文档库 最新最全的文档下载
当前位置:文档库 › XX分公司对管道腐蚀的分析

XX分公司对管道腐蚀的分析

XX分公司对管道腐蚀的分析
XX分公司对管道腐蚀的分析

文章编号:1673-5196(2010)01-0063-04

基于贝叶斯检测的在役管道腐蚀可靠性分析

薛国星1,2,张 峥1

(1.北京航空航天大学材料科学与工程学院,北京 100083;2.中国石油西北销售公司,甘肃兰州 730070)

摘要:针对在役油气管道腐蚀失效的现状,建立基于Pco rrc承载能力模型的管道可靠性计算方法,利用蒙特卡洛计算方法计算不同时期管道腐蚀可靠性.引入贝叶斯方法建立在役管道腐蚀检测可靠性分析模型,通过计算给出不同检测方法的检测周期,经计算管道在运行至20~40年内需要重点检测维护,在有效检测条件下,管道的再检测周期为10年左右.该方法对管道腐蚀检测方法与检测周期的选择具有重要意义.

关键词:腐蚀失效;在役管道;可靠性;贝叶斯方法

中图分类号:T E973 文献标识码:A

Reliability analysis of corrosion detection of pipeline in service

pipeline based on Bayesian approach

XUE Guo-xing1,2,ZHANG Zheng1

(1.College of M aterial Science and Engineerin g,Beijing Univer s ity of Aeronau tics&Astronautics,Beijing 100083,China;2.Petrochina North west M arketing Company,Lanz hou 730070,China)

A bstract:Aimed at situation of cor rosion failure of oil-g as pipeline s in se rvice,a reliability calculation method w as presented based on Pco rrc m odel of bearing capacity.By m eans of M onte-Carlo me thod,the co rrosio n reliability of pipeline s at different running stages w as calculated.Corro sion detection reliability model w as established by referencing the Bayesian appro ach and the detection cycle w as evaluated for dif-ferent detection m ethods.It w as indicated by reliability evaluation that the pipelines running after20-40 y ears should put emphasis o n their de tection and maintenance.On conditio n of on effective de tection,the re-detection cy cle o f pipelines w o uld appro ximately be10years.The m ethod w as of g reat significance fo r the choice of co rrosion detection m ethods and detectio n cy cle for the pipelines.

Key words:co rrosion failure;pipeline in service;reliability;Bayesian approach

我国现有在役长输管道很多已运行30多年,按设计折旧时间计算,已到达寿命期,许多老管道进入事故多发期.提高对事故的预测能力,是实现安全高效输送的关键.当前我国在役管道面临如下两种状况.一方面长输管线管理部门需要了解和掌握管线的可靠性状况,为有目的的针对性维护提供决策;另一方面因普查规模和技术难度使得耗资巨大,无法全面准确检测,造成开挖检验的盲目性.目前,长输管线安全性连续检测和评价费用大约为1万元/公里[1].本文主要基于可靠性原理与贝叶斯决策原理对在役管道腐蚀可靠性与检测周期进行分析.

收稿日期:2008-11-01

基金项目:“十一五”国家科技支撑计划重点项目(2006BAK02B02-07) 作者简介:薛国星(1982-),男,甘肃兰州人,博士,工程师.1 结构可靠性原理

腐蚀是引起长输管道失效的主要因素之一,现今国际上出台一系列规范和评价方法用来评价管道腐蚀缺陷对管道的影响,这些方法以数学表达式的形式来表示评价参数,如失效时的爆破压力、设计压力、许用缺陷长度等[2-6].然而由于管道材料性能及运行条件数据的分散性,因此,在进行管道安全评定的基础上,必须考虑概率问题.可靠性概率研究方法是研究概率问题的主要方法,其主要考虑材料性能、载荷等的随机性,通过计算得到概率性的结果.

在结构可靠性理论中,为了描述结构工作状态,必须明确规定结构安全、适用和失效的界限,这样的界限称为结构的极限状态.

第36卷第1期2010年2月

兰 州 理 工 大 学 学 报

Jo urnal of Lanzho u Univ ersity of T echno lo gy

Vo l.36No.1

F eb.2010

如果描述结构极限状态的基本变量x1,x2,…, x n为随机变量,则结构的极限状态表示为一般的结构极限状态为

M=G(x1,x2,...,x n)=0(1)而相应的结构可靠度为结构处于安全状态的概率,即:

P e=P(M>0)(2)相应的结构的失效率表示为

P f=1-P e(3)如果得到结构的基本变量的概率密度函数,则失效率可用积分表示

P f=∫R f(x)d x(4) 2 无检测情况下的管道腐蚀失效可靠性

2.1 基于Pcorrc承载能力模型的极限状态

依据Pcor rc模型构建腐蚀失效的极限状态方程如式(5):

G=P-P b

p b=σu 2t

D

1-

d

t

1-exp-0.157

L

R(t-d)

(5)

式中:P为管道运行压力;d为经过T时间后的腐蚀缺陷深度;L为经过T时间后的腐蚀缺陷长度. 2.2 腐蚀速率的确定

对在役管道进行腐蚀可靠性评估必须建立最大局部腐蚀进展深度与时间关系的公式,有人提出它们符合线性经验公式,即腐蚀速率与时间无关.这与局部腐蚀速度进展并不符合.最近对局部腐蚀速度进展的研究显示它可通过以下形式表示:

d=kT c(6)式中:T为腐蚀进展时间;d为T时刻测到的最大已腐蚀壁厚值;k为系数;c为时间常数.

对局部腐蚀的研究表明,局部腐蚀进展速度随局部腐蚀深度的增长而减小,通常估计c=0.5[7],此种估计是基于实验数据的保守估计,而实际上管道应力集中,流速、冲蚀等等都可能存在交互作用,它们会大大影响腐蚀速率,因此,管道腐蚀检测在确定腐蚀速率方面具有重要意义.

2.3 参数分布

通常情况下,管道抗拉强度呈正态分布,如16M n抗拉强度σb=490M Pa,变异系数为0.02.管道运行压力呈正态分布,变异系数为0.2.罗金恒等[8]利用管道历年腐蚀缺陷尺寸数据,统计出管道的腐蚀速率分布,发现腐蚀速率分布服从正态分布,即:

d

·

~N m,s2

因此,在d=k T c方程中,假设c不存在随机性下,则k服从正态分布.

2.4 失效概率计算

可靠性计算主要有两类方法:一次二阶矩理论基础的计算方法和蒙特卡洛模拟方法,由于腐蚀管道极限状态函数非线性且较为复杂,因此,采用一次二阶矩理论算法比较困难且精度不够.在这里,采用蒙特卡洛模拟方法进行计算.

蒙特卡洛模拟方法在计算失效率方面具有以下优势:收敛速度与基本随机变量的维数无关,极限状态函数的复杂程度与模拟过程无关,无须进行状态函数线性化和随机变量正态化,具有直接解决问题的能力.

3 基于贝叶斯检测的管道腐蚀可靠性研究管道腐蚀失效率的重要意义在于确定检测方式和检测周期,由于埋地油气管道距离长,检测困难且昂贵,因此,管道检测对运营有重要影响,以上讨论无检测情况下的腐蚀失效率,在实际的管道运营中,检测是必须的,因为管道的应力、应力集中,流速、冲蚀等等都可能存在交互作用,它们会大大增加腐蚀速率,基于理想情况是不安全的分析.通过检测数据可以进一步证实管道失效率的发展趋势,并更新失效率.这种事后验证方法可以用贝叶斯方法进行分析.

3.1 贝叶斯决策原理

贝叶斯决策是在不完全情况下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策.

贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:

1)已知类条件概率密度参数表达式和先验概率.

2)利用贝叶斯公式转换成后验概率.

3)根据后验概率大小进行决策分类.

设A1,A2,…,A n为样本空间S的一个划分,如果以P(A i)表示事件A i发生的概率,且P(A i)>0 (i=1,2,…,n).对于任一事件X,P(x)>0,则有P(A i/X)=P(A i)·P(X/A i)

∑n

i=1

P(A i)·P(X/A i)

(7)

·

64

· 兰州理工大学学报 第36卷

3.2 贝叶斯腐蚀检测模型

假设腐蚀速率只有三个状态:A1,A2,A3,任意时刻的管道腐蚀缺陷深度仅存在于这三个状态之一.在给定检测条件B下,状态A1的概率为

P(A1/B)=[P(A1)·P(B/A1)]/

[P(A1)·P(B/A1)+P(A2)·

P(B/A2)+P(A3)·P(B/A3)](8)给定建立腐蚀状态的初始概率,见表1.需要强调的是由于贝叶斯方法是后验方法,因此,初始状态概率是主观概率,其取值对结果影响不大,尤其是经过若干次检测后,结果与初始状态的相关性很低.

表1 腐蚀状态初始概率

Tab.1 Initial probability of corrosion co ndition

腐蚀状态低数据可靠性中数据可靠性高数据可靠性期望腐蚀速率或

低于期望速率 

0.50.70.8

期望腐蚀速率的2倍0.30.20.15

期望腐蚀速率的4倍0.20.10.05建立检测方法的条件概率,参照API581的检测方法,取4种不同的检测方法[9],即:非常有效、十分有效、一般有效和无效,其对应腐蚀状态的条件概率如表2所示.

表2 腐蚀状态条件概率

Tab.2 C onditional probability of corrosion condition

腐蚀状态

检测结果确定实际腐蚀的可能性

非常有效十分有效一般有效无效

期望腐蚀速率或

低于期望速率 

0.900.700.500.33

期望腐蚀速率的2倍0.090.200.300.33

期望腐蚀速率的4倍0.010.100.200.33例:取低数据可靠性为初始状态,计算得出四种检测方法确定的实际腐蚀状态概率见表3.从表中可以看到,经过不同检测方法腐蚀状态概率得到了不同程度的提高,即检测提供实际腐蚀状态的信息.

表3 经过检测后的腐蚀状态概率

Tab.3 Probability of corrosio n condition after f irst detection

腐蚀状态

经过一次检测后的实际腐蚀状态概率

初始概率非常有效十分有效一般有效无效

期望腐蚀速率或

低于期望速率 

0.50.9400.8140.660.5

期望腐蚀速率的2倍0.30.0560.1400.240.3期望腐蚀速率的4倍0.20.0040.0460.100.2 4 算例

采用上述概率模型对某管网输油管线进行可靠性分析.模型中确定性变量和随机变量数值如表4所示.采用M onter-Carlo方法进行模拟.为保证模拟精度,抽样值达到5000000次,此抽样数下的可靠度精度可达到10-7以上.

表4 模型中的确定性变量与随机变量

Tab.4 Certain and rando m varia bles in mo del 变量p/M Paσu/M Pa k D/mm t/mm c

类型正态正态正态72080.5

均值44901

变异系数0.20.020.3

图1显示计算结果,从计算结果可以看出,腐蚀前10年的失效率很低,从10年到第40年失效率增长迅速,40年到60年间到达管道服役后期,失效率增长较为平缓.因此,从管道腐蚀失效控制角度来讲,20年到40年间的服役管道需要进行重点维护

.

图1 随时间变化的腐蚀失效率

Fig.1 Variation of failure pro bability of corrosion with tim e

由管道腐蚀缺陷可靠性状态函数可知,运行压力作为抗力表征对可靠性有重要影响,实际上管道运行压力不仅存在正态分布的特征,在某些具体运营环境下,还会升压,因此,计算运行压力的可靠性具有重要意义.图2计算管道运营30年后,运行压力从1M Pa到8M Pa时的管道腐蚀可靠性.从图中可以看到,管道在6M Pa以上运营时,失效率接近0.01并迅速增长,从可靠度理论角度讲,此失效率造成的危险是相当大的,因此,老龄腐蚀管道的运营压力要保证在6M Pa以下,憋压等事故极易引起管道失效

.

图2 内压与失效率的关系

Fig.2 Relationship between failure proba bility and inter-nal pressure

·

65

·

第1期 薛国星等:基于贝叶斯检测的在役管道腐蚀可靠性分析

进行基于贝叶斯检测可靠性的计算.假设运营管道由第6年开始检测,基于贝叶斯检测的核心是通过检测数据来判断腐蚀速率的,即通过检测数据来判断腐蚀模型中的k ,不同有效性的检测手段得出不同的k 值,即不同的腐蚀速率模型,经过检测后,管道腐蚀可靠性的腐蚀速率就可以用新参数加以计算.图3计算管道运行6年后,不同检测方法检测一次后的管道失效率变化.给定10-3为管道可接受失效率,可得到不同检测方法的再检测周期.即在非常有效检测情况下,下次检测周期为21年

.

图3 经过检测后的腐蚀失效率

Fig .3 Failure probability of corrosion after detection

5 结论

1)根据可靠性原理建立管道腐蚀可靠性计算方法,计算出不同时期的管道腐蚀失效率,经计算管道在运行至20~40年内需要重点检测维护.

2)基于贝叶斯原理建立管道再检测周期的确定方法,通过算例表明管道在有效检测条件下,通常

的再检测周期在10年左右.该方法对腐蚀检测方法的选择及检测周期的确定具有重要意义.

参考文献:

[1] 周方勤.在役输气管道腐蚀寿命预测技术研究[D ].成都:西南

石油大学,2006.

[2] A NS I /AS M E .B 31G -1991,M anual of determining the remai -ning s trength of corroded pipelines [S ].US A :AS M E ,1991.[3] KIEFNER J F V P H .A m odified criterion for evaluating the

remaining strength of cor roded pipe [R ].C olumbu s :Battelle M emorial Ins titu te ,1989.

[4] DNV .RP -F 101-2004,Corroded pipelines -recomm ended p rac -tice [S ].NORW AY :Det Norsk e Vsritas ,2004.

[5] BS .7910-2005,Guide to methods for assessing th e acceptability

of flaw s in metallic structures [S ].UK :Britis h S tandard ,2005.[6] ST EPHE NS D R .Developm ent of alternative criterion for re -sidual streng th of corrosion defects in moderate to high tough -nes s pipe [R ].USA :Pipeline Research Council International ,1999.

[7] SADIQ R ,RAJ ANI B ,KLEINER Y .Probabilistic risk analysis

of cor rosion associated failu res in cast iron w ater mains [J ].Reliability Engineering &Sy stem Safety ,2004,86(1):1-10.[8] 罗金恒,赵新伟,白真权,等.输油管道腐蚀剩余寿命的预测

[J ].石油机械,2000(2):30-32.

[9] API .581-2000,Ris k b ased resou rce documents [S ].US A :

American Petroleum Ins titu te ,2000.

·

66· 兰州理工大学学报 第36卷

输油管道腐蚀机理与防护措施

输油管道腐蚀机理与防护措施 随着我国社会的不断进步和发展,我国的输油管道运输行业也获得了突飞猛进的进步,输油管道的一些节能和环保的功能也在自身发展的过程中逐渐的彰显出来,然而,近几年以来,却时常发生管道泄漏和失效的现象,而造成这一现象的主要原因就是管道遭受到了腐蚀,管道如果遭受到了腐蚀,就会对管道的使用寿命和所产生的经济收益产生直接的重要影响。因此,本文针对输油管道的腐蚀机理和防护措施进行了深入的探究和分析,从腐蚀的种类入手,对我国的管道腐蚀的保护对策进行了详细的总结,为日后我国研究输油管道的腐蚀工作奠定了一定的理论基础。 标签:输油管道;腐蚀;防护;措施 在油品运输的过程中,输油管道所具有的环保和节能的特征不断地彰显出来,在大多数的管道运输中,通常采取的都是无缝钢管,螺旋焊接钢管和直缝电阻焊钢管等材质,通过埋地和架空两种方式对管道进行铺设,因此,对于输油管道来说,它在输送油品的过程中,一定会受到来至周围介质所产生的腐蚀现象,主要会发生的是化学腐蚀和电化学腐蚀,一旦输油的管道遭到了腐蚀,不仅会大幅度的缩短管道的使用寿命,同时还会造成一定的环境污染,从而导致整体经济收益的缩减,严重的情况会导致整条管线失去自身的作用和价值。因此,本文针对输油管道的腐蚀工作进行了深入的探究和分析,提出了相关的输油管道防护措施,为日后防止输油管道腐蚀现象的发生提供了十分重要的理论意义。 1 腐蚀种类 金属由于受到周围环境的影响,从而发生一系列的化学或电化学的反应,对自身产生一种破坏性的侵蚀,就是我们所说的腐蚀。对于腐蚀来说,它具有一定的化学性质,大部分的腐蚀现象都是化学变化的过程,因此,我们根据输油管道腐蚀过程中所呈现出的特征的差异,将腐蚀的类型分为两种,分别是化学腐蚀和电化学腐蚀。 1.1 化学腐蚀 化学腐蚀指的是输油管道的表面与相关的氧化剂直接接触而产生的化学变化,在化学腐蚀的过程中,它是氧化剂和金属之间进行电子的转移,在此过程中并不会产生电流,例如,金属长期暴露在空气中,就会与空气中的氧气进行氧化,从而生成相应的金属化合物,除此之外,油品中由于含有较多的硫化物和有机酸,这些物质也会对金属的输油管管道产生一定的腐蚀作用。 1.2 电化学腐蚀 在输油管道中发生的电化学腐蚀,它指的是在金属管道和一些电解质之间形成了一定的作用,從而使金属表面和电解池之间构成了原电池的组成结构,引起

化工安全与防腐案例分析

化工安全与防腐案例分析 —真空制盐钛制换热器腐蚀失效实例分析 班级:xxxxxx 姓名:xx 学号:xxxxxxxx

真空制盐钛制换热器腐蚀失效实例分析 一般认为在温度不太高的NaCl溶液中,钛的腐蚀速度非常低。但是随着钛在制盐行业的大量使用,发生腐蚀失效事故也开始增多,引起各制盐企业的重视,钛腐蚀的原因大致可归为四类:缝隙腐蚀、氢损失、应力腐蚀、铁污染等,且受材质成分、设计制作、工况介质等具体情况影响,腐蚀原因往往较为复杂,多为一个主要因素诱导,几种辅助因素共同作用的结果。以下分析国内发生的两起制盐钛制换热器腐蚀失效案例。 1.案例一首效换热管腐蚀失效分析: 2004年四川某制盐厂30 万吨/年装置 检修时,发现首效换热管发生较严重的腐蚀。该加热室总共1454 根钛管,本次检修共发 现158 根换热管有不同程度的腐蚀穿孔。 已拔出的部分换热管进行检查,发现孔损、破损、脆裂较严重,有的管子从1米左右高处自然落下即断成两半或破裂,断口晶粒粗大,破裂片用手可掰断,吸氢脆化现象明显。该装置首效加热蒸汽约0.4MPa,原料卤水 为天然卤水和岩卤的混合卤水,用石灰乳预处理卤水,进罐pH约为8。该套装置首效 加热室采用某种钛合金材料,Ⅱ~Ⅳ效采用TA2 工业纯钛换热管。在检修只发现了首效换热管有腐蚀,其余各效换热管未见腐蚀现象。 1.1.化学成分分析 因抽换出的换热管已明显脆化(可以从“从1米左右高处自然落下即断成两半或破裂”看出),据此判断材料吸氢肯定比较严重,为此分别取3段腐蚀较明显的管样和1段外观形貌较好的管样分别分析气体含量。分析结果见表1,从表中可以看出,腐蚀样中氢含量明显高于未发生腐蚀样品,据此可以判断是失效换热管可能失效的一种方式是氢损伤。 1.2.化学成分比较 采用化学分析和电镜(JSM6460)扫描 相结合的方式,对腐蚀样和非腐蚀样进行较全面的化学成分分析。分析结果与工业纯钛和钛钼镍合金的成分对比表见表2, 从表中们可以看出,腐蚀管样的Mo、Ni 含量很少,几乎可以认为未检出,而主要成分和工业纯钛(TA2)比较接近,合金元素 与钛钼镍合金(TA10)差距较大。 1.3.力学性能分析 腐蚀样和未腐蚀样进行力学性能检测,并将检测数据与TA2 进行对比,详见表3, 由表3可知,腐蚀管样的力学性能也与工业 纯钛一致,那么结合化学成分分析可以得出,该换热器首效管所选材料是工业纯钛。 1.4.腐蚀原因分析及其可能采取防腐 措施 由图1可以知道,工业纯钛在高温(>120℃)氯化钠溶液中较钛钼镍合金更易发 生缝隙腐蚀;由图2可以知道,在发生电化 学腐蚀的情况下,钛钼镍合金有更低的电流密度,这表明钛钼镍合金能显著改变电化学行为,促进钝化,有效降低腐蚀速率

金属管道腐蚀防护基础知识

编号:SY-AQ-09483 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 金属管道腐蚀防护基础知识 Basic knowledge of metal pipeline corrosion protection

金属管道腐蚀防护基础知识 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1.什么叫金属腐蚀? 金属腐蚀是金属与周围介质发生化学、电化学或物理作用成为金属化合物而受破坏的一种现象。 2.金属管道常见的腐蚀按其作用原理可分为哪几种? 金属管道常见的腐蚀按其作用原理可分为化学腐蚀和电化学腐蚀两种。 3.常用的防腐措施有哪几种? 常用的防腐措施有涂层、衬里、电法保护和缓蚀剂。 4.什么叫化学腐蚀? 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。化学腐蚀又可分为气体腐蚀和在非电解质溶液中的腐蚀。 5.什么叫电化学腐蚀? 电化学腐蚀是指金属与电解质因发生电化学反应而产生破坏的

现象。 6.缝隙腐蚀是如何产生的? 许多金属构件是由螺钉、铆、焊等方式连接的,在这些连接件或焊接接头缺陷处可能出现狭窄的缝隙,其缝宽(一般在 0.025~0.1mm)足以使电解质溶液进入,使缝内金属与缝外金属构成短路原电池,并且在缝内发生强烈的腐蚀,这种局部腐蚀称为缝隙腐蚀。 7.什么是点腐蚀? 点腐蚀是指腐蚀集中于金属表面的局部区域范围内,并深入到金属内部的孔状腐蚀形态。 8.点蚀和坑蚀各有什么特征? 点蚀:坑孔直径小于深度;坑蚀:坑孔直径大于深度。 9.什么是应力腐蚀,应力腐蚀按腐蚀机理可分为几种? 由残余或外加拉应力导致的应变和腐蚀联合作用所产生的材料破坏过程称为应力腐蚀。应力腐蚀按腐蚀机理可分为:(1)阳极溶解(2)氢致开裂。

油气管道腐蚀检测

油气管道腐蚀的检测 摘要:油气管道运输中的泄漏事故,不仅损失油气和污染环境,还有可能带来重大的人身伤亡。近些年来,管道泄漏事故频繁发生,为保障管道安全运行和将泄漏事故造成的危害减少到最小,需要研究泄漏检测技术以获得更高的泄漏检测灵敏度和更准确的泄漏点定位精度。本文介绍几种检测方法并针对具体情况进行具体分析。 关键字:腐蚀检测涡流漏磁超声波 引言: 在油气管道运输中管道损坏导致的泄漏事故不仅浪费了石油和天然气,而且泄露的有毒气体不仅污染环境,而且对人和动物造成重大的伤害,因此直接有效的检测技术是十分必要的,油气管道检测是直接利用仪器对管壁进行测试,国内外主要以超声波、漏磁和祸流等领域的发展为代表。[1] 1、涡流检测 电涡流效应的产生机理是电磁感应. 电涡流是垂直于磁力线平面的封闭的旋涡!状感应电流, 与激励线圈平面平行, 且范围局限于感应磁场所能涉及的区域. 电涡流的透射深度见图1, 电涡流集中在靠近激励线圈的金属表面, 其强度随透射深度的增加而呈指数衰减, 此即所谓的趋肤效应. [1] 电涡流检测金属表面裂纹的原理是: 检测线圈所产生的磁场在金属中产生电涡流, 电涡流的强度与相位将影响线圈的负载情况, 进而影响线圈的阻抗. 如果表面存在裂纹, 则会切断或降低电涡流, 即增大电涡流的阻抗, 降低线圈负载. 通过检测线圈两端的电压, 即可检测到材料中的损伤. 电涡流检测裂纹原理见图2.[2]

涡流检测是一种无损检测方法,它适用于导电材料。涡流检测系统适应于核电厂、炼油厂、石化厂、化学工厂、海洋石油行业、油气管道、食品饮料加工厂、酒厂、通风系统检查、市政工程、钢铁治炼厂、航空航天工业、造船厂、警察/军队、发电厂等各方面的需求.[2] 涡流检测的优点为:1.对导电材料和表面缺陷的检测灵敏度较高;2.检测结果以电信号输出,可以进行白动化检测;3.涡流检测仪器重量轻,操作轻便、简单;4.采用双频技术可区分上下表面的缺陷:5.不需要祸合介质,非接触检测;6.可以白动对准_!:件探伤;7.应用范围广,可检测非铁磁性材料。 涡流检测的缺点为:1.只适用于检测导电材料;2.受集肤效应影响,探伤深度与检测灵敏度相矛盾,不易两全:3.穿过式线圈不能判断缺陷在管道圆周上所处的具体位置;4.要有参考标准才能进行检测:5.难以判断缺陷的种类。[1] 2、超声波检测 超声波检测的基本原理基本原理见图3所示。 垂直于管道壁的超声波探头对管道壁发出一组超声波脉冲后,探头首先接收到由管道壁内表面反射的回波(前波),随后接收到由管道壁缺陷或管道壁外表面反射的回波(缺陷波或底波)。于是,探头至管道壁内表面的距离A与管道壁厚度T可以通过前波时间以及前波和缺陷波(或底波)的时间差来确定:

金属腐蚀及防腐技术

金属腐蚀及防腐 内容 1.腐蚀的定义及其危害 2.工程中钢铁的腐蚀问题 3.国内外在防腐蚀涂料方面的研究现状及分析 4.防腐蚀涂料简介 5.防腐蚀涂料的用途 6.防腐蚀涂料的选择与施工 7.Z Y-S高渗透性带锈防锈漆系列产品简介 8.Z Y-D橡塑漆简介 9.目前在研项目 1.腐蚀的定义、危害及分类 腐蚀是指材料与它所处的环境介质之间发生作用而引起的变质和破坏。 根据机理,腐蚀分为化学腐蚀、电化学腐蚀、物理腐蚀。 腐蚀的危害: 目前全球每年因腐蚀造成的损失已高达7000亿美元,占G D P总值的2~4%,为地震、台风、水灾等自然灾害造成损失的6倍之多 我国2003年统计,腐蚀损失约占国民生产总值(G N P)的约6%,完成“九五” 期间降低1个百分点挽回了700多亿人民币的损失。钢铁因腐蚀而报废的数量约当年产量的25-30%造成重大事故,阻碍经济发展。军事设备、舰艇、沿海空军飞机、二炮发射井架、两栖装甲车、沿海通讯装备。 化学腐蚀: 材料与环境介质发生直接的化学作用而引起的破坏。 氧化反应与还原反应同时发生。

腐蚀的机理: 电化学腐蚀:电化学腐蚀是对金属材料而言,指金属与离子导电的介质发生电化学作用而产生的破坏。 特点:氧化反应和还原反应为两个相对独立并同时进行的过程,即阴极过程和阳极过程。 物理腐蚀:指材料由于单纯的物理作用所引起的破坏。 特点:过程中既不发生化学作用,也不发生电化学作用。 工程中钢铁的腐蚀问题: 2.1钢铁的腐蚀环境分析 钢铁腐蚀主要指钢铁构件和混凝土的腐蚀,其中混凝土的腐蚀包括混凝土中钢筋的腐蚀及混凝土材料本身的腐蚀。钢铁设备所处的腐蚀环境是大气环境,或者是水环境。大气环境和水环境都属于自然环境。表面上看,自然环境的腐蚀问题不及工业环境腐蚀那么明显,但这类腐蚀情况十分复杂,影响因素很多,往往随时间的延长而加剧,最后导致材料失效。对腐蚀来说,大气的污染程度是重要的因素。 2.2影响钢铁腐蚀的因素: 湿度:湿度是决定大气腐蚀类型和速率的一个重要因素,一般来说,金属的临界湿度为50%~70%。 温度:在其他条件相同的情况下,平均气温高的地区,大气腐蚀速率较大。大气中S O2含量:我国城市大气中S O2浓度2级标准含量为0.023%,3级标准为 0.096%,碳钢在3级标准大气中腐蚀速率比2级标准大气中要快4倍。2.3钢铁材料的腐蚀:钢铁材料的腐蚀大多为电化学腐蚀。 2.4钢铁腐蚀典型案例分析: 广东某斜拉桥1988年12月建成,1995年5月,一根拉索突然断裂,自行坠落该斜拉桥拉索钢丝的性能符合标准要求。拉索聚乙烯套管内的水泥浆体离析,浆

盐渍土对公路危害的浅析及处理措施

盐渍土对公路危害的浅析及处理措施摘要:对公路的路基路面进行养护是为了保持路况的完好,延长道路的使用寿命,是为经济建设提供保障的基本条件。本文阐述了盐性及盐渍程度、土的颗粒组成及细粒特性、水文地质和气候条件。通过盐渍土对路基路面、混凝土结构物的危害现场调查,综合施工经验,提出了对盐渍土进行处理的措施。 关键词:盐渍土、危害、防治措施 一、前言 近几年,我国道路建设步伐在不断的加快,各种路面病害情况也在不断出现,其中对盐渍土使得公路路基路面出现危害问题必须加以重视。盐渍土是指含盐量超过一定数量的土。盐渍土是土层盐渍化工程的产物,在公路工程中,主要是指地表土层1米厚度内,易溶盐含量平均大于或等于0.3%的含盐土层。盐渍土属特殊土类,因为它具有一般土所没有的特点,不能按一般土来对待。因此,只有不断分析盐渍土对公路路基路面危害的处理方法,才能保证道路的质量。 二、盐渍土的主要特点 1、盐渍土的三相组成与一般土不同,常规土体的三相组成是由气相--空气、液相--水、固相--土颗粒所构成。但是,盐渍土的三相组成由气相--空气、液相--溶液、固相--土与盐结晶的混合体所构成。液相中含有盐溶液,固相中含有结晶盐,尤其是易溶的结晶盐。也就是说,盐渍土的液相与固相会因外界条件变化而相互转化。 2、盐渍土中的盐遇水溶解后,土的物理和力学性质指标均会发生变化,其强度指标明显降低。 3、盐渍土中的盐浸水后,因盐溶解盐渍土中的水携盐上聚,使路基次生盐渍化,造成路基溶陷与潜蚀、路面翻浆、盐胀、溶陷及路面不规则变形、沥青面层起皮、脱落、网裂和坑洼等问题。 4、盐渍土中的岩溶液会导致建筑物和地下设施的材料腐蚀。腐蚀程度取决于材料的性质和状态以及盐溶液的浓度等。

防腐蚀论文

随着对经济效益的追求,必然趋动整个涂装工业的迅速发展,涂 装安全和清洁生产得到了政府和企业的重视,但目前涂装伤亡事故、 中毒事故、火灾爆炸事故频繁发生;从业人员的急、慢性苯中毒和粉 尘侵害等职业安全卫生问题比较突出,职业病人数居高不下;在涂装 过程中产生的废气、废水、废渣等三废问题也给环境造成了不同程度 的污染,影响生态平衡或直接危害了人类的健康,给国家财产和人民 生命财产造成了不同程度的损失。为了帮助企业加强作业安全防护措施,搞好车间设计,减少环境污染,构建和谐美丽环境,我中心决定 近期举办“涂装作业安全防护与清洁生产技术指导会”,此次会议将由 刘小刚主任、涂装安全作业泰斗宋世德副理事长和涂装泰斗林鸣玉副 理事长强强携手,结合实际案例对涂装安全防护清洁生产进行指导。 请各单位根据实际情况派员参加。具体事宜如下: 一、会议内容: Ⅰ涂装作业安全 1.涂装作业安全概述 2.涂装作业场所的燃烧爆炸的防护重点 2.1涂装作业场所燃烧的多发、常发、一触即发的决定因素 2.1.1 涂料及其辅料的主要物化特性 2.1.2 降服涂料燃烧爆炸的基本手段 3.涂装作业防护重点 3.1材料防毒重点 3.2安全卫生管理 3.3标准的实施与监管 3.4急救和应急措施 3.5安全培训教育 4.燃气的毒性,危险性及其一般防护知识 5.涂装安全标准查漏补缺 6.推荐常用的几个涂装安全设计参数 7.涂装作业外的几个常用重要安全‘标准’和‘手册’ Ⅱ涂装清洁生产 1.涂装过程的环保要求 1.1 世界各国对涂装过程的环保要求 1.2我国对涂装过程的环保要求2.涂装过程中三废治理的措施 2.1减少涂装材料中有害物质的含量 2.1.1 前处理材料的减少有害物质措施 2.1.2 涂料中减少有害物质措施 2.2减少废水、废气、废渣排放量的措施 2.2.1 减少废水排放措施 2.2.2 减少废渣排放措施 2.2.3 减少废气排放措施 2.3对排放出的三废中的有害物质进行处理技术 3.HJ/T293-2006《清洁生产标准-汽车制造业(涂装)》3.1 HJ/T293-2006《清洁生产标准-汽车制造业(涂装)》的内容3.2关于HJ/T293-2006实施的建议Ⅲ涂装车间的安全和环保设

油气输送管道腐蚀机理与防护措施

油气输送管道腐蚀机理与防护措施 为了保障我国油气管道的运行安全,提高管道的使用寿命,本文将从我国油气管道的运行实际出发,首先对其腐蚀机理进行深入分析,探讨管道防护措施,为保障管道的运行安全奠定基础。 标签:油气管道;腐蚀机理;化学腐蚀;电化学腐蚀;防护措施 管道输送是油气资源运输中最常见的运输方式,其运输效率和成本也相对较低,但是由于管道内介质和外界环境因素的原因,使得管道极易产生腐蚀,其腐蚀类型可以分为两种,一种是均匀腐蚀,另一种是不均匀腐蚀。当管道不均匀腐蚀状况较为严重时,将会产生管道穿孔,进而引起油气资源泄漏,油气资源泄漏不但会对环境产生严重的污染,而且还可能会产生安全事故。在另一方面,当管道均匀腐蚀严重时,则会造成管道寿命严重下降,从而造成较大的经济损失。因此,探讨管道的腐蚀机理,并提出防护措施十分重要。 1 油气管道腐蚀机理分析 1.1 化学腐蚀 化学腐蚀指的是管道与腐蚀性物质直接接触,从而产生化学作用而引起的管道破坏。化学腐蚀可以分为两种类型,分别是气体腐蚀和非电解质腐蚀。 1.1.1 气体腐蚀 某些地上管道将长时间暴露于空气中,空气中的SO2、CO2等气体将会与管道金属产生化学作用,从而在管道表面形成大量的氧化物。同时,由于大多数管道都是采用加热输送,在高温的作用下,管道表面形成氧化物的速度将会大大加快,即腐蚀速率加快。 1.1.2 非电解质腐蚀 油气资源中本身就含有大量的腐蚀性物质,例如H2S、SO2等,当管道内的油气含水率较高时,这些物质将溶于水中从而产生腐蚀性溶液,进而对管道内壁产生腐蚀。 1.2 电化学腐蚀 在管道腐蚀过程中,由于电化学因素所产生的腐蚀作用最为严重。该种腐蚀与化学腐蚀存在较大的差别,其中最大的差别在于腐蚀过程中将有电流产生。由于油气管道中含有大量的铁元素,但是由于管道加工过程中会引入大量的杂质,杂质与铁元素之间将形成原电池,从而对管道产生腐蚀作用。在另一方面,H2S、SO2等物质溶于水中时,由于该溶液与管道金属的电位不同,也会形成原电池,

天然气输送管线钢应力腐蚀开裂原因

天然气输送管线钢应力腐蚀开裂原因 管道运输是当前油气运输中运用的最为广泛的一种运输方式,其具有较高的经济性和方便性,近些年来,随着市场经济的快速发展,对于能源的需求量也在不断的增加,这就对油气管道运输提出了更高的要求,实现长距离、高压力的运输是我国油气管线运输的必然选择,同时要求运输管道必须要具有较强的耐腐蚀性,才能够满足油气运输的要求。本文就针对天然气输送管线钢应力腐蚀开裂的相关问题进行简单的分析。 标签:油气运输;天然气输送管线钢;应力腐蚀开裂 高压长输管线的腐蚀开裂问题是当前管道建设中受到普遍关注的问题之一,因为很多在耐性的油气管线运输事故都是由于输送管线发生腐蚀开裂所引起的,其造成的损失是巨大的。因此,作为长输管线,必须要具备较强的抗腐蚀和抗裂能力,才能有效的避免各种断裂事故的产生。在通常情况下,有些管线的细微裂纹不会发生迅速扩展,如果能够将其驱动力控制在合理的范围内,百年能够有效的将其破坏程度降到最低,这也是预防灾害事故的一个有效措施。所以,针对天然气输送管线钢应力腐蚀开裂问题的研究有着十分重要的意义。 1 应力腐蚀开裂 应力腐蚀开裂指的是管线钢在一定的压力和腐蚀环境下所产生的开裂现象,通常缩写为SCC。在油气管线运输过程中,引起管线钢应力腐蚀开裂的现象需要同时满足以下几个条件:第一,拉应力,包括在操作过程中产生的工作应力、参与应力以及热应力等,拉应力的存在会导致管线应力产生集中的现象,容易造成材料钝化膜的破坏;第二,特定的腐蚀环境,通常指的是管线涂层的剥落以及土壤、水质中碳酸、硝酸等元素的存在;第三,管线的敏感性,其主要与管道的选材、制造工艺、钢材表面的清洁度等有着直接的联系。管线钢应力腐蚀开裂的产生,是在多方面应力作用的影响下形成的,其并不是简单的腐蚀和开裂两个应力的直接作用,因为这两个因素相互叠加所产生的应力与单个因素相比会大几倍,如果将其中的一个作用因素进行消除,那么另一个因素所产生的破坏作用就十分微弱。通常情况下,单纯的应力腐蚀开裂产生的破坏作用并不需要很大,如果没有腐蚀介质的才能在,那么管线就不容易产生开裂;相反,如果没有开裂,那么腐蚀介质的存在也不会产生较大的破坏作用。总之,应力腐蚀开裂的产生是在特定的条件下产生的,需要同时满足上述三个条件,才能形成较为严重的破坏。 2 pH值对管线钢应力腐蚀开裂的影响 通常情况下,管线钢应力腐蚀开裂的影响因素,可以从介质的种类和浓度、钢材的强度和化学成分以及温度等相关的因素几个方面分析,相关的研究文献也较多。而pH值对于管线钢应力也有着十分重要的影响,具体可以从以下几个方面分析:

内陆盐渍土环境下混凝土结构耐久性研究

内陆盐渍土环境下混凝土结构耐久性研究

内陆盐渍土环境下混凝土结构耐久性研究 [摘要]:本文以我国西部内陆盐渍土地带环境下的混凝土结构为背景,详细分析该环境下耐久性的影响因素、作用机理,并提出合理的技术措施,以保障复杂环境下的结构耐久性。 [关键词]:盐渍土环境;混凝土耐久性;腐蚀机理;解决措施 正文: 1.研究背景 我国西部青海、甘肃等西北部地区,不仅冬季寒冷、干燥、日照时间长,而且其土壤属内陆盐渍土,含有大量的SO42-(1.43%)、Cl1-(0.82%)和Mg2-(0.62%)等离子。这些地区的桥梁、隧道等构筑物的混凝土结构遭受冻融循环、盐侵蚀、剧烈温差等多因素的共同破坏作用,混凝土结构的服役环境极其恶劣。 我国正在实行西部大开发的政策,因此,大量的基础设施要建设在盐渍土地带环境下。由于盐渍土地带环境下的混凝土腐蚀速度远远超过一般环境下环境的腐蚀速度,不得不进行工程修复,因此造成了巨大的经济损失。所以,研究该环境下的混凝土的耐久性的研究具有非常重要的现实意义和深远的社会影响。 2.西部盐渍土环境下混凝土结构耐久性的影响因素综述 在西北地区,高寒、大温差、强辐射、干燥、大风沙、盐碱腐蚀等恶劣气候环境使得混凝土结构处于干湿变化、温度变化、冻融循环、

盐碱腐蚀、风蚀等多种自然因素的作用下,日积月累,在混凝土结构中极易产生剥蚀、裂缝等,对混凝土的耐久性造成了很大的不利。 大体可将这些因素分为气蚀,磨损,冻融等物理因素,以及硫酸盐,碳化,碱-集料反应等化学因素。 3.西部盐渍土环境下混凝土结构耐久性的影响因素作用机理 3.1冻融循环 冻融破坏形式:混凝土冻融破坏有两种基本形式冻胀开裂和冻融剥蚀。冻胀开裂的特征是混凝土产生裂缝,裂缝在表面连结的同时向内部扩展延伸;盐冻剥蚀破坏是典型的冻融剥蚀破坏形式。 冻融循环破坏机理:混凝土的抗冻性是混凝土受到物理作用(干湿变化、温度变化、冻融变化等)后反映混凝土耐久性的重要指标之一。混凝土冻融作用破坏机理是混凝土在其冻融的过程中,遭受的破坏应力主要由两部分组成。其一是当混凝土中的毛细孔水在某负温下发生物态变化,由水转变成冰,体积膨胀,因受毛细孔壁约束形成膨胀压力,从而在孔周围的微观结构中产生拉应力;其二是当毛细孔水结成冰时,由凝胶孔中过冷水在混凝土微观结构中迁移和重分布引起的渗管压。由于表面张力的作用,混凝土毛细孔隙中的水的冰点随着孔径的减小而降低。当胶凝孔水形成冰核的温度在-78℃以下时,由冰与过冷水的饱和蒸汽压差和过冷水之间的盐分浓度差引起水分迁移而 形成渗透压。另外胶凝不断增大,形成更大膨胀压力,当混凝土受冻时,这两种压力会损伤混凝土内部微观结构,当经过反复多次的冻融

金属管道的腐蚀及防腐对策

目录 一、金属管道腐蚀的危害1 1.金属管道腐蚀程度鉴别 (2) 2. 金属管道的腐蚀及使命 (2) 3.管道腐蚀实例及分析 (5) 4.金属管道腐蚀的危害 (8) 二、金属管道腐蚀的原因 1.化学腐蚀 (8) 2.电化学腐蚀 (9) 3.其它原因 (10) 三、防腐对策 (10) 1.做好金属管道的防腐层处理 (11) 2.合理选用管材及阀件 (13) 3. 合理设计 (13) 4.精心施工,严格按规范操作 (13) 5.加强运行维护管理 (14) 6.质量控制及检验 (14) 结论 (19) 致谢 (21) 参考文献 (22)

金属管道的腐蚀及防腐对策 摘要介绍了金属管道腐蚀的危害及实例。简述了化学腐蚀、电化学腐蚀和由于安装原因造成的管道腐蚀,提出了覆盖层保护法,加强运行维护管理和精心施工,合理选用管材管件等防腐措施。 关键词:金属管道化学腐蚀电化学腐蚀防腐质量控制 一、金属管道腐蚀的危害 金属及金属管道腐蚀是一个世界性的问题。用于建筑设备配管的金属管道由于直接接触各种易产生腐蚀的介质,其腐蚀问题尤为突出。建筑设备配管的金属管道按材质分主要有钢管(含镀锌钢管)、铸铁管、不锈钢管、铜管、铝管等,按用途分有生活、生产的冷、热给水管、蒸汽及其它气体、污废水排水、凝结水、消防给水管等。因钢管的用量最大、最容易腐蚀,本文将予以重点讨论。 1.1 金属管道腐蚀程度的鉴别方法可用表1 来表述(指安装前内外壁检查)。 1.2 金属管道的腐蚀及其使用寿命 腐蚀将严重影响金属管道使用寿命。随着时间的推移,金属管道的腐蚀是不可避免的。即使做了防腐涂层,其涂层也会逐渐老化而丧失其防腐蚀性能。金属管道的腐蚀有多方面因素,主要原因可用表2 来表述。

201509管道完整性管理油气储运工程在线作业文档

201509管道完整性管理油气储运工程在线作业文档

第一阶段在线作业 单选题(共15道题) 收起 1.( 2.5分)新墨西哥州Carlsbad天然气管道爆炸事故原因是: ?A、外腐蚀 ?B、内腐蚀 ?C、挖掘损伤 ?D、应力腐蚀 我的答案:B 此题得分:2.5分 2.(2.5分)华盛顿州Bellingham汽油管道事故原因是: ?A、外腐蚀 ?B、内腐蚀 ?C、挖掘损伤 ?D、应力腐蚀 我的答案:C 此题得分:2.5分 3.(2.5分)密歇根州Marshall原油管道泄漏事故原因是: ?A、外腐蚀 ?B、内腐蚀 ?C、挖掘损伤 ?D、应力腐蚀 我的答案:D 此题得分:2.5分 4.(2.5分)管道完整性是指: ?A、管道承受内压的能力

?B、管道承受载荷和保持安全运行的能力 ?C、管道承受地面占压载荷的能力 ?D、管道抵抗第三方破坏的能力 我的答案:B 此题得分:2.5分 5.(2.5分)以下哪一内容中需进行管道的资料的分析与整合。 ?A、数据管理 ?B、高后果区识别 ?C、风险评价 ?D、完整性评价 我的答案:C 此题得分:2.5分 6.(2.5分)PDCA循环式指: ?A、“改进-计划-实施-检查” ?B、“计划-实施-检查-改进” ?C、“计划-检查-实施-改进” ?D、“实施-检查-计划-改进” 我的答案:B 此题得分:2.5分 7.(2.5分)管道在土壤中的应力腐蚀的形式有几种。 ?A、1 ?B、2 ?C、3 ?D、4 我的答案:A 此题得分:2.5分

8.(2.5分)与时间有关的危害管道的因素是: ?A、腐蚀 ?B、第三方破坏 ?C、土体移动 ?D、焊接缺陷 我的答案:A 此题得分:2.5分 9.(2.5分)与时间无关的危害管道的因素是: ?A、腐蚀 ?B、应力腐蚀 ?C、土体移动 ?D、焊接缺陷 我的答案:C 此题得分:2.5分10.(2.5分)危害管道的稳定因素是: ?A、腐蚀 ?B、应力腐蚀 ?C、土体移动 ?D、焊接缺陷 我的答案:D 此题得分:2.5分11.(2.5分)以下哪种现象与管道结构失稳有关: ?A、断裂 ?B、凹陷 ?C、表面裂纹

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

管道腐蚀

[日期:2010-08-16] 来源:中国路桥防水网作者:admin 由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

油气管道腐蚀机理及防护技术分析研究

油气管道腐蚀机理及防护技术分析研究 油气集输和输送过程中离不开油气管道,只有保证油气管道安全平稳运行,才能确保油气本身的安全和企业的经济效益。油气储运作为石油工业的重要一环,其运行是否稳定,直接关系到油气输送安全。其中影响油气管道安全平稳运行的一个主要因素就是管道腐蝕。管道的使用寿命和所输油品质量会直接受到油气管道腐蚀的影响,甚至造成管道穿孔泄漏不能使用。因此,对油气管道腐蚀的机理及防护措施进行分析研究,有十分重要的现实意义。 标签:油气长输管道;腐蚀机理;防护技术 1油气管道腐蚀机理 1.1油气管道腐蚀概述 油气管道主要材质为中低碳钢,在长期的使用过程中,主要发生以下两种腐蚀过程,一种是受土壤环境,温度,雨水,大气等自然条件的影响,以及人为因素的破坏,造成外防腐层剥离破坏,管道遭受外腐蚀,二油气中的杂质及加入的含硫化合物也对天然气管道产生管道内腐蚀,造成管线漏气。 1.2土壤腐蚀 土壤腐蚀是油气管道外部腐蚀的主要诱因。土壤是由固相、液相和气相组成的复杂系统,并有多种微生物伴生。土壤具有不均匀性、胶体性、导电性和多孔性等特性,电化学腐蚀是土壤的对油气管道的主要腐蚀形式。由于输送管道通常跨越的地域较广,涉及不同的土壤类型,导致土壤对管道的腐蚀速度和程度也不尽相同,而腐蚀的不均匀性会加剧管道的腐蚀程度。 1.3空气腐蚀 管线裸露在空气中,与空气中水,氧气,二氧化碳等相互作用,产生的腐蚀就是空气腐蚀。大气中的水蒸气遇到低温的金属管线,会在其表面凝结一层水膜,空气中的氧气,二氧化碳等溶解在水膜中。就像是电池的电解液那样,从而在管道表面产生电化学腐蚀。 1.4细菌腐蚀 细菌腐蚀是油气管道在含有硫酸盐的土壤中的一种腐蚀破坏形式。细菌本身并不腐蚀管道,但随着他们的生长繁殖,消耗了有机质,形成了腐蚀管道的化学环境。最常见的细菌腐蚀是硫酸盐还原菌(SRB)的腐蚀,SRB的主要成分为氢化酶,它能还原土壤中的硫酸盐,使管道发生腐蚀反应形成金属硫化物。 2油气管道腐蚀相关防护对策

管道腐蚀

管道腐蚀资料 第一节、管道腐蚀概论 材料腐蚀定义:材料受其周围环境的化学、电化学和物理作用下引起的失效破坏现象。 金属腐蚀定义:金属与其周围环境(介质)之间发生化学或电化学作用而引起的破坏或变质。铁生锈、钢管腐蚀穿孔、钢桥梁腐蚀 非金属腐蚀定义:指非金属材料由于在环境介质的化学、机械和物理作用下、出现老化、龟裂、腐烂和破坏的现象。 涂层龟裂 按管材的种类,管道可分为以下几类: (1)金属管道 1)黑色金属管道:钢管、不锈钢管、铸铁管、球墨铸铁管等; 2)有色金属管道:铜管、铝管、铝合金管等 (2)非金属管道 (3)复合管道 常用钢管分类: (1)无缝钢管 按管材分: 1)普通碳素钢 2)优质碳素钢 3)低合金钢; 按制造方法: 1)热轧 2)冷轧 (2)焊接钢管 1)低压流体输送用焊接钢管 ?①镀锌管(白铁管) ?②非镀锌管(黑铁管) 2)直缝卷焊钢管 3)螺旋焊接管 钢管特性: 钢管是各类工程中最常见的管道。钢管的特点是强度高、硬度高,并有较好的塑性和韧性,焊接性能好。钢管在自然环境下,容易腐蚀,因而是管道防腐工程的主要对象。根据是否有缝,钢管可以分为无缝钢管和有缝钢管,有缝钢管又称焊接钢管,焊接钢管可分为低压流体输送用焊接钢管和卷焊钢管。无缝钢管通常采用普通碳素钢、优质碳素钢、普通低合金钢和合金结构钢生产而成,根据制造方法可分为冷拔和热轧两种。无缝钢管用途非常广泛,常用于锅炉房中的管道、热力交换站工艺管道、较小管径的燃气管道等。 低压流体输送用焊接钢管常采用焊接性能较好的低碳钢制造。其管壁有一条纵向焊缝。根据钢管表面是否有镀锌层,可分为镀锌钢管(俗称白铁管)和非镀锌管(俗称黑铁管)两种。低压流体输送用焊接钢管常用于小管径和较低压力的管道,其壁厚规格分为普通管和加厚管。

管道焊缝的应力腐蚀及其控制_图文(精)

油气储运2003正 管道焊缝的应力腐蚀及其控制 陈居术?孙新岭张涛龙军 (中国人民解放军后勤工程学院 陈居术孙新岭等:管道焊缝的应力腐蚀及其控制,油气储运,2003,22(1142~45。 摘要通过研究管道焊缝应力腐蚀的规律,发现焊缝比母材具有更高的应力腐蚀敏感性,焊 缝硬化层越宽,对应力腐蚀越敏感,工作温度越商,应力腐蚀敏感电位区间就越宽。介绍了控制管 道钢缝应力腐蚀的控制合金元素、控制焊接工艺、控制介质因素等方法。指出适量加入合金元素可 提高管道焊缝的抗应力腐蚀能力。 主题词管道焊缝应力腐蚀分析控制方法 油气管道的应力腐蚀开裂往往起源于焊接接头区域,但在传统上,应力腐蚀开裂的研究工作主要围绕母材进行。管道焊缝的开裂有其特殊性,不同于管道的应力腐蚀开裂,如果忽视这一区别,将在油气管道安全性评定和剩余使用寿命的预测上产生偏差。据统计,截止到1993年底,四JI『石油管理局输气公司的输气干线共发生硫化物应力腐蚀事故78起,其中川I东公司的输气干线共发生硫化物应力腐蚀破裂事故28起,仅1979年8月至1987年3月间就发生12次硫化物应力腐蚀的爆管事故,经济损失超过700×104元“。。常,应力越大,发生开裂的时间越短,而小于某一应力值就不发生开裂,此应力值称为应力腐蚀的门槛值,见图1。 时向(h

图1应力腐蚀断裂的特征曲线 一、应力腐蚀的条件2、腐蚀介质与材料 应力腐蚀断裂只在一定的材料介质组合条件下 1、拉应力才能发生,有时浓度很低的介质也会引发应力腐蚀 拉应力是发生应力腐蚀开裂的必要条件。通裂纹。一般情况下,介质的浓度越高,环境温度越_pp口4q自∽q4、p口o-4hoqm、p_。p-o镕o,口8∽*n、pp口…_。Ⅻ“p。oq4p,40h4Ⅶm、pp@4p_¥口8q4p口9口_?女Ⅷ4q4b^pd。 五、结论 通过上述几个方面的论证和比较,可以得出以下结论。 (1西气东输管道工程在一、二级地区采用空气试压技术是可行的,安全方面有保障。 (2在严重缺水地区采用空气试压费用节省,经济性好。 t400016.重庆市大坪长江二路147号÷电话t(023********。 (3在西气东输管道工程西部严重缺水地区,所有一级地区的管道应全部采用气压试验方法,二级地区根据水源情况可以部分采用空气试压方法。 参考文献 1.BCH001—88长输管道施工和现场管道内部清理及试压。 2,ANSI/ASME B31.8糖气和配气管道系统, (修改稿收到日期,2003一01—28 编辑:刘誊阳

盐渍地区混凝土耐久性综述

盐渍地区混凝土耐久性研究概况综述 陈庆敏武汉理工大学土建学院 摘要本文介绍了盐渍土的结构特征及化学成分,也介绍了国内西部及沿海盐渍区,钢筋混凝土材料腐蚀机理 的分析过程。同时对盐渍地区混凝土腐蚀的几种类型和抗腐方法,方案进行了介绍和评述,也介绍了不同矿物质 超细粉对硫酸盐腐蚀的抑制作用,并利用质量损失等指标对砂浆试件干湿循环试验进行分析,还介绍了盐渍地区 混凝土腐蚀破坏的主要因素及国内已有盐渍地区混凝土抗腐蚀性的部分研究成果。为我国西部和沿海建设奠定了 技术基础。 关键词盐渍地区;混凝土;耐久性;国内混凝土抗腐蚀研究 一概述 建国以来,我国水利,电力,交通,港口,铁道,工业与民用建筑及市政等部门兴建了大量混凝土工程,这些工程在国民经济建设中发挥了巨大的作用。现在我国又处在西部开发与建设之中,加之近几年大量的巨资工程在这些地区的投入使用。随着运行时间的增加,混凝土工程的腐蚀破坏问题日益突出,这一问题不仅影响到正常的生产,甚至危及到工程的安全运行。 近几年来混凝土腐蚀破坏的调查总结报告表明:混凝土腐蚀破坏在我国盐渍土主要分布的地区,该地区为地势较低的平原或盆地,如新疆的南疆.北疆及土哈一带,青海中西部、甘肃、宁夏、内蒙及青藏高原的低洼地区,沿海地区及华北下原、大同盆地、松辽平原等。这些大型混凝土的工程一般运行年限都非常的短,更甚上亿的工程运行一两年就停止运行。如西宁曹家堡飞机场于1996年建并运行,经过4年的时间,机场跑道老化、腐蚀、干裂十分严重,已影响了飞机的正常起飞和降落。跑道混凝土出现腐蚀、起砂,道面龟裂。另外西宁东郊硝湾330千伏变电所位于青海平安县内,所址上部近20m地层中大多沉积有棕红,棕褐色粘性土,地层中含混较多的石硝碎块和小颗粒。含有大量的易容盐。该变电所于1996年建成投入使用,2002年6月扩建投入运营了2号主变。占地88亩,投资一亿多元,在全部建成投入运行不到一年的时间里,变电所内几乎所有的已建建筑物基础,室内外地坪,道路灯产生了严重的变形,沉降,裂缝和扭曲,直接危机变电所的运行。种种事例表明盐渍地区混凝土的腐蚀破坏及耐久性研究具有重要的意义。 因此。如何建立适合我国盐渍地区混凝土破坏安全性的技术条件,尤其确保是国家重点工程项目的安全性,以及这些工程能安全,长期运行并创造巨大的经济效益和社会效益有着重要的意义。 二盐渍土的定义及结构特征 关于盐渍土的定义,国内外尚无统一标准。通常认为,土中含易溶盐超过0.3%,即谓盐渍土。盐渍土的成因也较为复杂。百科定义为:盐渍土是盐土和碱土以及各种盐化、碱化土壤的总称。盐土是指土壤中可溶性盐含量达到对作物生长有显著危害的土类。盐分含量指标因不同盐分组成而异。碱土是指土壤中含有危害植物生长和改变土壤性质的多量交换性钠。盐渍土主要分布在内陆干旱、半干旱地区,滨海地区也有分布。全世界盐渍土面积计约897.0万平方公里,约占世界陆地总面积的6.5%,占干旱区总面积的39%。中国盐渍土面积约有20多万平方公里,约占国土总面积的2.1%。 盐渍土在我国分布情况:A.近海地区的盐渍土大都以含氯盐为主(NaCl,CaCI 2,MgCI 2 ,等),而内陆 地区,有的足以含氯盐为主(如青海地区),有的是以含硫酸盐为主(Na2S04等),而大多数情况下是氯盐、硫酸盐同时存在,只是不同地区两者比例不同。B.西宁黄土状盐渍土属内陆盐渍土,形成来源于其母岩第三系强风化泥岩,经地下水、地表水溶滤后,随水流从山坡带到山脚,经蒸发作用盐分凝聚而成。按含盐类的性质分类,盐渍土又可分为氯盐盐渍土、硫酸盐盐渍土、碳酸盐盐渍土。西宁黄土

相关文档