文档库 最新最全的文档下载
当前位置:文档库 › 3D3S常见问题及解决办法

3D3S常见问题及解决办法

3D3S常见问题及解决办法
3D3S常见问题及解决办法

1.构件自重软件是否已经考虑,在哪里考虑?

软件自动考虑,在定义材性中材料密度中考虑,并加在0工况的恒载中。

不加任何荷载进行计算,计算后查看荷载组合。可以看到

2.进行验算参数修改以后,要点击“选择欲定义单元”,选择杆件进行参数定

义。

3.立面上用杆件导荷载的命令中的导恒、活荷载导不上去。

因为导恒、活荷载时导到投影面积,立面的投影面积为零。

4.“各振型质量参与系数’在哪里查询?

当按集中质量矩阵计算时,查询地震周期中可以查询到。

5.情况号的含义:

当一个荷载工况有好几个情况的时候,那相应的组合就有几个情况号

比如温度荷载工况有两个情况号,吊车荷载工况有好几个情况号,地震荷载工况有好几个情况号。

如下列组合4

6.当结构为空间结构的时候,地震荷载参数选择“考虑藕连”选项。

7.工具箱吊车梁设计与计算中,横向荷载标准值是指单个轮子的值。

8.当要验算钢管混凝土柱时,选择截面为“钢管混凝土”,定义材性为钢+砼

9.杆件导荷载的方式为单向导到节点或单元时,除了要“选择受荷范围”还要:

“选择受力单元”

10.吊车梁参数输入中,到左柱边偏心表示什么?横向力到牛腿的距离表示什么? 到左柱边偏心表示竖向力到牛腿内皮的距离。

横向力到牛腿的距离表示小车轮子中心到牛腿顶标高的距离。

11.多高层模块中,楼板按双向板计算,与布板方向无关。

12.活荷载不利布置只有在轻钢模块的施加活载单元荷载。

13.多高层中的梁计算时软件按压弯构件计算,如果要按受弯构件计算,不控制

长细比,则可以在设计参数选择中设置为不控制长细比,然后点击“选择预定义单元”选择不控制长细比的梁构件进行设置。

14.可以用“构件属性”菜单下面“定义层面或轴线号”来定义层面,轴线号以

及弦杆类型。

15.当一个组合中的某个荷载没有作用的时候,软件会自动删除这个组合。

比如说没加地震荷载,则计算后组合12自动删除。

16.施加杆件导荷载菜单下面,直接导风荷载到杆件的时候,必须填入“方向矢

量”这个参数,方向矢量为0的话,荷载加不上去。

这里X=1,Y=O表示沿X方向。X=0,Y=1表示沿Y方向,X=1,Y=1,表示沿45度角方向,以此类推。

17.验算结果中挠度W/L中的W是指构件的最大位移减去构件支撑点间在最大位

移发生处的差值之差,对于两端铰接的单元L为单元的长度,对于梁来说,L 表示杆件支撑点间的距离。

构件挠度W/L中W的取法

18.导荷载过程中,如果某些区域为空洞,可以再生成封闭面后把该区域的封闭

面删除,然后进行自动导荷载,删掉封闭面以后不要再重新生成封闭面了。

然后查询该工况的节点或单元荷载查看,删除封闭面的四周构件的荷载比其他地方要小。

19.计算前要进行模型检查,进行拷贝,镜像,删除等命令后要进行“删除重复

单元节点”操作。

20.结构体系的选择,当结构部分刚接,部分铰接的时候,在结构编辑菜单下面

把“结构体系”定义为“空间框架”,然后对两端铰接的杆件进行单元释放。

21.设置节点设计参数的时候,如果选择等强,则要输入分项应力比,按默认为

零时按内力为零计算,一般建议用户采用“按3D3S整体结构计算内力”

22.多高层导风荷载有两种方法,一,添加刚性隔板,在刚性隔板上加风荷载,

二,用“杆件导荷载”命令施加风荷载到建筑物表面。

一、添加隔板风荷载

3D3S中有提供了“添加隔板风荷载”的选项,是用于计算整体水平位移的风荷载,作用在每层的刚性隔板中心。这种方式,ETABS PKPM都用;是一种简化算法。

操作步骤:

1、刚性隔板在模型组装的时候定义,勾选“添加隔板”,然后会跳出如下对话框:

2、填入基本参数:

输入基本风压、地面粗糙度、风压高度变化修正系数、建筑结构类型、房屋类型、参考点高度、周期等参数。

周期用于计算风振系数,周期来源可以是程序计算的周期,也可以是用户根据经验定义的;

可以在这个对话框中添加0度,90度的风荷载。双击空白的地方,输入工况,风向角及体型系数。

3、隔板导风荷载完成

二、通过杆件导荷载的方式导风荷载:

这种导荷载方式和其他模块中的导荷载一样使用,用户可以自己选择要导风荷载的面,自己定义体型系数等参数,通过这种方式施加风荷载相比第一种方式更为精确。

操作步骤:

1、单独显示模型四周要导风荷载的杆件

2、施加杆件导荷载,输入荷载大小,体型系数等参数,点取内部参考点。添加虚杆

3、生成封闭面

4、自动导荷载。

注意事项:

荷载导完以后,可以再显示查询菜单下面----按工况号显示导荷载命令查询导荷载情况,也可以通过查询相应工况的节点荷载或单元荷载。

当导荷载方式为单向导到节点或单元时,要选择“受力单元”来确定导荷载的位置。

同样的,当用户在高层风荷载参数设置对话框中选用“风力作用面来自刚性隔板范围同时又在模型中施加了杆件导风荷载,则程序同时将两者都考虑。因此,添加一个模型的风荷载,只需用以上任何一种方法即可,不能重复施加。

23.为了使优选后的截面保持一致,要在定义截面的时候定义组号,相同组号的

构件优选后截面仍然保持一致。

24.支座位移在支座边界命令下面设置。

25.构件验算时提示杆件太多的时候,可以把“计算内容选择及执行”中计算参

数里面的“计算截面数”改小。

3D3S知识论点

3D3S各种结构自录精品演示【幸福兄专贴】问答实录 1、问题:框架演示中。 建筑物X、Y轴风荷载的体形系数是08、-0.5吗?怎么0.8与-0.5在X、-X、Y、-Y方向全布置上了啊?山墙端不是-0.7吗?不懂了~ 也就是说风荷载2和3是不是应该包含山墙的-0.7啊?(应该6种工况吧) 怎么你的演示不是呢(老兄的演示是4种工况)? 2、有一个问题,看老兄的整体网架的那个演示中,网架支座定义:1.把上弦支座处定义为铰接;2.把柱子单元释放,顶端为铰接; 老兄选择的是第2种。 那么疑问:如果按第1种方法建模,计算出来的柱子会偏于不安全;如果按第2种方法建模,就不能进行网架支座设计。请问老兄对这样的结构支座怎么设计? 3、第一个演示中带行车格构柱的问题: 从截面库中选择的如果直接用格构柱截面,软件做了格构柱整体稳定计算。 若是自己建立的(桁架)格构柱,软件只算单根的,那么这时的整体稳定,老兄是怎么考虑的? 幸福:1,请注意我第一个帖子,这仅仅是表示一种思路,不代表绝对正确,正确的风荷载考虑我在网架演示中已经操作过.所以在框架演示中不再重复. 2,网架问题:最正确的分析方法就是整体分析,所以网架在柱顶连接的地方在计算上是不能设置成支座的,如果该地方设置成支座,那么下面的柱子分析就毫无意义了,所以在大多数情况下,整体分析应该参考我的思路,当然,特殊情况可以再做变动. 3,格构柱问题:目前基本上所有的程序都是这样处理,当然,具体到连锥条也按照单独构件建到模型中去对这些构件的分析来说是可行的,但是这对荷载传递来说是极不方便的,因为实际情况是整个柱子承受内力,格构柱细分后,你就不清楚到底那些细分的构件要分担多少内力,也当然,这个问题还可以通过增加刚性杆来作为内力的过渡,但也毕竟很麻烦,目前3D3S格构截面的类型相对少点,下个版本应该会有改善. 软件实际上并不是演算单根的稳定,程序是按照规范以及一些权威的参考书来演算整体单肢以及缀条的强度以及稳定的.. 4、3D3S对屋面活荷载不利布置是可供选择“考虑”和“不考虑”的,不知道幸福兄认为什么情况下考虑?什么情况下不考虑? 幸福:多跨门钢需要考虑,单跨没必要,其实道理一样的,就像连续梁现浇连续楼板一样. 幸福:“多跨门钢需要考虑,单跨没必要,其实道理一样的,就像连续梁现浇连续楼板一样” 哈哈,雪荷载比较大或者单坡屋面过长的,不论但跨还是多跨还是考虑为好 唉,看来这位朋友的基本功没学到家啊,活荷载不利布置的道理以及结果是什么,活荷载不利布置是在有连续支座的结构中,活荷载单独一跨布置导致在相邻中间支座产生的反弯矩比连续布置活荷载对该中间支座产生的反弯矩要大,其主要反映的是中间支座的反弯矩。 单跨门钢,何来活荷载不利布置?如果你坚持不利布置是指半跨活荷载的话,在单跨门钢中,不论活荷载布置在跨度范围内的什么位置,它的作用趋势都是让跨中下弯边柱反弯,无论它(这个局部的活荷载)怎

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

自振周期折减系数

自振周期折减系数 1 概念 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 2 影响自振周期因素 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可0.6~0.7[2];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90。这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数。结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: 3 计算周期长的原因 1.填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。 我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。 一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。 2.基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压

3d3s问题归总

3d3s 问题集锦 默认分类2009-09-30 15:14:05 阅读462 评论2 字号:大中小订阅 1、有一个问题,看老兄的整体网架的那个演示中,网架支座定义: 1、把上弦支座处定义为铰接; 2、把柱子单元释放,顶端为铰接; 老兄选择的是第2种。 那么疑问:如果按第1种方法建模,计算出来的柱子会偏于不安全;如果按第2种方法建模,就不能进行网架支座设计。请问老兄对这样的结构支座怎么设计? 2、第一个演示中带行车格构柱的问题: 从截面库中选择的如果直接用格构柱截面,软件做了格构柱整体稳定计算。 若是自己建立的(桁架)格构柱,软件只算单根的,那么这时的整体稳定,老兄是怎么考虑的? 3、问题:框架演示中。 建筑物X、Y轴风荷载的体形系数是08、-0.5吗?怎么0.8与-0.5在X、-X、Y、-Y方向全布置上了啊? 山墙端不是-0.7吗?不懂了~ 也就是说风荷载2和3是不是应该包含山墙的-0.7啊?(应该6种工况吧) 怎么你的演示不是呢(老兄的演示是4种工况)? 幸福:1,请注意我第一个帖子,这仅仅是表示一种思路,不代表绝对正确,正确的风荷载考虑我在网架演示中已经操作过.所以在框架演示中不再重复. 2,网架问题:最正确的分析方法就是整体分析,所以网架在柱顶连接的地方在计算上是不能设置成支座的,如果该地方设置成支座,那么下面的柱子分析就毫无意义了,所以在大多数情况下,整体分析应该参考我的思路,当然,特殊情况可以再做变动. 3,格构柱问题:目前基本上所有的程序都是这样处理,当然,具体到连锥条也按照单独构件建到模型中去对这些构件的分析来说是可行的,但是这对荷载传递来说是极不方便的,因为实际情况是整个柱子承受内力,格构柱细分后,你就不清楚到底那些细分的构件要分担多少内力,也当然,这个问题还可以通过增加刚性杆来作为内力的过渡,但也毕竟很麻烦,目前3D3S格构截面的类型相对少点,下个版本应该会有改善. 软件实际上并不是演算单根的稳定,程序是按照规范以及一些权威的参考书来演算整体单肢以及缀条的强度以及稳定的.. 4、3D3S对屋面活荷载不利布置是可供选择“考虑”和“不考虑”的,不知道幸

钢结构快速入门教材(第四章门式刚架)

第四章门式刚架 第一节结构体系 门式刚架是二战期间迅速发展起来的,由相互依存的构件组成统一体,即由梁、柱、檩条、墙梁支撑和金属波形板材设计成协同工作的金属预制装配的建筑体系。战后被广泛采用,我国六十年代中期开始推广,并在援外工程中使用,取得良好的国际赞同。由于十年动乱终止了这种建筑体系的发展,改革开放以来,特别是民营企业的蓬勃发展,门式刚架结构体系据不完全统计已建了800万m2,而且每年以100万m2的速度递增。 这种结构体系设计经济,安装快捷,造价低廉,装卸方便,维护费用低,单一供货,为业主认可。 我们萧山成为钢结构之乡,竞争十分激烈,萧山的钢结构应由价位的竞争逐步转向价值的竞争,就是创造精品钢结构,扩展使用范围,建造独具建筑风格的金属建筑体系,使钢结构应与时俱进,演变及发展是同时进行的。 一、结构概念设计 1.三维设计(方案阶段)——(详见附图三十四) 假定是整体性,并具有总体性能。将结构形式作为总体分析。 1)建筑功能是否满足使用要求; 2)高度、跨度是否合理,是否经济; 3)在垂直和水平荷载作用下,是否安全可靠; 4)房屋的安全等级,抗震等级。 2.二维设计——(详见附图三十五) 确定基本的水平和竖向分体系。 建立关键构件的相互关系。 3.一维设计(平面、立体—施工图阶段)——(详见附图三十六) 1)选择一个合理的结构体系,使传力途径明确合理。 2)选择合理的计算方法,同时采取相应的构造措施,保证计算模型(建模)与实际情况符合。 3)增加结构刚度,减少用钢量,且有很好的经济技术指标。 4)工厂化生产,全预制装配。 第二节门式刚架的分类 一、实腹式门式刚架——(详见附图三十七) 采用H型钢组成的梁柱构件的截面形状,按结构受力的弯矩包络图来确定,使实腹式

附录F:结构基本自振周期的经验公式

附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值: H T )013.0~007.0(1= (F.1.1) 式中:H ——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m 的砖烟囱的基本自振周期按下式计算: d H T 2 2 110 22.023.0-?+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 10.041.0-?+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 08.053.0-?+= (F.1.2-3) 式中:H ——烟囱高度(m); d ——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式 (a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时 2 3 110 85.035.0D H T -?+= (F.1.2-4)

当H 2/D 0≥700时 2 3 110 99.025.0D H T -?+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m); D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2 3 110 40.056.0D H T -?+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T 1=(0.10~0.15)n (F.2.1-1) 式中:n ——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算: T 1=(0.05~0.lO)n (F.2.1-2) F.2.2 钢筋混凝土框架、框剪和剪力墙结构的基本自振周期可按下列规定采用: 1,钢筋混凝土框架和框剪结构的基本自振周期按下式计算: 3 2 3 110 53.025.0B H T -?+= (F.2.2-1) 2,钢筋混凝土剪力墙结构的基本自振周期按下式计算: 3 103 .003.0B H T += (F.2.2-2) 式中:H ——房屋总高度(m); B ——房屋宽度(m)。

3.7 结构自振周期的计算

职业技术学院一、能量法计算基本周期 3.7结构自振周期的计算设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法: 矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1 (1)计算各层层间剪力 (2)计算各楼层处的水平位移 (3)计算基本周期二、等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1能量法的结果为T1 0.508s三、顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。1体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为2体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为四、自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算 (1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期

(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。 (3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期 (4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期

3d3s 快速入门

3d3s 快速入门 操作顺序 一,利用ACAD的line 命令画出计算模型的三维线模型 二,利用结构编辑一添加杆件命令,把线定义为有界面,方位等特性的杆件,使用构件属性一支座边界命令,定义支座。 三,使用定义层面或线号,把不同位置的构件定义为不同的层号。 四,使用定义层面或轴线号,把不同位置的构件定义为不同的层号。 五,使用荷载一添加节点荷载命令,双击输入恒载(工况),活载(工矿1)风载(工矿2)等节点荷载。 六,使用荷载一添加杆件导荷载命令,双击输入恒载面荷载(工矿0),活载面荷载(工矿1),选择受荷范围按钮,在屏幕中选择当前显示的上贡平面的所有杆件后,关闭退出; 七,荷载一生成封闭面,在封闭面已生成后的按继续执行自动导荷载;使用显示查询一按工况号显示导荷载菜单,在屏幕中可以显示出面荷载作用的所有封闭面,可以使用acacd的SHADE 命令来进行消隐观察; 点击取消附加信息显示和全部显示开关,恢复整体的模型的显示; 八,使用显示查询一显示节点荷载,单元荷载命令,在屏幕中可以显示出最终作用的所有节点荷载或单元荷载, 九,使用显示查询一显示节点荷载,单元荷载命令,在屏幕中可以显示出最终作用的所有节点荷载或单元荷载。 九,把交接的杆件的两端做单元释放,释放绕2,3轴的转动,点击构件信息显示按钮,选中单元释放进行观察; 十,地震荷载输入;荷载一地震荷载参数,选择七度区。 十一,分析内容选择和计算,选中地震计算和线性分析,确定后进行地震荷载计算和结构线性内力计算; 十二,选择相应规范,选择所有构件为钢结构规范,进行设计验算; 十三,根据设计验算结果调整截面,重新进行内力分析,设计验算直到结果构件通过验算;

周期、振型问题

1、《高层规程》3.2.6规定-----结构基本自振周期大致为:框架结构T1=(0.08~0.10)n, 框—剪和框—筒结构T1=(0.06~0.08)n 剪力墙和筒中筒结构T1=(0.05~0.06)n 2、周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt 与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。2.2 相关规范条文的控制:[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。当然,对某些极为复杂的结构还应结

合主振型信息来进行判断;b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;c)计算Tt / T1,看是否超过0.9(0.85)。对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。(2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。(3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。(4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,

结构自振周期是结构自由振动的周期

predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s. 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。

基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。

相关文档