文档库 最新最全的文档下载
当前位置:文档库 › 函数的单调性和奇偶性重难点讲解

函数的单调性和奇偶性重难点讲解

函数的单调性和奇偶性重难点讲解
函数的单调性和奇偶性重难点讲解

函数的单调性和奇偶性

本节重难点

本节的重点和难点都是对函数单调性和奇偶性的理解和应用

重难点讲解

1.基础知识图表

2.函数的单调性

如果对于属于定义域A内某个区间上的任意两个自变量的值x1,x2,当x1<x2,都有f (x1)<f(x2),那么就说f(x)在这个区间上是增函数.

如果对于属于定义域A内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.

如果函数f(x)在某个区间是增函数或减函数,那么就说f(x)在这一区间具有(严格的)单调性,这一区间叫做f(x)的单调区间.

函数的单调性是针对定义域内的某个区间而言的.例如函数y=在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说它在整个定义域即(-∞,0)∪(0,+∞)因为当取x1=-1,x2=1时,对应的函数值为f(x1)=-1,f(x2)=1,显然有x1<x2,但f(x1)<f(x2),不满足减函数的定义.

有些函数在整个定义域内具有单调性.例如函数y=x就是这样.有些函数在定义域内某个区间上是增函数,而在另一些区间上是减函数.例如函数y=x2在(-∞,0)是减函数,在[0,+∞)上是增函数.

中学阶段我们所讨论的函数,只要它们在区间的端点有定义,那么在考虑单调区间时,包括端点、不包括端点都可以.

函数的单调性所刻画的是当自变量变化时其对应的函数值的变化趋势,是函数在区间上的整体性质,函数图像能直观地显示函数的这个性质.在单调区间上的增函数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减函数,它的图像是沿x轴正方向逐渐下降的.

求函数的单调区间,必须先求函数的定义域.

讨论函数y=f[φ(x)]的单调性时要注意两点:

(1)若u=φ(x),y=f(u)在所讨论的区间上都是增函数或都是减函数,则y=f [φ(x)]为增函数;

(2)若u=φ(x),y=f(u)在所讨论的区间上一个是增函数,另一个是减函数,则y=f[φ(x)]为减函数.

若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定义容易证得,在这个区间上:

(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.

(2)C>0时,函数f(x)与C·f(x)具有相同的单调性;C<0时,函数f(x)与C·f (x)具有相反的单调性.

(3)若f(x)≠0,则函数f(x)与具有相反的单调性.

(4)若函数f(x),g(x)都是增(减)函数,则f(x)+g(x)仍是增(减)函数.(5)若f(x)>0,g(x)>0,且f(x)与g(x)都是增(减)函数,则f(x)·g (x)也是增(减)函数;若f(x)<0,g(x)<0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)是减(增)函数.

使用上述结论,可以简便地求出一些函数的单调区间.例如函数f(x)=(x≠-1)

可等价变形为f(x)=1- (x=-1).由于一次函数1+x是增函数,所以当x≠-1时,

函数在(-∞,-1)上是减函数,在(-1,+∞)上也是减函数.于是- 在(-∞,

-1)和(-1,+∞)上均为增函数.故f(x)=1- 在(-∞,-1)和(-1,+∞)上都是增函数.

根据定义讨论(或证明)函数增减性的一般步骤是:

(1)设x1、x2是给定区间内的任意两个值且x1<x2;

(2)作差f(x1)-f(x2),并将此差化简、变形;

(3)判断f(x1)-f(x2)的正负,从而证得函数的增减性.

利用函数的单调性可以把函数值的大小比较的问题转化为自变量的大小比较的问题.

函数的单调性只能在函数的定义域内来讨论.这即是说,函数的单调区间是其定义域的子集.

3.函数的奇偶性

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么f(x)叫做奇函数.

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么f(x)叫做偶函数.

奇函数的图像关于原点对称;偶函数的图像关于y轴对称.

如果函数f(x)是奇函数或是偶函数,那么就说函数f(x)具有奇偶性.

函数按是否具有奇偶性可分为四类:奇函数,偶函数,既奇且偶函数(既是奇函数又是偶函数),非奇非偶函数(既不是奇函数也不是偶函数).

函数的奇偶性是针对函数的整个定义域而言,因此奇偶性是函数在定义域上的整体性质.

由于任意x和-x均要在定义域内,故奇函数或偶函数的定义域一定关于原点对称.所以,我们在判定函数的奇偶性时,首先要确定函数的定义域(函数的定义域关于原点对称是函数具有奇偶性的必要条件.如果其定义域关于原点不对称,那么它没有奇偶性).然后再判断f(-x)与f(x)的关系,从而确定其奇偶性.

判断函数的奇偶性有时可用定义域的等价形式f(-x)±f(x)=0或=±1(f (x)≠0)来代替.

存在既奇且偶函数,例如f(x)=+ .

当f(-x)与f(x)之间的关系较隐蔽时,容易产生“非奇非偶”的错觉,万万不可草率下结论.

函数的图像能够直观地反映函数的奇偶性.f(x)为奇函数的充要条件是函数f(x)的图像关于原点对称,f(x)为偶函数的充要条件是函数f(x)的图像关于y轴对称.奇函数和偶函数还具有以下性质:

(1)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.

(2)奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数.

(3)奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.

(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即

f(x)=+ .

(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0.

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性 一、知识点归纳 函数的单调性 (1)定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数),区间D 为函数y =f (x )的增区间(减区间)概括起来,即 12 12121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ??<>????? <>???? ? ?<>??? ???>

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数单调性和奇偶性总结复习

课次教学计划(教案)课题函数的单调性和奇偶性 教学目标1.通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别2.结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性 教学策略 重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数 教学策略:讲练结合,查漏补缺 函数的单调性 1.例1:观察y=x2的图象,回答下列问题 问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么??随 着x的增加,y值在增加。 问题2:怎样用数学语言表示呢? ?设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1f(x2). 那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有 (严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升 的,减函数的图象是下降的。 注意:(1)函数的单调性也叫函数的增减性;(2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 3.例2.己知函数f(x)=-x2+2x+3,⑴画出函数的图象;⑵根据图象写出函数f(x)的单调区间;⑶利用定义证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;⑷当函数f(x)在区间(一∞,m]上是增函数时,数m的取值围.

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的单调性奇偶性单元测试题

函数的单调性与奇偶性 1.若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 A.))(,(a f a -- B. ))(,(a f a - C. ))(,(a f a - D. ))(,(a f a --- 2.下列函数中,在区间(0,1)上是增函数的是 A. x y = B. x y -=3 C. x y 1= 42+-=x y 3.下列判断中正确的是 A .2)()(x x f =是偶函数 B .2)()(x x f =是奇函数 C .1)(2-=x x f 在[-5,3]上是偶函数 D .23)(x x f -=是偶函数 4.若函数)0()(2≠++=a c bx ax x f 是偶函数,则cx bx ax x g ++=23)(是 A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数 5.已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)|<1的解集是 A .(-1,2) B .(1,4) C .(-∞,-1]∪[4,+ ∞) D .(-∞,-1]∪[2,+ ∞) 6.已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0,021>+x x ,则)(1x f ,)(2x f 的大小是 A 、)()(21x f x f > B 、)()(21x f x f >- C 、)()(21x f x f -< D 、与1x ,2x 的取值有关 8.奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是 A 、减函数且有最大值m - B 、减函数且有最小值m - C 、增函数且有最大值m - D 、增函数且有最小值m - 9.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 10.函数f (x )= 2 1++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 11.函数y=2 x -2ax+1,若它的增区间是[2,+)∞,则a 的取值是__ _____;若它在区间[2,+)∞ 上递增,则a 的取值范围是_ __. 12.已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是_ __. 13.若f(x)是定义在R 上的偶函数,且当x ≥0时为增函数,那么使f(π)

(完整版)函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

函数单调性、奇偶性、对称性、周期性解析

函数单调性、奇偶性、对称性、周期性解析 一、函数的单调性 1.单调函数与严格单调函数 设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有 (ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。 (ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。 2.函数单调的充要条件 ★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有: 1212 ()() 0f f x x x x ->-或1212)[()()]0f f x x x x -->( ★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有: 121 2 ()() 0f f x x x x -<-或1212)[()()]0f f x x x x --<( 3.函数单调性的判断(证明) (1)作差法(定义法) (2)作商法 4复合函数的单调性的判定 对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当 (),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数 (())y f g x =在区间(),a b 具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ?≠?: (1)当()f x 和()g x 具有相同的增减性时,函数1()()()F x f x g x =+、2()()()F x f x g x =?的增减性与()f x (或()g x )相同,3()()()F x f x g x =-、4() ()(()0)() f x F x g x g x = ≠的增减性

函数单调性和奇偶性情况总结复习资料

课次教学计划(教案) 课题 函数的单调性和奇偶性 教学目标 1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别 2. 结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性 教学策略 重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数 教学策略:讲练结合,查漏补缺 1.例1:观察y=x 2的图象,回答下列问题 问题1:函数y=x 2的图象在y 轴右侧的部分是上升的,说明什么??随着x 的增加,y 值在增加。 问题2:怎样用数学语言表示呢? ?设x 1、x 2∈[0,+∞],得y 1=f(x 1), y 2=f(x 2).当x 1f(x 2).那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的。 12(3)函数的单调性是对某个区间而言的,它是一个局部概念。 3.例2.己知函数f (x )=-x 2+2x +3,⑴画出函数的图象;⑵根据图象写出函数f(x)的单调区间;⑶利用定义证明函数f (x )=-x 2+2x +3在区间(-∞,1]上是增函数;⑷当函数f(x)在区间(一∞,m ]上是增函数时,求实数m 的取值范围. 1、 用定义判断单调性: A . 设所给范围∈21,x x 且21x x <; B .计算f (x 1)-f (x 2)=几个因式的乘积形式 C .判断上述差的符号; D.下结论。如果)()(f 21x f x <,则函数是增函数;如果)()(f 21x f x >,则函数是减函数 用定义法判断单调性 1.试用函数单调性的定义判断函数2()1 x f x x = -在区间(0,1)上的单调性.

函数的单调性和奇偶性练习题

—函数的单调性和奇偶性 一、选择题: 1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1 C .y = x 2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数, 则f (1)等于 ( ) A .-7 B .1 C .17 D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21 ++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 2 1 ,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1]∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5 -t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞

函数的单调性和奇偶性教案(学生版)

函数的单调性和奇偶性 一、目标认知 学习目标: 1.理解函数的单调性、奇偶性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性; 4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点: 1.对于函数单调性的理解; 2.函数性质的应用. 二、知识要点梳理 1.函数的单调性 (1)增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数; 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数. 如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间. 要点诠释: [1]“任意”和“都”; [2]单调区间与定义域的关系----局部性质; [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; [4]不能随意合并两个单调区间. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 2.函数的奇偶性 偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: [1]奇偶性是整体性质; [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; [3]f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;

函数的单调性、奇偶性的综合问题

函数的单调性、奇偶性综合运用 【学习目标】 1.进一步掌握函数的单调性与奇偶性综合问题; 2.利用单调性、奇偶性来解决相关问题。 【学习过程】 一.复习回顾: 1.函数单调性、奇偶性的定义 2.设()x f 为定义在()+∞∞-,上的偶函数,且()x f 在[)+∞,0上为增函数,则()2-f ,()π-f ,()3f 的大小顺序是 二.例题精讲: 题型一:知单调性求参数的范围 1.若()x f 是偶函数,其定义域为(),-∞+∞,且在 [)+∞,0上是减函数 则)43(-f ,)1(2+-a a f 的大小关系是 。 2.已知()x f 是定义在()1,1-上的奇函数,且在定义域上为增函数,若2(2)(4)0f a f a -+-<,求 a 的取值范围. 【变式】 已知()x f 是定义在()1,1-上的偶函数,且在()1,0上为增函数,若 )4()2(2a f a f -<-,求 a 的取值范围。

题型二:单调性的判断与证明: 3.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,则f (x ) 在(-∞,0)上的单调性,并证明你的结论 4.已知f (x )是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x )<0对一切R x ∈成立,试判断) (1x f -在(-∞,0)上的单调性,并证明你的结论. 【课堂巩固】 1.设()x f 是偶函数,且当[)+∞∈,0x 时, 1)(-=x x f , 则0)1(<-x f 的解是 . 2. 定义R 在的偶函数()x f 在()0,∞-上是单调递增的,若()122++a a f < ()1232+-a a f ,求a 的取值范围. 3.若奇函数)(x f 是定义域()1,1-上的减函数,且0)1()1(2<-+-m f m f 求实数 m 的取值范围 4.已知f (x )是R 上的奇函数,且在(0,+ ∞)上单调递减,则f (x) 在(-∞,0)上的单调性,并证明你的结论

抽象函数单调性及奇偶性练习及答案

1、已知的定义域为R ,且对任意实数x ,y 满足,求 证:是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

(1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; 6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >.

《函数的单调性与奇偶性》教学设计(人教A版必修)

1.3《函数的单调性与奇偶性》教学设计 【教学目标】 1. 理解增函数、减函数、单调区间、单调性等概念;掌握增(减)函数的证明和判别;学会运用函数图象理解和研究函数的性质; 2. 理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义; 3. 理解奇函数、偶函数的概念及图象的特征,能熟练判别函数的奇偶性. 【导入新课】 1.通过对函数x y 2=、x y 3-=、x y 1=及2x y =的观察提出有关函数单调性的问题. 2.阅读教材明确单调递增、单调递减和单调区间的概念. 3.实践活动:取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题: ① 以y 轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形; 问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. ② 以y 轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形: 问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系? 答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称; (2)若点(x ,f(x))在函数图象上,则相应的点(-x ,-f(x))也在函数图象上,即

函数的单调性奇偶性 测试题集合

函数的的单调性及奇偶性单元测试 一、选择题 1.若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 ( ) A.))(,(a f a -- B. ))(,(a f a - C. ))(,(a f a - D. ))(,(a f a --- 2.下列函数中,在区间(0,1)上是增函数的是 ( ) A. x y = B. x y -=3 C. x y 1= 42+-=x y 3.下列判断中正确的是 ( ) A .2)()(x x f =是偶函数 B.2)()(x x f =是奇函数 C .1)(2-=x x f 在[-5,3]上是偶函数 D.23)(x x f -=是偶函数 4.若函数)0()(2≠++=a c bx ax x f 是偶函数,则cx bx ax x g ++=23)(是 ( ) A .奇函数 B 。偶函数 C 。非奇非偶函数 D 。既是奇函数又是偶函数 5.已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集 ( ) A .(-1,2) B .(1,4) C .(-∞,-1]∪[4,+ ∞) D .(-∞,-1]∪[2,+ ∞) 6.已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0,0 2 1>+x x ,则 ( ) (A ) ) ()(21x f x f > (B )) ()(21x f x f >- (C ) )()(21x f x f -< (D ) ) (1x f ,)(2x f 的大小与1x ,2x 的取值有关 8.下列判断正确的是 ( ) A.定义在R 上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数 B.定义在R 上的函数f(x)满足f(2)>f(1),则f(x)在R 上不是减函数 C.定义在R 上的函数f(x)在区间(,0]-∞上是减函数,在区间(0,)+∞上也是减函数, 则f(x)在R 上是减函数 D.既是奇函数又是偶函数的函数有且只有一个 9、奇函数()f x 在区间[,]a b 上是减函数且有最小值m ,那么()f x 在[,]b a --上是( ) A 、减函数且有最大值m - B 、减函数且有最小值m - C 、增函数且有最大值m - D 、增函数且有最小值m -

相关文档
相关文档 最新文档