法是否正确,用“√"或“×"表示在括号 1.寄存器具有存储数码和信号的功能。( ) 2.构成计数电路的器件必须有记忆能力。( ) 3.移位寄存器只能串行输出。( ) 4.移位寄存器就是数码寄存器,它们没有区别。( ) 5.同步时序电路的工作速度高于异步时序电路。( ) 6.移位寄存器有接收、暂存、清除和数码移位等作用。() 思考与练习题 12.1.1 时序逻辑电路的特点是什么? 12.1.2 时序逻辑电路与组合电路有何区别? 12.3.1 在图12.1电路作用下,数码寄存器的原始状态Q3Q2Q1Q0=1001,而输入数码

实验一--TTL门电路参数测试实验复习进程

实验一--T T L门电路参数测试实验

实验一 TTL门电路参数测试实验 一、实验目的 1.掌握TTL集成与非门的主要性能参数及测试方法。 2.掌握TTL器件的使用规则。 3.熟悉数字电路测试中常用电子仪器的使用方法。 二、实验原理 本实验采用二输入四与非门74LS00(它的顶视图见附录),即一块集成块内含有四个相互独立的与非门,每个与非门有两个输入端。其逻辑框图如下: 图1-1 74LS00的逻辑图图1-2 I is的测试电路图TTL集成与非门的主要参数有输出高电平V OH、输出低电平V OL、扇出系数N0、电压传输特性和平均传输延迟时间t pd等。 (1)TTL门电路的输出高电平V OH V OH是与非门有一个或多个输入端接地或接低电平时的输出电压值,此 时与非工作管处于截止状态。空载时,V OH的典型值为3.4~3.6V,接有 拉电流负载时,V OH下降。 (2)TTL门电路的输出低电平V OL

V OL是与非门所有输入端都接高电平时的输出电压值,此时与非工作管 处于饱和导通状态。空载时,它的典型值约为0.2V,接有灌电流负载 时,V OL将上升。 (3)TTL门电路的输入短路电流I is 它是指当被测输入端接地,其余端悬空,输出端空载时,由被测输入端 输出的电流值,测试电路图如图1-2。 (4)TTL门电路的扇出系数N0 扇出系数N0指门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL集成与非门有两种不同性质的负载,即灌电流负载和拉电流负载。因此,它有两种扇出系数,即低电平扇出系数N0L和高电平扇出系数N0H。通常有I iHN0L,故常以N0L作为门的扇出系数。 N0L的测试电路如图1-3所示,门的输入端全部悬空,输出端接灌电流负载R L,调节R L使I OL增大,V OL随之增高,当V OL达到V Olm(手册中规定低电平规范值为0.4V)时的I OL就是允许灌入的最大负载电流,则 N0L=I OL÷I is,通常N0L>8 (5)TTL门电路的电压传输特性 门的输出电压V o随输入电压V i而变化的曲线V o=f(V i)称为门的电压传输特性,通过它可读得门电路的一些重要参数,如输出高电平V OH、输出低电平V OL、关门电平V off、开门电平V ON等值。测试电路如图1-4所示,采用逐点测试法,即调节R w,逐点测得V i及V o,然后绘成曲线。

实验1门电路的功能测试

实验一门电路的功能测试 1.实验目的 (1)熟悉数字电路实验装置,能正确使用装置上的资源设计实验方案; (2)熟悉双列直插式集成电路的引脚排列及使用方法; (3)熟悉并验证典型集成门电路逻辑功能。 2.实验仪器与材料 (1)数字电路实验装置1台; (2)万用表1块 (3)双列直插集成电路芯片74LS00、74LS86、74LS125各1片,导线若干。 3.知识要点 (1)数字电路实验装置的正确使用 TPE-D6A电子技术学习机是一种数字电路实验装置,利用装置上提供的电路连线、输入激励、输出显示等资源,我们可以设计合理的实验方案,通过连接电路、输入激励信号、测试输出状态等一系列实验环节,对所设计的逻辑电路进行结果测试。该实验装置功能模块组成如图1.1所示。 图中①为集成电路芯片区,有15个IC插座及相应的管脚连接端子,其中A13是8管脚插座,A11、A12是14管脚插座,A1、A2、A3、A7、A8是16管脚插座,A4、A5是18管脚插座,A9、A14、A16、A7、A8是20管脚插座,A10、A15是24管脚插座。根据双列直插式集成电路芯片的管脚数可以选择相同管脚数的IC插座,并将集成电路芯片插入IC插座(凹口侧相对应),可以通过导线将管脚引出的接线端相连,实现电路的连接。 图中②为元件区,内有多个不同参数值的电阻、电容以及二极管、三极管、稳压管、蜂鸣器等元件可供连接电路时选择。 图中③为电位器区,内有1k、10k、22k、100k、220k阻值的电位器等元件可供连接电路时选择。 图中④为直流稳压电源区,是装置内部的直流稳压电源提供的+5V、-5V、+15V、-15V 电源输出引脚,可以为有源集成芯片提供工作电源电压。

厦大数电实验二TTL与非门电路参数测试

实验二 TTL 与非门电路参数测试 一、实验目的 1、掌握TTL 与非门参数的物理意义。 2、掌握TTL 与非门参数的测试方法。 3、了解TTL 与非门的逻辑功能。 二、实验原理 7400是TTL 型中速二输入四与非门。下图为其内部电路原理图和管脚排列图。 TTL 内部原理图 管脚排列图 1.与非门参数 (1)输入短路电流I IS : 与非门某输入端接地时,该输入端流入地的电流. (2)输入高电平电流I IH : 与非门某输入端接Vcc ,其他输入端悬空或接Vcc 时,流入该输入端的电流. (3)开门电平V ON : 使输出端维持V OL 所需的最小输入高电平,通常以Vo=0.4V 时的Vi 定义。 (4)关门电平V OFF : 使输出端维持V OH 所允许的最大输入低电平,通常以Vo=0.9V OH 时的Vi 定义。 阈值电平V T :V T =(V OFF +V ON )/2

(5)开门电阻R ON 某输入端对地接入电阻,使输出端维持低电平所需的最小电阻值。 (6)关门电阻R OFF 某输入端对地接入电阻,使输出端维持高电平所允许的最大电阻值。 TTL 与非门输入端的电阻负载特性曲线: (7)平均传输延迟时间t pd : 开通延迟时间t OFF :输入正跳变上升到1.5V 相对输出负跳变下降到1.5V 的时间间隔;关闭延迟时间t ON :输入负跳变下降到1.5V 相对输出正跳变上升到1.5V 的时间间隔;平均传输延迟时间:开通延迟时间与关闭延迟时间的算术平均值,t pd =(t OFF +t ON )/2。 2.与非门电压传输特性: 3.TTL 与非门的逻辑特性: 三、实验仪器

实验一TTL各种门电路功能测试

实验序号实验题目 TTL各种门电路功能测试 实验时间实验室 1.实验元件(元件型号;引脚结构;逻辑功能;引脚名称) 1.SAC-DS4数字逻辑实验箱1个 2.数字万用表1块 3.74LS20双四输入与非门1片 4.74LS02四二输入或非门1片 5.74LS51双2-3输入与或非门1片 6.74LS86 四二输入异或门1片 7.74LS00四二输入与非门2片 (1)74LS20引脚结构及逻辑功能(2)74LS02引脚结构及逻辑功能 (3)74LS51引脚结构及逻辑功能(4)74LS86引脚结构及逻辑功能 (5)74LS00引脚结构及逻辑功能

2.实验目的 (1)熟悉TTL各种门电路的逻辑功能及测试方法。(2)熟悉万用表的使用方法。 3.实验电路原理图及接线方法描述: (1)74LS00实现与电路电路图 (2)74LS00实现或电路电路图

(3)74LS00实现或非电路电路图 (4)74LS00实现异或电路

4.实验中各种信号的选取及控制(电源为哪些电路供电;输入信号的分布位置;输出信号的指示类型;总结完成实验条件) 5.逻辑验证与真值表填写 (1)74LS00实现与电路电路图逻辑分析 逻辑运算过程分析: 1 21 Y=AB Y=Y=AB=AB 真值表: (2)74LS00实现或电路电路图 逻辑运算过程分析: 1 2 312 Y=AA=A Y=BB=B Y=Y Y=AB=A+B=A+B 真值表: 输入输出 A B 2 Y 0 0 0 0 1 0 1 0 0 1 1 1 输入输出 A B 3 Y 0 0 0 0 1 1 1 0 1 1 1 1

时序逻辑电路练习题及答案

《时序逻辑电路》练习题及答案 [6.1] 分析图P6-1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图P6-1 [解] 驱动方程:311Q K J ==, 状态方程:n n n n n n n Q Q Q Q Q Q Q 13131311⊕=+=+; 122Q K J ==, n n n n n n n Q Q Q Q Q Q Q 12212112 ⊕=+=+; 33213Q K Q Q J ==,, n n n n Q Q Q Q 12313 =+; 输出方程:3Q Y = 由状态方程可得状态转换表,如表6-1所示;由状态转换表可得状态转换图,如图A6-1所示。电路可以自启动。 表6-1 n n n Q Q Q 123 Y Q Q Q n n n 111213+++ n n n Q Q Q 123 Y Q Q Q n n n 1112 13+++ 0 00 00 1 010 01 1 0010 0100 0110 1000 100 10 1 110 11 1 000 1 011 1 010 1 001 1 图A6-1 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。 [6.2] 试分析图P6-2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图P6-2

[解] 驱动方程:21 Q A D =, 2 12Q Q A D = 状态方程:n n Q A Q 21 1 =+, )(122112n n n n n Q Q A Q Q A Q +==+ 输出方程:21Q Q A Y = 表6-2 由状态方程可得状态转换表,如表6-2所示;由状态转换表 可得状态转换图,如图A6-2所示。 电路的逻辑功能是:判断A 是否连续输入四个和四个以上“1” 信号,是则Y=1,否则Y=0。 图A6-2 [6.3] 试分析图P6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 图P6-3 [解] 321Q Q J =,11=K ; 12Q J =,312Q Q K =; 23213Q K Q Q J ==, =+11n Q 32Q Q ·1Q ; 211 2 Q Q Q n =++231Q Q Q ; 3232113Q Q Q Q Q Q n +=+ Y = 32Q Q 电路的状态转换图如图A6-3所示,电路能够自启动。 图A6-3 [6.4] 分析图P6-4给出的时序电路,画出电路的状态转换图,检查电路能否自启动,说明电路实现的功能。A 为输入变量。 n n Q AQ 12 Y Q Q n n 1 112++ 000 00 1 010 01 1 100 11 1 110 10 1 010 100 110 00 1 11 1 100 010 000

实验31 TTL与非门参数测试及使用

第三部分数字电路实验 实验3.1 TTL与非门参数测试及使用 [要点提示] 一、实验目的 二、实验预习要求 三、实验原理 四、实验仪器设备 五、练习内容及方法 六、实验报告 七、思考题 [内容简介] 一、实验目的 1.掌握TTL集成与非门的逻辑功能和主要参数的测试方法。 2.掌握TTL器件的使用规则。 3.熟悉数字电路实验箱的结构、基本功能和使用方法。 二、实验预习要求 1.了解数字实验箱的基本结构及使用方法。 2.了解TTL与非门主要参数的定义和意义。 3.熟悉各测试电路,了解测试原理及测试方法。 4.熟悉TTL与非门74LS00的外引线排列。 5.自拟实验步骤和数据表格。 三、实验原理 1.TTL与非门的主要参数 TTL与非门具有较高的工作速度、较强的抗干扰能力、较大的输出幅度和负载能力等优点,因而得到了广泛的应用。 (1)输出高电平VoH:输出高电平是指与非门有一个以上输入端接地或接低电平时的输出电平值。空载时,VOH必须大于标准高电平(VSH=2.4 V),接有拉电流负载时,VOH将下降。测试VOH的电路如图1、1所示。

图1、1 VOh 的测试电路图1、2 VOL的测试电路 (2)输出低电平VOL:输出低电平是指与非门的所有输入端都接高电平时的输出电平值。空载时,VOL 必须低于标准低电平(VsL=O.4 V),接有灌电流负载时,VOL将上升。测试VoL电路如图1、2所示。(3)输入短路电流IIS:输入短路电流IIS是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流。前级输出低电平时,后级门的IIS就是前级的灌电流负载。一般IIS<1.6mA。测试IIS的电路见图1、3所示。 (4)扇出系数N:扇出系数N是指能驱动同类门电路的数目,用以衡量带负载的能力。图1、4所示电路能测试输出为低电平时,最大允许负载电流IOL,然后求得N=IOL/IIS。一般N>8的与非门才被认为是合格的。 图1、3 IIS的测试电路图1、4 扇出系数N的测试电路 2.TTL与非门的电压传输特性 利用电压传输特性不仅能检查和判断TTL与非门的好坏,还可以从传输特性上直接读出其主要静态参数,如VOH、VOL、VON、Voff、VNH和VNL,如图1-5所示。传输特性的测试电路如图1、6所示。

实验一基本门电路的逻辑功能测试

实验一基本门电路的逻辑功能测试 一、实验目的 1、测试与门、或门、非门、与非门、或非门与异或门的逻辑功能。 2、了解测试的方法与测试的原理。 二、实验原理 实验中用到的基本门电路的符号为: 在要测试芯片的输入端用逻辑电平输出单元输入高低电平,然后使用逻辑电平显示单元显示其逻辑功能。 三、实验设备与器件 1、数字逻辑电路用PROTEUS 2、显示可用发光二极管。 3、相应74LS系列、CC4000系列或74HC系列芯片若干。 四、实验内容 1.测试TTL门电路的逻辑功能: a)测试74LS08的逻辑功能。(与门)000 010 100 111 b)测试74LS32的逻辑功能。(或门)000 011 101 111 c)测试74LS04的逻辑功能。(非门)01 10 d)测试74LS00的逻辑功能。(两个都弄得时候不亮,其他都亮)(与非门)(如果只接一个的话,就是非门)001 011 101 110 e)测试74LS02(或非门)的逻辑功能。(两个都不弄得时候亮,其他不亮)001 010 100 110 f)测试74LS86(异或门)的逻辑功能。 2.测试CMOS门电路的逻辑功能:在CMOS 4000分类中查询 a)测试CC4081(74HC08)的逻辑功能。(与门) b)测试CC4071(74HC32)的逻辑功能。(或门) c)测试CC4069(74HC04)的逻辑功能。(非门) d)测试CC4011(74HC00)的逻辑功能。(与非门)(如果只接一个的话,就是非门)

e)测试CC4001(74HC02)(或非门)的逻辑功能。 f) 测试CC4030(74HC86)(异或门)的逻辑功能。 五、实验报告要求 1.画好各门电路的真值表表格,将实验结果填写到表中。 2.根据实验结果,写出各逻辑门的逻辑表达式,并分析如何判断逻辑门的好坏。 3.比较一下两类门电路输入端接入电阻或空置时的情况。 4.查询各种集成门的管脚分配,并注明各个管脚的作用与功能。 例:74LS00 与门 Y=AB

时序逻辑电路习题

触发器 一、单项选择题: (1)对于D触发器,欲使Q n+1=Q n,应使输入D=。 A、0 B、1 C、Q D、 (2)对于T触发器,若原态Q n=0,欲使新态Q n+1=1,应使输入T=。 A、0 B、1 C、Q (4)请选择正确的RS触发器特性方程式。 A、 B、 C、 (约束条件为) D、 (5)请选择正确的T触发器特性方程式。 A、 B、 C、 D、 (6)试写出图所示各触发器输出的次态函数(Q )。 n+1 A、 B、 C、 D、 (7)下列触发器中没有约束条件的是。 A、基本RS触发器 B、主从RS触发器 C、同步RS触发器 D、边沿D触发器 二、多项选择题: (1)描述触发器的逻辑功能的方法有。 A、状态转换真值表 B、特性方程 C、状态转换图 D、状态转换卡诺图 (2)欲使JK触发器按Q n+1=Q n工作,可使JK触发器的输入端。

A、J=K=0 B、J=Q,K= C、J=,K=Q D、J=Q,K=0 (3)欲使JK触发器按Q n+1=0工作,可使JK触发器的输入端。 A、J=K=1 B、J=0,K=0 C、J=1,K=0 D、J=0,K=1 (4)欲使JK触发器按Q n+1=1工作,可使JK触发器的输入端。 A、J=K=1 B、J=1,K=0 C、J=K=0 D、J=0,K=1 三、判断题: (1)D触发器的特性方程为Q n+1=D,与Q 无关,所以它没有记忆功能。() n (2)同步触发器存在空翻现象,而边沿触发器和主从触发器克服了空翻。 () (3)主从JK触发器、边沿JK触发器和同步JK触发器的逻辑功能完全相同。() (8)同步RS触发器在时钟CP=0时,触发器的状态不改变( )。 (9)D触发器的特性方程为Q n+1=D,与Q n无关,所以它没有记忆功能( )。 (10)对于边沿JK触发器,在CP为高电平期间,当J=K=1时,状态会翻转一次( )。 四、填空题: (1)触发器有()个稳态,存储8位二进制信息要 ()个触发器。 (2)在一个CP脉冲作用下,引起触发器两次或多次翻转的现象称为触发器的(),触发方式为()式或()式的触发器不会出现这种现象。 (3)按逻辑功能分,触发器有()、()、()、()、()五种。 (4)触发器有()个稳定状态,当=0,=1时,称为()状态。 时序逻辑电路 一、单项选择题: (2)某512位串行输入串行输出右移寄存器,已知时钟频率为4MHZ,数据从输入端到达输出端被延迟多长时间? A、128μs B、256μs C、512μs D、1024μs (3)4个触发器构成的8421BCD码计数器共有()个无效状态。 A、6 B、8 C、10 D、4 (4)四位二进制计数器模为 A、小于16 B、等于16 C、大于16 D、等于10 (5)利用异步预置数端构成N进制加法计数器,若预置数据为0,则应将()所对应的状态译码后驱动控制端。 A、N B、N-1 C、N+1 (7)采用集成中规模加法计数器74LS161构成的电路如图所示,选择正确答案。 A、十进制加法计数器 B、十二进制加法计数器

第5章 时序逻辑电路思考题与习题题解

思考题与习题题解 5-1填空题 (1)组合逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与电路原来所处的状态无关;时序逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与信号作用前电路原来所处的状态有关。 (2)构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 (3)一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 (4)要组成模15计数器,至少需要采用 4 个触发器。 5-2 判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√)(4)计数器的模是指构成计数器的触发器的个数。(×) 5-3 单项选择题 (1)下列电路中,不属于组合逻辑电路的是(D)。 A.编码器 B.译码器 C. 数据选择器 D. 计数器 (2)同步时序电路和异步时序电路比较,其差异在于后者( B )。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 (3)在下列逻辑电路中,不是组合逻辑电路的有( D )。 A.译码器 B.编码器 C.全加器 D.寄存器 (4)某移位寄存器的时钟脉冲频率为100KHz,欲将存放在该寄存器中的数左移8位,完成该操作需要(B)时间。 A.10μS B.80μS C.100μS D.800ms (5)用二进制异步计数器从0做加法,计到十进制数178,则最少需要( C )个触发器。 A.6 B.7 C.8 D.10 (6)某数字钟需要一个分频器将32768Hz的脉冲转换为1HZ的脉冲,欲构成此分频器至少需要(B)个触发器。 A.10 B.15 C.32 D.32768 (7)一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10

TTL与非门参数测试

一. 实验目的 1)熟悉TTL与非门集成电路的外形和管脚引线排列。 2)通过测试了解与非门的直流参数 3)加深对与非门逻辑功能的认识 二. 实验仪器(点击可看到图片) 1. xst-6D电子技术综合实验装置 2. 500型万用表 3. DS1052E (点击可阅读使用手册) 4. 元件:74LS20 三. 预习要求 1. 复习《数字电子技术基础》相关内容 2. 了解74ls20的逻辑功能和管脚排列; 3.ICCL, IIL, IIH, IOL, No,tpd是什么? 4. 与非门在什么条件下输出高电平?什么情况下输出低电平?不用的输入端怎么处理? 5. TTL电路,如果某输入端悬空,则相当于给该输入端输入了什么电平的信号? 6. 请说明用直流电流表测电路的某个支路电流时关键步骤和应注意的事项? 四. 实验原理、步骤 首先,根据逻辑功能检查与非门是否良好。 1. 测量下列各直流参数: 1)低电平输出时的电源电流ICCL。 门电路的信号输入、输出脚悬空,这时门电路的输出处在低电平状态,这时,用直流电流表测出IC的Vcc脚的电流。 2)低电平输入电流IIL。

3)高电平输入电流IIH。 4)电压传输特性。 Uon:表示与非门输出低电平时,允许输入的高电平的电压值的最小值,在图上求出。(即在VOL=0.4V时,求Vi) Uoff:表示与非门输出高电平时,允许输入的低电平的电压值的最大值,在图上求出。(即在VoH=2.4V时,求Vi) 5)扇出系数No

得出的小数要圆整 6)平均传输延迟时间tpd。 我们把输出电压波形滞后于输入电压波形的时间叫传输延迟时间(见《数字电子技术基础》门电路)。有两个重要参数tPHL,tPLH, 五. 报告要求 1)列出直流参数的实测数据表格,,与出厂参数相比,判断参数是否合格。 2) 一个该非门能驱动多少个TTL门电路?假设LED的工作电流是20mA,他可以用该门电路直接驱动吗(画出该电路)? 3) 画出传输特性,确定VOFF、VON、VOL、VOH值 4)列出与非门的实测数据表格,看逻辑关系是否相符。 5)什么是集成电路?74LS20、CD4007(下次实验用)各属于哪种类型的集成电路? 6)PCB是什么?列出英文全称。

门电路逻辑功能及测试实验报告记录

门电路逻辑功能及测试实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

深圳大学实验报告实验课程名称:数字电路实验 实验项目名称:门电路逻辑功能及测试学院:信息工程学院 报告人:许泽鑫学号:201 班级:2班同组人: 指导教师:张志朋老师 实验时间:2016-9-27 实验报告提交时间:2016-10-11

一、实验目的 (1)熟悉门电路逻辑功能,并掌握常用的逻辑电路功能测试方法。 (2)熟悉RXS-1B数字电路实验箱。 二、方法、步骤 1.实验仪器及材料 1)RXS-1B数字电路实验箱 2)万用表 3)器件 74LS00四2输入与非门1片 74LS86四2输入异或门1片 2.预习要求 1)阅读数字电子技术实验指南,懂得数字电子技术实验要求和实验方 法。 2)复习门电路工作原理及相应逻辑表达式。 3)熟悉所用集成电路的外引线排列图,了解各引出脚的功能。 4)学习RXB-1B数字电路实验箱使用方法。 3.说明 用以实现基本逻辑关系的电子电路通称为门电路。常用的门电路在逻辑功能上有非门、与门、或门、与非门、或非门、与或非门、异或门等几种。 非逻辑关系:Y=A 与逻辑关系:Y=A B + 或逻辑关系:Y=A B 与非逻辑关系:Y=A B + 或非逻辑关系:Y=A B + 与或非逻辑关系:Y=A B C D ⊕ 异或逻辑关系:Y=A B

三、实验过程及内容 任务一:异或门逻辑功能测试 集成电路74LS86是一片四2输入异或门电路,逻辑关系式为1Y=1A ⊕1B ,2Y=2A ⊕2B , 3Y=3A ⊕3B ,4Y=4A ⊕4B ,其外引线排列图如图1.3.1所示。它的1、2、4、5、9、10、12、13号引脚为输入端1A 、1B 、2A 、2B 、3A 、3B 、4A 、4B ,3、6、8、11号引脚为输出端1Y 、2Y 、3Y 、4Y ,7号引脚为地,14号引脚为电源+5V 。 (1)将一片四2输入异或门芯片74LS86插入RXB-1B 数字电路实验箱的任意14引脚的IC 空插座中。 (2)按图1.3.2接线测试其逻辑功能。芯片74LS86的输入端1、2、4、5号引脚分别接至数字电路实验箱的任意4个电平开关的插孔,输出端3、6、8分别接至数字电路实验箱的电平显示器的任意3个发光二极管的插孔。14号引脚+5V 接至数字电路实验箱的+5V 电源的“+5V ”插孔,7号引脚接至数字电路实验箱的+5V 电源的“⊥”插孔。 (3)将电平开关按表1.3.1设置,观察输出端A 、B 、Y 所连接的电平显示器的发光二极管的状态,测量输出端Y 的电压值。发光二极管亮表示输出为高电平(H ),发光二极管不亮表示输出为低电平(L )。把实验结果填入表1.3.1中。 图1.3.1 四2输入异或门74LS86外引线排列图 1A 1B 1Y 2A 2B 74LS86 V CC 4B 4A 4Y 3B 4A 3Y 1 2 3 4 5 14 13 12 11

门电路逻辑功能及测试(完成版)

实验一门电路逻辑功能及测试 计算机一班组员:2014217009赵仁杰 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片

三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。实验中改动接线须先断开电源,接好线后再通电实验。每个芯片的电源和GND引脚,分别和实验台的+5V 和“地(GND)”连接。芯片不给它供电,芯片是不工作的。用实验台的逻辑开关作为被测器件的输入。拨动开关,则改变器件的输入电平。开关向上,输入为1,开关向下,输入为0。 将被测器件的输出引脚与实验台上的电平指示灯连接。指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。 1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显示发光二极管D1~D4中任意一个。注意:芯片74LS20的14号引脚要接试验箱下方的+5V电源,7号引脚要接试验箱下方的地(GND)。用万用表测电压时,万用表要调到直流20V档位,因为芯片接的电源是直流+5V。 表1.1

电子线路基础数字电路实验1 门电路逻辑功能及逻辑变换

实验一门电路逻辑功能及逻辑变换 一、实验目的 1、熟悉门电路逻辑功能及测试方法。 2、熟悉门电路的逻辑变换方法。 3、熟悉数字电路实验箱的使用方法。 二、实验仪器 1、示波器1台 2、数字电路实验箱1台 3、器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 74LS04 六反相器1片 三、实验原理 集成逻辑门是最基本的集成数字部件,任何复杂的逻辑电路都可以用多个逻辑门通过适当的连接方式组合而成。目前,虽然中、大规模数字集成器件的应用已很普遍,在设计数字电路时,不必从单个逻辑门出发去组合,但为了满足所有数字电路的需要,各种逻辑门电路仍然是不可缺少的。 基本逻辑门有与门、或门和非门。除基本门以外,常用的门电路还有与非门、或非门、异或门等。其中与非门有较强的通用性,其通用性在于任何复杂的逻辑电路都可以用多个与非门组合而成,而且用与非门可以组合成其它各种逻辑门。下面以异或逻辑为例,介绍用与非门组成其它逻辑门的方法和步骤。 (1)利用逻辑代数将异或逻辑表达式变换成与非逻辑表达式。变换过程如下:Y+ = A B B A A A+ = B + + ( ) B ) (B A A+ = AB B AB A =(1-14-1) AB B AB (2)按与非逻辑表达式画出与非门组成的逻辑图。图1-14-1为用与非门实现异或逻辑的逻辑图。

图1-14-1 用与非门实现异或逻辑的逻辑图 三、实验内容及步骤 1、测试门电路逻辑功能 (1)选用双四输入与非门74LS20一只, 按图1-14-2接线,输入端接逻辑电平开关, 输出端接电平显示发光二极管。 (2)将逻辑电平开关按表1-14-1置位, 分别测输出电压及逻辑状态。 图1-14-2 表1-14-1

实验一 逻辑门电路的逻辑功能及测试

实验一逻辑门电路的逻辑功能及测试 一.实验目的 1.掌握了解TTL系列、CMOS系列外形及逻辑功能。 2.熟悉各种门电路参数的测试方法。 3. 熟悉集成电路的引脚排列,如何在实验箱上接线,接线时应注意什么。 二、实验仪器及材料 a)TDS-4数电实验箱、双踪示波器、数字万用表。 b)1)CMOS器件: CC4011 二输入端四与非门 1 片 CC4071 二输入端四或门 1片2)TTL器件: 74LS86 二输入端四异或门 1 片 74LS02 二输入端四或非门 1 片 74LS00 二输入端四与非门 1片 74ls125 三态门 1片 74ls04 反向器材 1片 三.预习要求和思考题: 1.预习要求: 1)复习门电路工作原理及相应逻辑表达式。 2)常用TTL门电路和CMOS门电路的功能、特点。 3)三态门的功能特点。 4)熟悉所用集成电路的引线位置及各引线用途。 5)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 1)TTL门电路和CMOS门电路有什么区别? 2)用与非门实现其他逻辑功能的方法步骤是什么? 四.实验原理 1.本实验所用到的集成电路的引脚功能图见附录。 2.门电路是最基本的逻辑元件,它能实现最基本的逻辑功能,即其输入与输出之间存在一定的逻辑关系。 TTL集成门电路的工作电压为“5V±10%”。本实验中使用的TTL集成门电路是双列直插型的集成电路,其管脚识别方法:将TTL集成门电路正面(印有集成门电路型号标记)正对自己,有缺口或有圆点的一端置向左方,左下方第一管脚即为管脚“1”,按逆时针方向数,依次为1、2、3、4············。如图1—1所示。具体的各个管脚的功能可通过查找相关手册得知,本书实验所使用的器件均已提供其功能。 图1—1

数字逻辑几个时序逻辑电路例题

《时序逻辑电路》练习题及答案 []分析图时序电路的逻辑功能,写出电路的驱动方程、 状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图 [解] 驱动方程:3 1 1 Q K J= =,状态方程:n n n n n n n Q Q Q Q Q Q Q 1 3 1 3 1 3 1 1 ⊕ = + = + ; 1 2 2 Q K J= =,n n n n n n n Q Q Q Q Q Q Q 1 2 2 1 2 1 1 2 ⊕ = + = + ; 3 3 2 1 3 Q K Q Q J= =,,n n n n Q Q Q Q 1 2 3 1 3 = + ; 输出方程:3 Q Y= 由状态方程可得状态转换表,如表所示;由状态转换表可得状态转换图,如图所示。电路可以自启动。 表 n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + +n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + + 000 001 010 011 0010 0100 0110 1000 100 101 110 111 0001 0111 0101 0011 图 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。

[]试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出 电路的状态转换图。A为输入逻辑变量。 图 [解] 驱动方程:2 1 Q A D=, 2 1 2 Q Q A D= 状态方程: n n Q A Q 2 1 1 = + , ) ( 1 2 2 1 1 2 n n n n n Q Q A Q Q A Q+ = = + 输出方程:2 1 Q Q A Y=表 由状态方程可得状态转换表,如表所示;由状态转换表可得 状态转换图,如图所示。 电路的逻辑功能是:判断A是否连续输入四个和四个以上 “1”信号,是则Y=1,否则Y=0。 图 []试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 图 [解] 3 2 1 Q Q J=,1 1 = K; 1 2 Q J=, 3 1 2 Q Q K=; 2 3 2 1 3 Q K Q Q J= =, = +1 1 n Q 3 2 Q Q· 1 Q; 2 1 1 2 Q Q Q n= + +2 3 1 Q Q Q; 3 2 3 2 1 1 3 Q Q Q Q Q Q n+ = + Y = 3 2 Q Q 电路的状态转换图如图所示,电路能够自启动。 n n Q AQ 1 2 Y Q Q n n1 1 1 2 + + 000 001 010 011 100 111 110 101 010 100 110 001 111 100 010 000

相关文档
相关文档 最新文档