文档库 最新最全的文档下载
当前位置:文档库 › 可靠性-焊点开裂(黑焊盘)

可靠性-焊点开裂(黑焊盘)

可靠性-焊点开裂(黑焊盘)
可靠性-焊点开裂(黑焊盘)

焊点开裂(黑焊盘)

一、样品描述:

在测试过程中发现板上BGA器件存在焊接失效,用热风拆除BGA器件后,发现对应PCB 焊盘存在不润湿现象。

二、染色试验:

焊点开裂主要发生在四个边角上,且开裂位置均为BGA器件焊球与PCB焊盘间。

三、金相及SEM分析

四、综合分析

对所送PCBA器件焊点进行分析,均发现已失效器件和还未失效器件焊点在IMC与Ni

层的富磷层(P-Rich)间存在开裂,且镍层存在腐蚀;在焊接过程中,Sn与Ni反应生成Sn/Ni 化合物,而镍层中的磷不参与合金反应,因此多余的磷原子则会留在镍层和合金层界面,过多的P在镍和IMC界面富集将形成黑色的富磷(P-Rich)层,同时,存在的镍层腐蚀会影响焊料与镍层的结合,富磷层和镍层腐蚀的存在会降低焊点与焊盘之间的结合强度;当焊点在组装过程中受到应力时,会在焊点强度最弱处发生开裂,BGA封装角部焊点由于远离中心点,承受的应力更大,故开裂一般会先发生在角部。由于未发现板子严重翘起、器件机械损伤等异常应力作用的特征,因此导致焊点开裂的应力可能来自于回流焊接或者波峰焊接过程等环境中所受到的正常应力。

同时,同批次及相邻批次PCB样品(生产日期0725和0727)Au/Ni焊盘SEM&EDS的分析结果也表明,PCB焊盘Ni层也存在一定腐蚀。

由以上分析可得,由于较厚富磷层(P-Rich)及镍层腐蚀的存在,将降低焊点与焊盘之间的结合强度,使得该处成为焊点强度最薄弱的地方,在受到正常应力情况下,发生开裂失效。

五、分析结论

(1)BGA器件焊接失效表现为焊点存在100%开裂,开裂位置发生在IMC与PCB焊盘Ni层的富磷层(P-Rich)间。

(2)导致BGA焊点开裂的原因是,焊点中PCB面焊盘镍层存在腐蚀以及镍层表面富磷层的存在降低了焊点与焊盘的机械结合强度,当受到正常应力作用时发生开裂失效。

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

金属焊接性与焊接结构设计

金属焊接性与焊接结构设计 专业_________班级_______学号_______姓名___________ 10-1 判断题(正确的画O,错误的画×) 1.金属的焊接性不是一成不变的。同一种金属材料,采用不同的焊接方法及焊接材料,其焊接性可能有很大差别。(O)2.焊接中碳钢时,常采用预热工艺。预热对减小焊接应力十分有效。同时,预热也可防止在接头上产生淬硬组织。(O)3.根据等强度原则,手工电弧焊焊接400MPa级的15MnV钢,需使用结426和结427(或结422、结423)焊条。(×) 10-2 选择题 1.不同金属材料的焊接性是不同的。下列铁碳合金中,焊接性最好的是(D)。 A.灰口铸铁;B.可锻铸铁;C.球墨铸铁; D.低碳钢;E.中碳钢;F.高碳钢。 2.焊接梁结构,焊缝位置如图10-l所示,结构材料为16Mn钢,单件生产。上、下翼板的拼接焊缝A应用(B)方法和(E)焊接材料;翼板和腹板的四条长焊缝B 宜采用(A)方法焊接,使用的焊接材料为(H);筋板焊缝C应采用(A)方法焊接,焊接材料为(E)。 A.埋弧自动焊;B.手工电弧焊;C.氩弧焊;D.电渣焊;E.结507; F.结422;G.结427;H.H08MnA和焊剂431;I.H08MnSiA; J.H08A和焊剂130。 图10-1 10-3 填空题

1.图10-2所示为汽车传动轴,由锻件45钢和钢管Q235钢焊接而成。大批量生产时,合适的焊接方法为(CO 气体保护焊);使用的焊接材料为(H08MnSiA)。 2 图10-2 图10-3 2.汽车车轮由轮圈和辐板组成,材料均为Q235钢,如图10-3所示。大批量生产时,轮圈由卷板机卷成,再经(闪光对焊)焊接而成;而轮圈与辐板则用(CO 气体保护 2 焊)焊接连为一体,焊接材料为(H08MnSiA)。 10-4 应用题 1.在长春地区用30mm厚的16Mn钢板焊接一直径为20m的容器。16Mn的化学成分如下:C=0.12~0.20%;Si=0.20~0.55%;Mn=1.20~1.60%;P、S<0.045%。 (1)计算16Mn的碳当量; (2)判断16Mn的焊接性; (3)夏季施工时是否需要预热?冬季施工时是否需要预热?如需预热,预热温度应为多少? =0.16+1.40/6 =0.39 16Mn的焊接性良好 夏季施工时不需要预热。冬季施工时需要预热,预热温度应100-150℃。 2.修改焊接结构的设计(焊接方法不变) (1)钢板的拼焊(电弧焊),如图10-4。

金属熔焊原理

金属熔焊原理考点 一.基础题: 1 焊接参数包括:焊接电流、电弧电压、焊接速度、线能量等。(参照课本P15图1-6) 2 焊条的平均熔化速度、熔敷速度均与电流成正比。 3 短路过渡的熔滴质量和过渡周期主要取决于电弧长(电弧电压),随电弧长度的增加,熔滴质量与过渡周期增大。当电弧长度到达一定值时,熔滴质量与过渡周期突然增大,这说明熔滴的过渡形式发生了变化,如果电弧长度不变,增大电流则过渡频率增高,熔滴变细。 4 一般情况下,增大焊接电流,熔宽减小,熔深增大;增大电弧电压,熔宽增大,熔深减小。 5 熔池的温度分布极其不均匀(熔池中部温度最高)。 6 焊接方法的保护方式:手弧焊(气-渣联合保护),埋弧焊、电渣焊(熔渣保护),氩弧焊 CO2焊、等离子焊(气体保护)。 7 焊接化学冶金过程是分区域连续进行的。 8 焊接化学冶金反应区:手工焊有药皮反应区、熔滴反应区、熔池反应区三个反应区;熔化极气保焊只有熔滴和熔池两个反应区;不填充金属的气焊、钨极氩弧焊和电子束焊只有熔池反应区。 9 熔滴阶段的反应时间随焊接电流的增加而变短,随电弧电压的增加而变长。 10 焊接材料只影响焊缝成分而不影响热影响区。 11 焊接区周围的空气是气相中氮的主要来源。 12 熔渣在焊接过程中的作用:机械保护、改善焊接工艺性能、冶金处理。 13 分子理论中酸碱性以1为界点,原子理论中,以0为界点。 14影响FeO分配系数的主要因素有:温度和熔渣的性质。 15焊缝金属的脱氧方式:先期脱氧、沉淀脱氧、扩散脱氧。 16脱硫比脱磷更困难。 17随焊芯中碳含量的增加,焊接时不仅焊缝中的气孔、裂纹倾向增大,并伴有较大飞溅,是焊接稳定性下降。 18焊条的冶金性能是指其脱氧、去氢、脱硫磷、掺合金、抗气孔及抗裂纹的能力,最终反映在焊缝金属的化学成分、力学性能和焊接缺陷的形成等方面。 19 焊剂按制造方法分为:熔炼焊剂和非熔炼焊剂。 20 焊丝的分类:实芯焊丝和药芯焊丝。 21 焊接中的偏析形式:显微偏析、区域偏析、层状偏析。 22 相变组织(二次结晶组织)主要取决于焊缝化学成分和冷却条件。 23焊接热循环的基本参数:加热速度、最高加热速度、相变温度以上停留的时间、冷却速度或冷却时间t8/5、t8/3、t100。 24 产生冷裂纹的三要素:拘束应力、淬硬组织、氢的作用 25冷裂纹的断口组织,宏观上看冷裂纹的断口具有淬硬性断裂的特征,表面有金属光泽,呈人字形发展,从微观上看,裂纹多起源于粗大奥氏体晶粒的晶界交错处。 26 冷裂纹的种类:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹。 27 熔滴过度的作用力:重力、表面张力、电磁压缩力及电弧吹力等。 28活性熔渣对焊缝金属的氧化形式:扩散氧化、置换氧化。 29 熔合比影响焊缝的化学成分、金属组织和机械性能。局部熔化的母材将对焊缝的成分起到稀释作用。 30 焊接过程中对金属的保护有气保护、气-渣联合保护、渣保护、自保护。 二.名词解释: 1 焊接温度场:焊接过程中某一瞬时间焊接接头上个点的温度分布状态。 2 焊缝金属的熔合比:熔化焊时,被熔化的母材在焊缝金属中所占的百分比。 3 药皮重量系数:单位长度药皮与焊芯的质量比。 4 随温度降低黏度缓慢增加的称为长渣。随温度降低黏度迅速降低的称为短渣。 5 合金元素的过度系数:指某合金元素在熔敷金属中的实际质量分数与其在焊材中的原始质量分数之

焊接原理与焊锡性

焊接原理与焊锡性 收藏此信息打印该信息添加:用户投稿来源:未知 1、Abietic Acid松脂酸 是天然松香(Rosin)的主要成份,占其重量比的34%。在焊接的高温下,此酸能将铜面的轻微氧化物或钝化物予以清除,使得清洁铜面可与熔锡产生"接口合金共化"(IMC)而完成焊接。此松脂酸在常温中很安定,不会腐蚀金属。 2、Angle of Contack 接触角 广义是指液体落在固体表面时,其边缘与固体外表在截面上所形益的夹角。在PCB 的狭义上是指焊锡与铜面所形成的Θ角,又称之为双反斜角 (Dihedrel Angle)或直接称为 Contact Angle。 3、Blow Hole 吹孔 指完工的 PTH 铜壁上,可能有破洞(Void 俗称窟窿)存在。当板子在下游进行焊锡时,可能会造成破洞中的残液在高温中迅速气化而产生压力,往外向孔中灌入的熔锡吹出。冷却后孔中之锡柱会出现空洞。这种会吹气的劣质 PTH,特称为"吹孔"。吹孔为 PCB 制程不良的表征,必须彻底避免才能在业界立足。 4、Brazing 硬焊 是指采用含银的铜锌合金焊条,其焊温在425~870℃下进行熔接(Welding)方式,比一般电子工业常见软焊或焊(Soldering),在温度及强度方面都比较高。 5、Cold Solder Joint 冷焊点 焊锡与铜面间在高温焊接过程中,必须先出现 Cn Sn 的"接口合金共化物"(IMC)层,才会出现良好的沾锡或焊锡性(Solderability)。当铜面不洁、热量不足,或焊锡中杂质太多时,都无法形成必须的 IMC(Eta Phase),将出现灰暗多凹坑不平。且结构强度也不足的焊点,系由焊锡冷凝而形成,但未真正焊牢的焊点,特称为"冷焊点",或俗称冷焊。 6、Contact Angle 接触角 一般泛指液体与固接触时,其交界边缘,在液体与固体外表截面上,所呈现的交接角度,谓之 Contact Angle。 7、Dewetting 缩锡 指高温熔融的焊锡与被焊物表面接触及沾锡后,当其冷却固化即完成焊接作用得到焊点(Solder Joint)。正常的焊点或焊面,其已固化的锡面都应呈现光泽平滑的外观,是为焊锡性(Solderability)良好的表征。所谓 Dewetting 是指焊点或焊面呈高低不平、多处下陷,或焊锡面支离破碎甚至曝露底金属,或焊点外缘无法顺利延伸展开,截面之接触角大于 90 度者,皆称为"缩锡"。其基本原因是底

计算机系统的焊点可靠性试验(doc 5页)

计算机系统的焊点可靠性试验(doc 5页)

焊点可靠性试验的计算机模拟 本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。 在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。 在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。 建模与试验 宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。 直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré 干涉测量系统允许在疲劳试验到失效期间的应力场测试。 基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。 预测焊点的可靠性 焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果

焊接成形原理

焊接冶金学(基本原理)课后习题 1.试述熔化焊接、钎焊和粘接在本质上有何区别? 熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒 针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。 粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。 2.怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 3.焊条的工艺性能包括哪些方面? (详见:焊接冶金学(基本原理)p84) 焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等 4.低氢型焊条为什么对于铁锈、油污、水份很敏感?(详见:焊接冶金学(基本原理)p94) 由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。所以,低氢型焊条对于铁锈、油污、水分很敏感。 5.焊剂的作用有哪些? 隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。 6.能实现焊接的能源大致哪几种?它们各自的特点是什么? 见课本p3 :热源种类 7.焊接电弧加热区的特点及其热分布?(详见:焊接冶金学(基本原理)p4)热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,如果再进一步分析时,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。 8.什么是焊接,其物理本质是什么? 焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。

金属材料焊接性知识要点

金属材料焊接性知识要 点 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

金属材料焊接性知识要点 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1可比性2针对性3再现性4经济性 7.常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验C:压板对接焊接裂纹试验法D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析 影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬 度有什么影响 答:因为(1).冷裂纹主要产生在热影响区;

焊点可靠性研究详解

SMT焊点可靠性研究 前言 近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。 研究表明﹐改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来﹐关于焊点形成及焊点可靠性分析理论有大量文献报导。然而﹐这些研究工作都是专业学者们针对焊点

激光焊接基本原理讲解

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

陶瓷与金属焊接

陶瓷与金属焊接技术:金属陶瓷材料发展应用 的关键 (Jul 31 2007 03:37PM ) Ti(C,N)基金属陶瓷是一种颗粒型复合 材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。Ti(C,N)基金属 陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具 材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。

我们研制的是添加TiN的Ti(C,N)基金属陶瓷。由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,

焊点的质量与可靠性

焊点的质量与可靠性 电子产品的“轻、薄、短、小”化对元器件的微型化和组装密度提出了更高的要求。在这样的要求下,如何保证焊点质量是一个重要的问题。焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。也就是说,在生产过程中,组装的质量最终表现为焊接的质量。 目前,在电子行业中,虽然无铅焊料的研究取得很大进展,在世界范围内已开始推广应用,而且环保问题也受到人们的广泛关注,但是由于诸多的原因,采用Sn-Pb焊料合金的软钎焊技术现在仍然是电子电路的主要连接技术。文中将就Sn-Pb焊料合金的焊点质量和可靠性问题进行较全面的介绍。 1 焊点的外观评价 良好的焊点应该是在设备的使用寿命周期内,其机械和电气性能都不发生失效。其外观表现为: (1)良好的润湿 (2)适当的焊料量和焊料完全覆盖焊盘和引线的焊接部位(或焊端),元件高度适中; (3)完整而平滑光亮的表面。原则上,这些准则适合于SMT中的一切焊接方法焊出的各类焊点。此外焊接点的边缘应当较薄,若焊接表面足够大,焊料与焊盘表面的润湿角以300以下为好,最大不超过600. 2 寿命周期内焊点的失效形式 考虑到失效与时间的关系,失效形式分为三个不同的时期, 如图1所示。 (1)早期失效阶段,主要是质量不好的焊点大量发生失效,也有部分焊点是由于不当的工艺操作与装卸造成的损坏。可以通过工艺过程进行优化来减少早期失效率。

(2)稳定失效率阶段,该阶段大部分焊点的质量良好,失效的发生率(失效率)很低,且比较稳定。 (3)寿命终结伦阶段,失效主要由累积的破环性因素造成的,包括化学的、冶金的、热一机械特性等因素,比如焊料与被焊金属之间发生金属化合反应,或热一机械应力造成焊点失效。失效主要由材料的特性、焊点的具体结构和所受载荷决定。 3 焊接工艺引起的焊点失效机理 焊接工艺中的一些不利因素及随后进行的不适当的清洗工艺可能会导致焊点失效。 3.1 热应力与热冲击 波峰焊过程中快速的冷热变化,对元件造成暂时的温度差,这使元件承受热一机械应力。当温差过大时,导致元件的陶瓷与玻璃部分产生应力裂纹。应力裂纹是影响焊点长期可靠性的不利因素。 焊料固化后,PCB还必须由1800C降低到室温。由于PCB和元件之间的热膨胀系数不同,有时也会导致陶瓷元件的破裂。 PCB的玻璃化转变温度一般在1800C和室温之间(FR-4大约是1250C)。焊接后,焊接面被强制冷却,这样PCB的两面就会在同一时刻处于不同的温度。结果当焊接面到达玻璃化转变温度或以下时,另一面还在玻璃化转变温度以上,于是出现PCB翘曲的现象。PCB翘曲严重时会损坏上面的元件。 3.2 金属的溶解 在厚、薄膜混合电路(包括片式电容)组装中,常常有蚀金、蚀银的现象。这是因为焊料中的锡与镀金或镀银引脚中的金、银会形成化合物,导致焊点的可靠性降低。 许多情况下,在焊料从焊接温度冷却到固态温度的期间,有溶解的金属析出,在焊接基体内形成了脆性的金属化合物。铜生成针状的Cu6Sn5,银生成扁平的Ag3Sn,金生成AuSn4立方体。这些化合物有一个共同的特点是,就是非常脆,剪切强度极低,元件极易脱落。如果金、银含量少,生成的化合物的量不会很多,这些化合物对焊点的机械性能还不会造成太大的损害。但是含量较

(完整word版)焊点的质量与可靠性

焊点的质量与可靠性 机电工程学院微电子制造工程 1000150312 黄荣雷 摘要:本文介绍了Sn-Pb合金焊接点发失效的各种表现形式,探讨失效的各种原因。在实践基础上,指出如何在工艺上进行改进已改善焊点的可靠性,提高产品的质量。 1 前言 电子产品的"轻、薄、短、小"化对元器件的微型化和组装密度提出了更高的要求。在这样的要求下,如何保证焊点质量是一个重要的问题。焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。也就是说,在生产过程中,组装的质量最终表现为焊接的质量。 目前,在电子行业中,虽然无铅焊料的研究取得很大进步,在世界范围内已开始推广应用,而且环保问题也受到人们的广泛关注,但是由于诸多的原因,采用Sn-Pb焊料合金的软钎焊技术现在仍然是电子电路的主要连接技术。文中将就Sn-Pn焊料合金的焊点质量和可靠性问题进行较全面地介绍。 2 焊点的外观评价 良好的焊点应该是在设备的使用寿命周期内,其机械和电气性能都不发生失效。其外观表现为: (1)良好的湿润; (2)适当的焊料量和焊料完全覆盖焊盘和引线的焊接部位(或焊端),元件高度适中;(3)完整而平滑光亮的表面。 原则上,这些准则适合于SMT中的一切焊接方法焊出的各类焊点。此外焊接点的边缘应当较薄,若焊接表面足够大,焊料与焊盘表面的湿润角以300以下为好,最大不超过600。 3 寿命周期内焊点的失效形式 考虑到失效与时间的关系,失效形式分为三个不同的时期,如图1所示。 (1)早期失效阶段,主要是质量不好的焊点大量发生失效,也有部分焊点是由于不当的工艺操作与装卸造成的损坏。可以通过工艺过程进行优化来减少早期失效率。 (2)稳定失效率阶段,该阶段大部分焊点的质量良好,失效的发生率(失效率)很低,且比较稳定。 (3)寿命终结阶段,失效主要由累积的破环性因素造成,包括化学的、冶金的、热-机械特性等因素,比如焊料与被焊金属之间发生金属化合反应,或热-机械应力造成焊点失效。失效主要由材料的特性、焊点的具体结构和所受载荷决定。

焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 1. 试述熔化焊接、钎焊和粘接在本质上有何区别? 熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒 针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。 粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。 2. 怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 3. 焊条的工艺性能包括哪些方面? (详见:焊接冶金学(基本原理)p84) 焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等 4. 低氢型焊条为什么对于铁锈、油污、水份很敏感?(详见:焊接冶金学(基本原理)p94)由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。所以,低氢型焊条对于铁锈、油污、水分很敏感。 5. 焊剂的作用有哪些? 隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。 6. 能实现焊接的能源大致哪几种?它们各自的特点是什么? 见课本p3 :热源种类 7. 焊接电弧加热区的特点及其热分布?(详见:焊接冶金学(基本原理)p4) 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,如果再进一步分析时,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。 8. 什么是焊接,其物理本质是什么? 焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材

可焊性、焊接能力和焊点可靠性之评估和测试

可焊性、焊接能力和焊点可靠性之评估和测试 (汕头超声印制板公司广东汕头 515065)马学辉 摘要:本文主要在于明确可焊性、焊接能力和焊点可靠性三者之间的联系和区别,指出对它们进行评估和测试时其各自关注的主要特性和常见的评估和测试方法,同时简单介绍影响它们的关键因素。 关键词:可焊性、焊接能力、焊点可靠性 The Evaluation and Test of Solderability, Soldering ability and Solder Joints Reliability Ma Xuehui Abstract: The objective of the article is to clearly describe the relation and difference among solderability, soldering ability and solder joints reliability and point out the corresponding characteristics when evaluating and testing these items. Usual evaluating and testing methods are briefly introduced and the critical factors to the items are also briefly discussed. Key words: solderability, soldering ability, solder joints reliability 1 前言 可焊性和可靠性是电子组装行业经常提到的名词。焊接能力则很少有人提起,有人往往会把它跟可焊性混淆起来,因此有必要把它跟可靠性一并提出来。其实三者是既有联系,又有区别的。它们分别关注不同的特性,对评估目标是各不相同的,但是却有内在联系。在讨论可焊性、焊接能力和焊点可靠性之前,有必要首先简单了解一下锡钎焊接的过程。 2 锡钎焊接的过程 借助熔化的填充金属(焊料)来连接金属零件的焊接方式称为“钎焊”。焊料熔点温度高于450℃的钎焊称为硬钎焊,常用的焊料有银基焊料和铜基焊料;低于450℃则称为软钎焊,常用的有锡基焊料和铅基焊料。电子装配中通常使用的是锡基焊料的软钎焊,称为锡钎焊。 电子装配过程中,使元器件与基板(即PCB板)连接起来的锡钎焊接工艺,是利用熔融的填充金属(含锡焊料)使接合处表面润湿并分别在两种金属零件之间形成冶金的键合。表面润湿是锡钎焊接的基础。焊料的润湿过程包括以下三个方面。 1)首先是助焊剂有效地破坏氧化膜或保护层,液体焊料在基底金属上面扩展开来。 2)基底金属溶解进入液体焊料。 3)基底金属与液体焊料进行化学反应形成共价键的金属间化合物层(IMC)。 在基地金属上液态焊料的润湿,在各种材料界面张力的作用下,最终将会达到一种平衡稳定状态。可以看出,这个过程包含有物理的和化学的过程,熔融焊料就像是“胶水”一样,使元器件的端子或引脚与PCB上的焊盘或焊垫接合并填充形成焊点。这是焊接的基本原理,指的是参与“连接”的材料,包括焊料(含助焊剂)、元器件的端子和PCB的焊盘通过物理和化学的作用形成焊点的过程。焊接的过程,除此之外,还必须包括:加热、时间和温度等的设定。可焊性和焊接能力可以说是对焊接在不同方面的要求和评价,焊点的可靠性则是焊接后焊点方面的结果和评价。 3 可焊性的评估和测试 可焊性一般指金属表面被熔融焊料润湿的能力,润湿的过程如上所述,在电子行业中,可焊性评估的目的是验证元器件引脚或焊端的可焊性是否满足规定的要求和判断存储对元器件焊接到单板上的能力是否产生了不良影响,可焊性测试主要是测试镀层可润湿能力的稳健性(robustness)。可焊性测试通常用于判断元器件和PCB在组装前的可焊性是否满足要求。 焊料润湿性能的试验方法有很多种,包括静滴法(Sessile drop)、润湿称量法(Wetting balance也称润湿平衡法)、浸锡法等。图1为静滴法的示意图,该法是将液体滴落在洁净光滑的试样表面上,待达到平衡稳定状态后,拍照放大,直接测出润湿角θ,并可通过θ角计算相应的液—固界面张力。该法中接触角θ可用于表征润湿合格与否,θ≤90°,称为润湿,θ>90°,称为不润湿,θ=0°,称为完全润湿,θ=180°,为完全不润湿。

激光焊接原理讲解

激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域的局部加热,激光辐射的能量通过热传导向材料的部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接的主要特性。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。

金属焊接性

2012太原科技大学期末考试试题 金属焊接性:是金属是否能适应焊接加工而形成完整的,具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行能力。 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 1.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 中碳调质钢的焊接有冷裂纹,热裂纹热影响区性能的变化(脆化,软化)等问题。 特殊性能的低合金钢分为低温刚,耐候钢,低合金耐蚀钢三类。 珠光体耐热钢提高高温强度的途径是碳含量低,合金元素少(不超过3%-5%)热膨胀系数小导热性好,并有良好的冷热加工性,加入Cr,Mo,W,V,等主要强化铁素体,提高钢的高温强度。 不锈钢空冷后室温组织分为铁素体钢,奥氏体钢,马氏体钢,奥氏体-铁素体双相钢,沉淀硬化型或时效硬化型钢。 耐热钢的脆化形式淬火脆化,回火脆化,时效脆化,二次淬火脆化或高铬铁素体钢的晶粒长大脆化,及铬镍奥氏体钢沿晶界析出碳化物脆化,475℃脆化和σ相脆化。珠光体耐热钢以Cr,Mo,W,V,为主加元素的中低合金钢。 铝及铝合金焊接时会出现氢气孔,还存在强的氧化能力,热导率和比热容大,热裂纹倾向大,容易形成气孔,焊接接头容易软化,合金元素蒸发和烧损,焊接接头的耐腐蚀性低于母材,固态和液态无色泽变化等问题。 铜及铜合金焊接时易出现难融合及易变形,焊缝易产生热裂纹,易生成气孔,焊缝塑形下降,导电性下降,耐蚀性下降等问题。 焊接紫铜常会出现哪些问题?答:1难融合及易变形2产生热裂纹3产生气孔4接头塑形导电性耐蚀性下降。 出现问题的原因?1热导率大使热量很快消失,线胀系数和收缩率大,易变形。2铜在融化状态易与其中杂质氧反应生成Cu2O,Cu2O与Cu形成低熔点共晶,且共晶温度低于铜的熔点,使焊缝形成热裂纹,S与O相同。3焊缝为单质α组织,易生成粗大的晶粒加剧热裂纹生成,收缩率及线胀系数大,应力较大促使热裂纹生成。4氢及水蒸气在焊接时形成氢气孔.5焊缝及热影响区出现粗大晶粒,加入一定量的脱氧元素,降低了焊缝塑性与导电性,合金元素的氧化和蒸发,接头的各种缺陷。晶界上脆性共晶存在导致耐蚀性下降。 如何防止?1使用大功率的热源,在焊前或焊中采取预热或保温措施,提高加工刚度,增加防变形。2对融化金属进行脱氧,且严格控制焊缝中S的含量3控制焊接时氢的来源,降低熔池的冷却速度,使气体容易逸出使气体容易析出减少氧氢来源和对熔池进行适当的脱氧使熔池慢冷。4采用埋弧焊或惰性气体保护焊提高焊缝 金属的纯度。 铸铁与低合金钢产生裂纹的原因有何不同?论述产生裂纹的特点。答:铸铁产生裂纹主要是冷裂纹(热应力超过其塑性变形能力而发生突然断裂)和热裂纹(焊缝C,S,P含量不均形成低熔点共晶在奥氏体间分布),低合金钢产生的裂纹主要是冷裂纹(淬硬组织引起)和热裂纹(随碳及合金元素增加结晶偏析倾向形成),再热裂纹(焊后消除应力热处理或焊后高温加热)。

相关文档