文档库 最新最全的文档下载
当前位置:文档库 › FD-NCE-II非线性混沌实验

FD-NCE-II非线性混沌实验

FD-NCE-II非线性混沌实验
FD-NCE-II非线性混沌实验

FD-NCE-II 非线性电路混沌实验仪

一、概述

非线性动力学以及与此相关的分岔混沌现象的研究是近二十多年来科学界研究的热门课题。对此课题的研究已有大量论文发表。混沌现象涉及物理学、数学、生物学、电子学、计算机科学和经济学等领域,应用极为广泛,非线性电路混沌实验已列入新的综合大学普通物理实验教学大纲,是理工科院校新开设的倍受学生欢迎的基础物理实验。由复旦大学物理实验教学中心与本公司联合研制的非线性电路混沌实验仪具有以下几个优点:

1、实验电路采用基础物理中电磁学实验最基本电路,突出物理和物理实验教学中的重点内容。物理现象明显,实验内容丰富,实验数据稳定。

2、电路的基本元件由学生自己接线,利于提高学生动手能力,集成块与电源都有保护装置, 仪器牢靠,不易损坏。

3、用示波器观测正弦波形的周期分岔及混沌现象,图形明显,且重复性好,可连续观测几小时。 本仪器可用于高等院校及中专的基础物理实验、物理演示实验及设计性开放性物理实验。

二、用途

主要用于高校普通物理实验和演示实验,主要实验内容有:

1、用RLC 串联谐振电路,测量仪器提供的铁氧体介质电感在通过不同电流时的电感量。解释电感量变化的原因。

2、用示波器观测LC 振荡器产生的波形及经RC 移相后的波形。

3、用双踪示波器观测上述两个波形组成的相图(李萨如图)。

4、改变RC 移相器中可调电阻R 的值,观察相图周期变化。记录倍周期分岔、阵发混沌、三倍周期、吸引子(周期混沌)和双吸引子(周期混沌)相图。

5、测量由LF353双运放构成的有源非线性负阻“元件”的伏安特性,结合非线性电路的动力学方程,解释混沌产生的原因。

三、仪器组成及技术指标

1、直流稳压输出 V 15 。提供运算放大器工作电压

2、四位半数字电压表 量程为0—19.999V;分辨率为1mV

3、仪器总功率 15W

4、仪器工作电压(220 10%)V

5、仪器总重量3Kg

6、仪器尺寸(300×200×150)mm

7、非线性电路混沌实验电路板

电路板包括:(1)LC振荡器;(2)RC移相器电路;(3)双运放及6个配置电阻组成的等效“有源非线性负阻元件”;(4)连接导线和同轴电缆线;(5)四位半数字电压表

四、仪器外观图

图1 仪器外观图

1、电感

2、电源开关

3、20V数字电压表

4、LC震荡器

5、RC移相器

6、有源非线性负阻

五、仪器使用方法

1、打开机箱,将铁氧体介质电感连接到与面板上对应接线柱相接。

2、用同轴电缆线将实验仪面板上的CH2插座连接示波器的Y输入,CH1插座连接示波器的X

输入,并置X和Y输入为DC。以观测二个正弦波构成的李萨如图(相图)。

3、接通实验板的电源,这时数字电压表有显示,对应 15V电源指示灯都为亮状态,且都有电压

输出。

4、数字电压表上的数字不停的闪烁,说明显示输入电压超过量程。

六、注意事项

1、双运算放大器的正负极不能接反,地线与电源接地点必须接触良好(尽管仪器有保护装置,

但学生必须学会准确接线)。

2、关掉电源以后,才能拆实验板上的接线。

3、仪器预热10分钟以后才开始测数据。

FD-NCE-II非线性电路混沌实验仪实验讲义

(以下实验讲义和实验结果由复旦大学物理实验教学中心提供)

长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。

实验原理

1、非线性电路与非线性动力学

实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器C 2组成一个损耗可以忽略的谐振回路;可变电阻R 0和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验所用的非线性元件R 是一个五段分段线性元件。图2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1电路的非线性动力学方程为:

C 1dt

dU C 1

=G(U C2-U C1)-gU C1 C 2

dt dU C 2

=G(U C1-U C2)+i L (1) L dt

di

L =-U C2 式中,U C1、U C2是C 1、、C 2上的电压,iL 是电感L 上的电流,G=1/R 0是电导,在图5中,g为U 的函数,如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数,电阻R 0的作用是调节C 1和、C 2的位相差,把C 1和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。如果R 是非线性的,会看到什么现象呢?

电路中的R 是非线性元件,它的伏安特性如图4所示,是一个分端线性的电阻,整体呈现出非线性。gU C1是一个分段线性函数。由于g 总体是非线性函数,三元非线性方程组(1)没有解析解。若用计算机编程进行数据计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象[见参考资料(6)]。

除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图5所示,图5中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的。电

C 2 R 0

R C 1

L

图2 非线性元件伏安特性

图1 非线性电路原理图

V (R )

路中,LC 并联构成振荡电路,R 0的作用是分相,使J1和J2两处输入示波器的信号产生位相差,可得到x,y 两个信号的合成图形,双运放LF353的前级和后级正、负反馈同时存在,正反馈的强弱与比值R 3/R 0,R 6/R 0有关,负反馈的强弱与比值R 2/R 1,R 5/R 5有关。当正反馈大于负反馈时,振荡电路才能维持振荡。若调节R 0,正反馈就发生变化,LF353处于振荡状态,表现出非线性,从C ,D 两点看,LF353与六个电阻等效一个非线性电阻,它的伏安特性大致如图(4)所示

2、有源非线性负阻元件的实现

有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路采用两个运算放大器(一个双运放LF353)和六个配制电阻来实现,其电路如图3所示,它的伏安特性曲线如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。

实际非线性混沌实验电路如图5所示

图4 双运放非线性元件的伏安特性

图3 有源非线性器件

R5

R6

图5 非线性电路混沌实验电路

R6

R5

J 2(CH 2)J 1(CH 1)L

3、名词解释

本名词解释引自参考资料2中的附录3 “简明词汇”。这些定义是描述性的,并非是标准数学定义,但有助于初学者对这些词汇的理解。这些词汇定义多数是按相空间作出的。

(1)分岔:在一族系统中,当一个参数值达到某一临界值以上时,系统长期行为的一个突然变化。

(2)混沌:①表征一个动力系统的特征,在该系统中大多数轨道显示敏感依赖性,即完全混沌。

②有限混沌;表征一个动力系统的特征,在该系统中某些特殊轨道是非周期的,但

大多数轨道是周期或准周期的。

实验仪器

图6 实验装置

实验用仪器如图6所示。非线性电路混沌实验仪由四位半电压表(量程0~19.999V,分辩率1mV)、-15V~0~+15V稳压电源和非线性电路混沌实验线路板三部分组成。观察倍周期分岔和混沌现象用双踪示波器。

实验内容

一、必做内容

1、测量有源非线性电阻的伏安特性并画出伏安特性图

(1)由于非线性电阻是含源的,测量时不用电源,用电阻箱调节,伏安表并联在非线性电阻两端,再和电阻箱串联在一起构成回路。

(2) 尽量多测数据点。

2、倍周期现象、周期性窗口、单吸引子和双吸引子的观察、记录和描述

将电容C1和C2上的电压输入到示波器的X,Y轴,先把R0调到最小,示波器上可以观察到一条直线,调节R0,直线变成椭圆,到某一位置,图形缩成一点。增大示波器的倍率,反向微调R0,可见曲线作倍周期变化,曲线由一周期增为二周期,由二周期增为四周期······直至一系列难以计数的无首尾的环状曲线,这是一个单涡旋吸引子集,再细微调节R0,单吸引子突然变成了双吸引子,只见环状曲线在两个向外涡旋的吸引子之间不断填充与跳跃,这就是混沌研究文献中所描述的“蝴蝶”图象,也是一种奇怪吸引子,它的特点是整体上的稳定性和局域上的不稳定性同时存在。利用这个电路,还可以观察到周期性窗口,仔细调节R0,有时原先的混沌吸引子不是倍周期变化,却突然出现了一个三周期图象,再微调R0,又出现混沌吸引子,这一现象称为出现了周期性窗口。混沌现象的另一个特征是对于初值的敏感性。

观察并记录不同倍周期时U C1--t图和R0的值。

二、选做内容

测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。

1、按图5所示电路接线。其中电感器L由实验者用漆包铜线手工缠绕。可在线框上绕75—85圈,

然后装上铁氧体磁芯,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。

也可以用仪器附带铁氧体电感器。

2、串联谐振法测电感器电感量。把自制电感器、电阻箱(取30.00Ω)串联,并与低频信号发生

器相接。用示波器测量电阻两端的电压,调节低频信号发生器正弦波频率,使电阻两端电压达到最大值。同时,测量通过电阻的电流值I。要求达到I=5mA(有效值)时,测量电感器的电感量

实验结果(例)

1、倍周期分岔和混沌现象的观测及相图描绘

1.1、按图5接好实验面板图,将方程(1)中的1/G即R V1+R V2值放到较大某值,这时示波器

出现李萨如图,如图7-a所示,用扫描档观测为二个具有一定相移(相位差)的正弦波。

1.2、逐步减小1/G值,开始出现二个“分列”的环图,出现了分岔现象,即由原来1倍周期

变为2倍周期,示波器上显示李萨如图,如图7-b所示。

1.3、继续减小1/G值,出现4倍周期(如图7-c所示)、8倍周期、16倍周期与阵发混沌交替

现象,阵发混沌见图7-d。

1.4、再减小1/G值,出现了3倍周期,如图7-e所示,图象十分清楚稳定。根据Yorke的著名

论断“周期3意味着混沌”,说明电路即将出现混沌。

1.5、继续减小1/G,则出现单个吸引子,如图7-f 所示。

1.6、再减小1/G,出现双吸引子,如图7-g所示。

图7 倍周期分岔系列照片

2、电感量与工作电流的关系

由于在本实验中制作线圈时使用了磁芯,因而线圈的电感对电流的变化非常明显,以下测量到的数据可以很清楚地说明这一点,但由于本实验对混沌现象只用于定性半定量的观察,因而对实验影响并不大。

3、测量电感L特性的方法

CH2测量R两端电压。保持信号发生器输出电压不变,调节频率,当CH2测得的电压最大时,RLC串联电路达到谐振。

CH2

L C R

CH1

图8 测量电感的电路

电感谐振时有

ωL=1/ωC f0=1/2πLC

L=1/4π2Cf20U R=U CH2/22,回路中电流的有效值I=U R/R

其中f0为谐振频率,U CH2表示CH2波形的峰-峰电压,U R表示电阻R两端输出的电压。

以下提供2个电感样品的测量数据,仅供参考,因为不同的电感,其参数完全不一样,但需要掌握测量电感的RLC电路和记录数据的方法

样品A

测量的实验数据如表1所示,由表1作图见图9

表1电感L随电流I变化的数据表

由上表可见,电感量L随着电流I的增大而增加, 由此得出电感中有铁芯,因为电流越大,铁磁效应越明显。

样品B

测量的实验数据如下表2所示

表2 电感参量的测量数据

改变信号发生器输出电压后得到数据见表3

表3 改变信号发生器输出电压后测量数据

电感值L随电流I变化数据见表4。

由表4作图见图10(R=100.0Ω)

表4 电感L随电流变化的数据表

图10 电感值L 与电流I 关系

可见,电感L 随电流I 的增加而增大,由此得出电感中有铁芯。当电流增加到25mA 以后,电感量就基本饱和了,再随着电流的继续增大,电感量在渐渐减小,这是因为电感中通过的电流越大,其磁环的磁导率μ就会下降,所以电感量就会随之减小。

4、有源非线性负阻元件的伏安特性

双运算放大器中2个对称放大器各自的配置电阻相差100倍,这就使得2个放大器输出电流的总和,在不同的工作电压段,输出总电流随电压变化关系不相同(其中一个放大器达到电流饱和,另一个尚未饱和),因而出现了非线性的伏安特性。测量结果如表2,实验电路如图11所示。

图11 有源非线性负阻元件伏安特性原理图

5、有源非线性电路的伏安特性曲线测量

有源非线性负阻元件一般满足“蔡氏电路”的特性曲线。实验中,将电路的LC 振荡部分与非线性电阻直接断开,图8的伏特表用来测量非线性元件两端的电压。由于非线性电阻是有源的,因此回路中始终有电流流过,R 使用的是电阻箱,其作用是改变非线性元件的对外输出。使用电阻箱可以得到很精确的电阻,尤其可以对电阻值做微小的改变,因而微小地改变输出。 本实验测得数据 见表5(仅供参考):

R ’

R ’有源非线性负阻(接通电源的双运放)

R 为外接电阻箱

表5 非线性电路伏安特性

把上表数据分三段进行线性拟合,同时根据方程I=A V+B,可得参数如下所示:

A1=-7.406×10-4A/V B1=7.042×10-3mA r=0.9996

A2=-4.042×10-4A/V B2=0.605mA r=0.9997

A3=2.185×10-4A/V B=27.30mA r=0.9996

对直线的交点,即转折点进行计算,可得:

V1=-1.775V, I1=0.323mA ;V2=-10.276V, I2=4.759mA;

上式中A、B、r分别代表斜率、截距和线性相关系数

可见,实际的曲线三段分段线性度很高,因而对非线性元件的电压-电流特性曲线,在一定范围内可作分段线性近似,以便于以下的理论讨论。对于正向电压部分的曲线,由理论计算是与反向电压部分曲线关于原点180度对称的。

思考题

1、实验中需自制铁氧体为介质的电感器,该电感器的电感量与哪些因素有关?此电感量可用哪些

方法测量?

2、非线性负阻电路(元件),在本实验中的作用是什么?

3、为什么要采用RC移相器,并且用相图来观测倍周期分岔等现象?如果不用移相器,可用哪些仪

器或方法?

4、通过做本实验请阐述倍周期分岔、混沌、奇怪吸引子等概念的物理含义。

参考资料

1、沈元华,陆申龙.基础物理实验,北京:高教出版社,2003

2、E.N.洛伦兹.混沌的本质.气象出版社,1997

3、P.R.Hobson and https://www.wendangku.net/doc/5b329640.html,nsbury,A simpie electronic circuit to

demonstrate bifurcation and chaos,Physics Education 1996

4、郝柏林.“分岔、混沌、奇怪吸引子、湍流及其它”,物理学进展.VO1.3,NO.3,1983.

5、王珂,田真,陆申龙.非线性电路混沌实验装置的研究.实验室研究与探索.第18卷.第四期.

1999,8:43--45

6、张连芳等.非线性电路中混沌现象的模拟实验,工科物理增刊,北京:清华大学出版社,1998.

上海复旦天欣科教仪器有限公司

FD—NCE—II 混沌实验仪

装箱清单

您购买的产品与装箱清单是否相符,请验收:

日期:年月日

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

蔡氏混沌非线性电路的分析研究

研究生课程论文(2018-2018学年第二学期> 蔡氏混沌非线性电路的研究 研究生:***

蔡氏混沌非线性电路的研究 *** 摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly. Key words:chaos phenomenon;Chua’S circuit;simulation 引言: 混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。混沌行为是确定性因素导致的类似随机运动的行为,即一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性。混沌中蕴含着有序,有序的过程中也可能出现混沌。混沌的基本特征是具有对初始条件的敏感依赖性,即初始值的微小差别经过一段时间后可以导致系统运动过程的显著差别。混沌揭示了自然界的非周期性与不可预测性问题而成为20 世纪三大重要基础

非线性电路的应用——混沌电路

非线性电路的应用——混沌电路 摘要 本文给出了一种含有由两个运算放大器组成的非线性负电阻的蔡氏混沌电路,如图一所示。利用非线性电阻电路,设计了如图二所示的非线性伏安特性曲线。图二即为在示波器中得到的伏安特性曲线。在实现图二的伏安特性曲线的基础上,设计了图三所示的混沌电路。使用示波器,连续改变混沌电路的敏感参数(如图中的可变电阻由2K欧姆逐渐减小到零),得到了各种情况下的涡旋现象,得到双涡旋到大极限环变化时的参数,从理论分析与仿真实验两个角度分别研究蔡氏电路的混沌行为,研究结果表明在相同的混沌行为预期下,仿真实验与理论分析结论十分吻合,仿真实验能准确地观测到混沌吸引子的行为特征.通过利用Mutisim7.0进行仿真,观察到由直流平衡态经周期倍增分岔到Hopf分岔形成类似于Rossler吸引子,然后再过渡到双涡卷状的蔡氏吸引子大极限环的全过程。 关键词 蔡氏电路;非线性伏安特性曲线;Mutisim7.0仿真;双涡卷混沌吸引子;倍周期分岔 引言 蔡式电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简的一种自治电路。该典型电路并不唯一。蔡式电路在非线性系统及混沌研究中,占有极为严重的地位。 许多非线性动力系统的特性曲线不是跟踪简单、有规则和可预测的轨线,而是围绕像随机且似乎不规则但是明确的形式滑动。只要有关的过程是非线性的,甚至简单的严格确定性的模型可能发展这样复杂的行为。这行为被理解或接受为混沌,而且它已经导致非线性科学和动力系统工程的惊人发展。 混沌理论是近年来国际上兴起的新理论,它广泛应用于电路系统,并具有很强的抽象性,不容易被接受.本文通过对一种含由两个运算放大器组成的非线性电阻的RLC电路混沌现象实验分析,让人们从感性上更加清晰地了解混沌现象产生的机理,熟悉混沌现象产生的条件,掌握电路中混沌状态的基本规律,使人们对电路中的混沌现象具有更具体、更形象的认识。 正文 电路中存在混沌现象已经是在理论和实验中证明了的不争的事实。在传统的电路理论中,通常将电路划分为线性电路和非线性电路两大类。从严格意义上来讲,线性电路是不存在的,它仅仅是在特定的工作点附近呈现出所谓的“线性”特征,一旦电路的外部条件或内部参数发生变化使其偏离工作点(有时仅仅是微小的偏离),电路的线性特征将会大大地削弱,如发生信号波形失真、电路出现“噪声过量”等现象。非线性是所有电气电路、电子电路具有的固有特性。 混沌科学的发展,不仅大大拓宽了人们的视野,并加深了人们对客观世界的认识,而且由于混沌的奇异特性,尤其是对初始条件微小变化的高度敏感性及

非线性电阻的应用——混沌现象

非线性电阻电路的应用 --混沌电路 作者:0908190162 周勇权 【摘要】 本文从能产生混沌行为的一种最简自治电路——蔡氏电路着手,以非线性负电阻电路为基础,简单介绍了非线性负电阻混沌电路实验的实验原理。通过实现非线性负电阻电路和设计混沌电路,熟悉非线性电阻电路的应用,了解混沌电路最基本的原理。同时利用Multisim仿真软件模拟测定非线性负电阻的伏安特性曲线,观察不同参数条件下混沌现象。 【关键字】 非线性电阻电路混沌现象蔡氏电路 Multisim 【引言】 混沌(Chaos)的英文意思是混乱的,无序的。混沌研究最先起源于Lorenz研究天气预报时用到的三个动力学方程。后来的研究表明,无论是复杂系统,如气象系统,太阳系,还是简单系统,如钟摆,滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象。混沌现象及其应用是非线性科学研究领域的一个热点。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用研究的重要途径。近年来,学者对非线性电路中的混沌现象进行了广泛地研究。蔡式混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视和研究。本文以蔡式混沌电路为例进行仿真研究。首先,借助Multisim仿真软件模拟显示非线性负电阻电路的伏案特性曲线,再通过将点测法得到的曲线与之对比来验证蔡氏电路;其次,通过对实验电路中敏感参数的研究,得出其对混沌电路的影响,观察不同时期的混沌现象,并分析总结。

【正文】 一、实验目的 1、通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义; 2、学会借助Multisim仿真软件对电路进行研究; 3、掌握非线性电阻的非线性特征,以及其非线性电阻特征的测量方法; 4、以非线性电阻电路为基础,设计混沌电路,观察混沌现象。 二、实验器材 示波器函数信号发生器电压表电流表5端运算放大器直流电源电阻 三、实验过程 1、非线性负电阻电路 在混沌电路中,非线性电阻的实现是整个实验成功的关键所在。 (1)实验原理:本实验用两个运算放大器(型号为OPA1013CN8)和六个电阻来实现非线性负电阻电路。电路图如下:

实验六 非线性电路中混沌现象的实验研究

实验六非线性电路中混沌现象的实验研究非线性是自然界中普遍存在的现象,正是非线性才构成了变化莫测的世界。长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多的情况下,非线性现象却起着很大的作用。1963 年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975 年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统产生的。本实验将引导学生自已建立一个非线性电路。该电路包括有源非线性负阻,LC 振荡器和移相器三部分。采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象,测量非线性单元电路的电流——电压特性,从而对非线性电路及混沌现象有一深刻了解,学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。 【实验目的】 1.学习测量非线性单元电路的伏安特性。 2.学习用示波器观察观测LC振荡器产生的波形与经RC 移相后的波形及其相图。3.通过观察LC振荡器产生的波形周期分岔及混沌现象,对非线性有一初步的认识。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1 所示,图1 中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L 和电容器C2 组成一个损耗可以忽略的振荡回路;可变电阻RVl+RV2 和电容器C1串联将振荡器产生的正弦信号移相后输出。较理想的非线性元件R 是一个三段分段线性元件。图2 所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

非线性混沌实验

非线性电路混沌实验 实验目的 1、学会双踪示波器观测两个波形组成的相图。 2、改变RC移相器中可调电阻R的值,观察相图周期变化。记录倍周期分岔、阵发混沌、 三倍周期、吸引子和双吸引子相图。 3、了解LF353双运放构成的有源非线性负阻“元件”的伏安特性,结合非线性电路的动力 学方程,解释混沌产生的原因。 实验仪器 非线性混沌仪。双踪示波器 实验原理 实验电路如图1所示,图中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻RV和电容器C1串联将振荡器产生的正弦信号移相输出。 Rv C2 V(R)

图1电路的非线性动力学方程为: dt dUc C 1 1=G (Uc2-Uc1)-gUc1 C2dt dUc 2=G(Uc1-Uc2)+i L L dt diL = -Uc2 式中,导纳G=1/Rv,Uc2和Uc1分别是加在电容器C2和C1上的电压,i L 表示流过电感器L的电流,g 表示非线性电阻的导纳。 实验内容和步骤 1、打开机箱,将铁氧化介质电感连接到与面板上对应接线柱相接。 2、用同轴电缆线将实验仪面板上的CH2插座连接示波器的Y输入。CH1插座连接示波 器的X输入,并置X和Y输入为DC。以观测二个正弦波构成的李萨如图。 3、按非线性电路图接好电路。接通实验板的电源,这时数字电压表有显示,对应+15V 和-15V电源指示灯都为亮状态,且有电压输出。 4、调节示波器,用示波器观察相图周期变化 5、调节图中的W1和W2的大小,观察并描绘相图周期的分岔混沌现象。将一个环形相图 定为P,那么要求观测并记录2P 、4P 、阵发混沌、3P、单吸引子(混沌)、双吸引子(混沌)共六个相图和相应的CH1-地和CH2-地两个输出波形。 注意事项 1、双运算放大器的正负极不能接反,地线与电源接地点必须接下来触良好。 2、关掉电源以后,才能拆实验板上的接线。 3、一起预热10分钟以后才开始测数据。所测图形如下: L

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua ’s Circuit)。就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性;了解非线性电路混沌现象的本质;学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121)(1 C C C C U g U U G dt dU C ?--?= L C C C i U U G dt dU C +-?=)(2112 2 (1) 2C L U dt di L -=

12.非线性电路混沌

非线性电路混沌 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解.但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。1975年混沌作为一个新的科学名词首次出现在科学文献中。此后,非线性动力学迅速发展,并成为有丰富内容的研究领域,该学科涉及非常广泛的科学从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法形容LC 振荡器产生的正弦波与经过RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一初步了解;学会自己制作和测量一个带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法 [实验原理] 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121 )(1C C C C U g U U G dt dU C ????= L C C C i U U G dt dU C +??=)(2112 2 (1) 2C L U dt di L ?= 式中,导纳,和分别为表示加在电容器C V R G /1=1C U 2C U 1和C 2上的电压,表示流过电感器L的电流,G表示非线性电阻的导纳。 L i 2.有源非线性负阻元件的实现

-非线性电路混沌现象的探究以及基于Multisim的仿真设计

非线性电路混沌现象的探究以及基于Multisim的仿真设计

摘要 本文从非线性电路中的混沌现象着手,详细回顾了混沌电路的实验原理、实验方法以及实验现象,并通过一元线性回归对有源非负阻的伏安特性曲线实进行了拟合。此外,本文也着重通过MultiSim软件,对实验中的混沌电路进行了仿真,仔细记录了仿真下来的各个波形。同时,也利用该软件,通过搭建电路,用示波器获得了有源非线性负阻的伏安特曲。 关键词 混沌电路有源非线性负阻MultiSim软件

一、引言 混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用[1]。 20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。混沌现象出现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。 二、混沌电路简介 对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。 根据Li-York定义,一个混沌系统应具有三种性质: (1)存在所有阶的周期轨道; (2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道; (3)混沌轨道具有高度的不稳定性。 可见,周期轨道与混沌运动有密切关系,表现在两个方面: 第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态; 第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。 根据文献[2][3],混沌主要特征表现在: (1)敏感依赖于初始条件; (2)伸长与折叠; (3)具有丰富的层次和自相似结构; (4)在非线性耗散系统中存在混沌吸引子。 同时,混沌运动还具有如下特征: (1)存在可数无穷多个稳定的周期轨道; (2)存在不可数无穷多个稳定的非周期轨道; (3)至少存在一个不稳定的非周期轨道。 非线性电路是指电路中至少包含一个非线性元件的电路。事实上一切实际元件都是非线性的。因为给任何元件上加足够大的电压或电流后都将破坏其线性。

非线性电路中的混沌现象_电子版实验报告

1.计算电感L 本实验采用相位测量。根据RLC 谐振规律,当输入激励的频率 LC f π21= 时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示 波器上显示的是一条过二四象限的45度斜线。 测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得: mH C f L 32.23)108.30(10145.114.341 412 39222=?????== -π 估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则: 3 2 222108.7)()(4)(-?=+=C C u f f u L L u 即 mH L u 18.0)(= 最终结果:mH L u L )2.03.23()(±=+ 2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据: 99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550

-10.150 -9.550 -9.350 -9.150 -8.350 -8.150 上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

(2)数据处理: 根据R U I R R 可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:

R R R R U U I I =-=11 由此可得对应的1R I 值。 对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得: 图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。故我们在 V U 150.9750.11-≤≤-、 550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用 线性回归的方法来求相应的I-U 曲线。 ?? ? ??≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003 I 经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证 明在区间内I-V 线性符合得较好。

最新非线性电路课程报告-蔡氏电路的Matlab仿真研究资料

西安交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

用非线性电路研究混沌现象pdf

用非线性电路研究混沌现象 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。直到1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。如今,非线性科学已成为21世纪科学研究的一个重要方向。非线性科学的研究对了解生物、物理、化学、气象等学科都有重要意义。混沌作为非线性科学中的主要研究对象之一,在许多领域都得到了证实和应用。混沌作为一门新学科,填补着自然界决定论和概论的鸿沟。混沌是对经典决定论的否定,但本身有它特有的规律。研究混沌的目的是要揭示貌似随机的现象背后所隐藏的规律。 本实验通过建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测非线性电中倍周期分岔产生混沌的全过程。同时了解混沌现象的一些基本特征。 [实验目的] 1. 通过对非线性电路的分析,了解产生混沌现象的基本条件; 2. 通过调整蔡氏电路的参数,学习用示波器观察倍周期分岔走向混沌的过程; 3. 用示波器观察非线性电路的I-U 特性曲线。 [实验原理] 混沌产生的必要条件是系统具有非线性因素。图1是讨论非线性电路系统的一种简单而又经典的电路——蔡氏电路。电路中共有5个基本电路元件:4个线性元件L ,C1,C2,R0和一个非线性电阻R ,其中R 的伏安特性如图2。电路中电感L 和电容C2并联构成一个LC 振荡电路,可变电阻R 0和电容器C 1串联构成移相电路,将振荡器产生的正弦信号移相输出,非线性负阻元件R 和R0共同作用是使振荡周期产生分岔和混沌等一系列非线性现象。 由蔡氏电路图1可得到蔡氏电路的状态方程组为: ????? ???????=+??=????=2211211121)(1)()(10201C L L C C C C C C C C U dt di L i U U R dt dU C U U g U U R dt dU C (1) 式中: Uc1, Uc2 和iL 分别是电容C 1, C 2 两端的电压和流过电感L 的电流, g (Uc 1 ) 是描述非线性电阻R 的i - v 特性的折线(图2)多项式为

@FB816B型非线性电路混沌(分体)实验讲义(2)

非线性电路中混沌现象的研究实验(FB816B型非线性电路混沌实验仪) 实 验 讲 义

1 杭州精科仪器有限公司 非线性电路中混沌现象的研究 非线性是自然世界中普遍存在的现象。正是非线性才构成了变化莫测的世界。我们在研究中大多只是注重使用那些线性描述的方法,以此来得到完美的解析解。但是在有些情况下,非线性就会起很大的作用,使得线性方程的解无法解释,因而我们就不得不着手去研究非线性的现象,以期得到其中的一些规律,并已经获得了一定的成果。一个显著的例子就是气象学。在各种非线性的现象中,最具有代表性的就是混沌现象。以下,我们用级联倍周期分岔的方式接近混沌,从一个非常简单的实验中去观察非线性的现象,并尝试着得出一些重要结论。 一.实验电路: 该实验的电路如图1所示。其中R 是有源非线性负电阻,它等效于图2电路。它的 V ~I 曲线如图3所示21C ,C 是电容,L 是电感 ,G 是可变电导。实验中通过改变电导值实现改变参数的目的。 1.非线性元件:

2 非线性元件的实现方法有许多种。这里使用的是Kennedy 在1993年提出的方法:他的线路很简单,是用两个运算放大器和六个电阻来实现的。其电路图如图2 所示。它的特性曲线示意如图3 所示。由于我们研究的只是元件的外部效应,即其两端电压及流过其电流的关系。因此,在允许的范围内,我们完全可以把它看成一个黑匣子。我们也可以利用电流或电压反位相等技术来实现负阻特性,这里就不多讨论了。负阻的实现是为了产生振荡。非线性的目的是为了产生混沌等一系列非线性的现象。其实,我们很难说哪一个元件是绝对线性的, 这里特意去做一个非线性的元件只是为了使非线性的现象更加明显。 2.其它元件: 因为这里只是作定性的讨论,所以实验对元件要求并不高。一般来说,电容与电感的误差允许 %10 ,由于实验是靠调节电导G 来观测的。而实 验中的非线性现象对电导的变化很敏感,因些,建议在保证调节范围的前提下提高可调的精度,以便观测到最佳的曲线,可使用配对的,无电感性的电阻器,在适当的条件下也可以将电阻器并联来提高调节的精度,达到缓慢调节的目的 。 3.示波器: 示波器用来观测非线性现象的波形。还可以通过示波器进行2 1CH , CH 处波形的合成,可以更加明显地观察到非线性的各种现象,并对此有一个更感性的认识。下图是示波器屏幕显示的1P 、2P 和4P 的图形,其它曲线请同学自己观察。 二.实验现象的观察: 将示波器调至2 1CH ,CH 波形合成档,调节可 变电阻器的阻值,我们可以从示波器上观察到一系列现象。最初仪器刚打开时,电路中有一个短暂的稳态响应现象。这个稳态响应被称作系统的吸引子(attractor )。这意味着系统的响应部分虽然初始条件各异,但仍会变化到一个稳态。 在本实验中对于初

混沌现象研究

实验二十九混沌现象研究 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。【实验原理】 1、非线性电路与非线性动力学 实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R0和电容器C1串联将振荡器产生的正弦信号移相输出。本实验所用的非线性元件R是一个五段分段线性元件。图30-2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 C2 R0 R C1 L 图29-2 非线性元件伏安特性 图29-1 非线性电路原理图 V(R)

非线性电路混沌 实验报告

近代物理实验报告 指导教师:得分: 实验时间: 2009 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705 学号 200767025 姓名童凌炜 同组者:班级材料0705 学号 200767007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1.约结电子模拟器 约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的 关系 1.3, 100kHz正弦波振荡波作为参考信号 2.低频信号发生器 用以输出正弦波信号,提供给约结作为交流信号 3.数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形 实验目的: 1.了解混沌的产生和特点 2.掌握吸引子。倍周期和分岔等概念 3.观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。 混沌的最本质特征是对初始条件极为敏感。 1.非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.2 线性关系是无不相干的独立贡献,而非线性的是相互作用

1.3 线性关系保持信号的频率成分不变, 而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期, 分岔, 吸引子, 混沌 借用T.R.Malthas 的人口和虫口理论, 以说明非线性关系中的最基本概念。 虫口方程如下:)1(1n n n x x x -?=+μ μ是与虫口增长率有关的控制参数, 当1<μ<=3, 不论初始值是多少, 经过足够长的迭代, 结果都会达到同一个确定值μ 1 1- →∞x , 这个值就叫做周期或者不动点。 在通过迭代法解方程的过程中, 最终会得到一个不随时间变化的固定值。 即换用任何其他初始值, 结果都会达到同一个不动点x*, 也可以说, 最终的状态对初始值的变化不敏感, 所有初始值都被“吸引”到不动点; 这个不动点, 就是一个“吸引子”。 对于反复迭代仍然只能得到一个解, 即只有一个吸引子的情况, 可以称之为1倍周期解, 没有分离, 也不可能出现混乱的“混沌态”, 对初始值并不敏感。 而对于解得两个吸引子的情况, 可以称之为2倍周期解, 但仍然不出现分离和混沌…… 如此将以上的过程不断的进行下去, 即不断增大μ的值, 当其值逐步接近∞μ=3.569945672…时, 周期变为无穷大, 也就是没有周期, 这时得到的是非周期结, 迭代的结果无法把握, 系统进入混沌状态。 而当μ大于无线周期的对应值时, 解序列也基本上是在混沌区, 但是内部有复杂结构, 它被称为“奇怪吸引子”。 3. 菲根堡姆普适常量 通过进一步的研究可以发现, 倍周期分岔的过程是几何收敛的, 即随着控制参数μ的增大, 出现倍周期分岔的参量μ的间距衰减, 且有 6692016091 .4lim 11 =--=+-m m m m μμμμδ, 为菲根堡姆普适常量 另外, 通过实验和计算的结果, 可以看出, 对于各种不同的混沌系统, 尽管非线性迭代系统的本身结构各不相同, 但是都遵循相同的方式走向混沌 4. 非线性电路中的混沌现象 电感、 电容、 电阻、 正弦电源的振幅和频率、 放大器的放大倍数等, 都是电路参数。 当参数区某些特定值是, 若参数的微小变动使得系统的行为发生质的变化, 则称该参数为分岔值。 分岔就意味着混沌现象的可能。 许多非线性电路都有可能出现混沌现象。 5. 约瑟夫森效应 电子能通过两块超导体之间薄绝缘层的量子隧道效应。 1962年由B.D 约瑟夫森首先在理论上预言,在不到一年的时间内,P.W.安德森和J.M.罗厄耳等人从实验上证实了约瑟夫森的预言。约瑟夫森效应的物理内容很快得到充实和完善,应用也快速发展,逐渐形成一门新兴学科——超导电子学。 两块超导体通过一绝缘薄层(厚度为10埃左右)连接起来,绝缘层对电子来说是一势垒,一块超导体中的电子可穿过势垒进入另一超导体中,这是特有的量子力学的隧道效应。当绝缘层太厚时,隧道效应不明显,太薄时,两块超导体实际上连成一块,这两种情形都不会发生约瑟夫森效应。绝缘层不太厚

相关文档
相关文档 最新文档