文档库 最新最全的文档下载
当前位置:文档库 › 第五章流体动力学微分形式基本方程

第五章流体动力学微分形式基本方程

第五章流体动力学微分形式基本方程
第五章流体动力学微分形式基本方程

常微分方程四、五章作业答案 (1)

《常微分方程》第四、五章作业答案 第四章 1.证明:由题可知()t x 1,()t x 2分别是方程(1),(2)的解 则:()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 111 1111=+++--Λ (3) ()()() ()()()t f t x t a dt t x d t a dt t x d n n n n n 221 2112=+++--Λ (4) 那么由(3)+(4)得: ()()()()()()() ()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211 211121Λ()t f 1+()t f 2 即()t x 1+()t x 2是方程是()()=+++--x t a dt x d t a dt x d n n n n n Λ111()t f 1+()t f 2的解。 2.(1)特征方程为:42540λλ-+= 特征根为12341,1,2,2λλλλ==-==- 原方程通解为:221234()t t t t x t c e c e c e c e --=+++ (2)特征方程为:5340λλ-= 特征根为1230,2,2λλλ===-,其中10λ=是三重根 原方程通解为:22212345()t t x t c c t c t c e c e -=++++ (3)特征方程为: 22100λλ++= 特征根为:1,213i λ=-± 通解为:12()(cos3sin 3)t x t c t c t e -=+ (4)原方程对应的齐线性方程的通解为: 123456*()()cos ()sin t t x t c e c e c c t t c c t t -=+++++ 下求原方程的特解. 设原方程的特解为:2()x t At Bt C =++ 代入方程有: 2243A At Bt C t -+++=- 故1,0A C B ===

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

常微分方程第5章答案

1.给定方程组 x = x x= (*) a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解. b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= = u (t)= = u(t) 又v(0)= = v (t)= = = v(t) 因此u(t),v(t)分别是给定初值问题的解. b) w(0)= u(0)+ u(0)= + = w (t)= u (t)+ v (t) = + = = = w(t) 因此w(t)是给定方程初值问题的解. 2. 将下面的初值问题化为与之等价的一阶方程组的初值问题: a) x +2x +7tx=e ,x(1)=7, x (1)=-2 b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0 c) x(0)=1, x (0)=0,y(0)=0,y (0)=1 解:a)令x =x, x = x , 得 即 又x =x(1)=7 x (1)= x (1)=-2 于是把原初值问题化成了与之等价的一阶方程的初值问题: x =x(1)= 其中x=. b) 令=x ===则得: 且(0)=x(0)=1, = (0)=-1, (0)= (0)=2, (0)= (0)=0 于是把原初值问题化成了与之等价的一阶方程的初值问题: = x(0)= , 其中x= . c) 令w =x,w =,w =y,w =y ,则原初值问题可化为: 且 即w w(0)= 其中w= 3. 试用逐步逼近法求方程组 =x x= 满足初始条件 x(0)= 的第三次近似解.

第五章微分方程模型

第五章 微分方程模型 、 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化 解: 设此人的体重为w ,则根据题意有,每天获取的热量,减去新陈代谢,减去运动消耗的热量,剩余的按利用率100% 转化为脂肪,即有下列等式成立: 1046750386941868 w dw dt --= 经化简有: 232313956139565429()41868t t w e t e c - =-?+ 假设此人现在的体重为0w ,则此人的体重随时间的变化如下: 2323139561395605429()41868t t w e t e w - =-?+ 、 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dt t dp = 其中t 以分钟计。在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。此外,由于在它们周围出现意外情况,平均每分钟有条鲑鱼离开此水域。 (1)考虑到两种因素,试修正Malthus 模型。 (2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数 )(t p ,并问∞→t 时会发生什么情况 解:

(1),由题可知, 在考虑两种因素后,修正后的Malthus 模型如下: 2()0.003()0.001()0.002dp t p t p t dt =-- (2),假设在0t = 时,存在100万条鲑鱼,即(0)1000000p = ,解下列初值问题 2()0.003()0.001()0.002(0)1000000 dp t p t p t dt p ?=--???=? 解得 0.0010.0012999998()11000001t t ae p t a ae --+==-其中 当t →∞ 时,2p →。 、 根据罗瑟福的放射性衰变定律,放射性物质衰变的速度与现存的放射性物质的原子数成正比,比例系数成为衰变系数,试建立放射性物质衰变的数学模型。若已知某放射性物质经时间21T 放射物质的原子下降至原来的一半(21T 称为该物质的半衰期)试决定其衰变系数。 解: 假设初始时刻该放射性物质的原子数位0N ,在时间t 时,该放射性物质的原子个数为N ,设衰变系数为k ,则有下列微分方程: 0,(0)dN kN N N dt =-= 解得 0()kt N t N e =

常微分方程第一章

第一章一阶微分方程 1、1学习目标: 1、理解微分方程有关得基本概念,如微分方程、方程阶数、解、通解、初始条件、初值问题等得定义与提法、掌握处理微分方程得三种主要方法: 解析方法, 定性方法与数值方法、 2、掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程得猜测检验法, 常数变易法与积分因子法, 灵活运用这些方法求解相应方程, 理解与掌握一阶线性方程得通解结构与性质、 3、能够大致描述给定一阶微分方程得斜率场, 通过给定得斜率场描述方程解得定性性质; 理解与掌握欧拉方法, 能够利用欧拉方法做简单得近似计算、 4、理解与掌握一阶微分方程初值问题解得存在唯一性定理, 能够利用存在唯一性定理判别方程解得存在性与唯一性并解决与之相关得问题, 了解解对初值得连续相依性与解对初值得连续性定理, 理解适定性得概念、 5、理解自治方程平衡点, 平衡解, 相线得概念, 能够画出给定自治方程得相线, 判断平衡点类型进而定性分析满足不同初始条件解得渐近行为、 6、理解与掌握一阶单参数微分方程族得分歧概念, 掌握发生分歧得条件, 理解与掌握各种分歧类型与相应得分歧图解, 能够画出给定单参数微分方程族得分歧图解, 利用分歧图解分析解得渐近行为随参数变化得状况、 7、掌握在给定得假设条件下, 建立与实际问题相应得常微分方程模型, 并能够灵活运用本章知识进行模型得各种分析、 1、2基本知识: (一)基本概念 1.什么就是微分方程: 联系着自变量、未知函数及它们得导数(或微分)间得关系式(一般就是 指等式),称之为微分方程、 2.常微分方程与偏微分方程: (1)如果在微分方程中,自变量得个数只有一个,则称这种微分方程为常微分方程,例 如, 、 (2)如果在微分方程中,自变量得个数为两个或两个以上,则称这种微分方程为偏微 分方程、例如, 、 本书在不特别指明得情况下, 所说得方程或微分方程均指常微分方程、 3.微分方程得阶数: 微分方程中出现得未知函数最高阶导数得阶数、例如, 就是二阶常微分方程; 与就是二阶偏微分方程、 4.n阶常微分方程得一般形式: , 这里就是得已知函数,而且一定含有得项;就是未知函数,就是自变量、 5.线性与非线性: (1) 如果方程得左端就是及得一次有理式,则称为n阶线性微分方程、

常微分方程第四章考试卷

常微分方程第四章测试试卷(3) 班级 姓名 学号 得分 一、 填空(20分) 1.——————称为n 阶齐线性微分方程。 2.1x )(t 非零为二阶齐线性方程''x 1a +)(t 2'a x +x t )(≡0的解,这里 ()t a 1 和()t a 2于区间[]b a ,上连续,则()t x 2 是方程解的冲要条件是― ——————。 3.常系数非齐线性方程中,若()()t m m m m e b t b t b t b t f λ++++=--1110 , 其中λ与i b 为实常数,那么方程有形如————的特解。 4.在n 阶常系数齐线性方程中,n a a a ,2,1 为常数,则它的特征方程为——————。 5.若方程()()022=++y x q dx dy x p dx y d 中满足————条件,则方程有形 如∑∞ ==0 n n n x a y 的特解。 6.微分方程03'2'''4=++y y xy 的阶数为——。 7.设()01≠t x 是二阶齐线性方程()()0'''21=++x t a x t a x 的一个解,则方程的通解可表为________ 8.解线性方程的常用方法有____、_____、_____、_____ 9.若())2,1,0(n i t x i =为齐线性方程的n 个线性无关解,则这一齐线性方程的通解可表为__________. 10.若()),,2,1(n i t x i =为齐线性方程的一个基本解组,()t x 为非齐线性方程的一个特解,则非齐线性方程的所有解可表___.

二. 计算(30分) 1. 求通解y y y 2'1''2 += 2. 求特解x x e xe y y y -=+-'2'',()()11'1==y y 3. 设二阶非齐线性方程的三个特解为 x x y x x y x y cos ,sin ,321+=+== 求其通解 4. 求解方程()()o y x y x xy =+++-2'12'' ()0≠x 5. 求方程2233'4'''''x xy y x y x =-+的通解 6. 求方程0'''=--y xy y 的解、 三.设可导函数()x φ满足()()1sin 2cos 0+=+?x tdt t x x x φφ,求()x φ 四.证明题(20分) 1.若函数()()()t x t x t x n ,,,21 为n 阶齐线性方程的n 个线性相关解,则它们的伏朗斯基行列式()0=t w 2.试证n 阶非齐线性方程存在且最多存在n+1个线性无关解。

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

常微分方程第五章微分方程组总结

一.线性微分方程组的一般理论 1. 线性微分方程组一般形式为: 1111122112211222221122()()()(),()()()(), 1 , ()()()(),n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++??????'=++++? () 记: 1112121 22212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ??????=?????? '????????????'??????'===????????????'?????? 非齐次线性方程组表示为: ()() x A t x f t '=+ 齐次线性方程组表示为: ()x A t x '= 2.齐次线性方程组的一般理论 (1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ? 是齐次方程组()x A t x '= 的k 个 解,则它们的线性组合1212()()()n n c x t c x t c x t ++?+ 也是齐次方程组的解,这里 12,,,n c c c ?是任意常数 (2)向量函数线性相关性 定义在区间],[b a 上的函数12(),(),,()n x t x t x t ? ,如果存在不全为零的常数

常微分课后答案解析第二章

第一章 绪论 §1、1 微分方程:某些物理过程的数学模型 §1、2 基本概念 习题1、2 1.指出下面微分方程的阶数,并回答方程就是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+?? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程022 2=+y dx y d ω的解,这里0>ω就是常数. (1)x y ωcos =; (2)11(cos C x C y ω=就是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=就是任意常数); (5)2121,(sin cos C C x C x C y ωω+=就是任意常数); (6)B A B x A y ,()sin(+=ω就是任意常数). 解 (1)y x dx y d x dx dy 2 222cos ,sin ωωωωω-=-=-=,所以022 2=+y dx y d ω,故

x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以022 2=+y dx y d ω,故x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2222sin ,cos ωωωωω-=-==,所以02 2 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=',所 以02 2 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故0222=+y dx y d ω,因 此)sin(B x A y +=ω为方程的解. 3.验证下列各函数就是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 就是任意常数); (3)x Ce y =,02=+'-''y y y (C 就是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-='; (8))()(x f x g y = ,) () ()()(2x f x g y x g x f y '-'='.

常微分方程第4章习题答案

习 题 4—1 1.求解下列微分方程 1) 22242x px p y ++= )(dx dy p = 解 利用微分法得 0)1)( 2(=++dx dp p x 当 10dp dx +=时,得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解 22 242y p px x p x c ?=++?=-+? 或消参数P ,得通解 )2(2 122x cx c y -+= 当 20x p +=时,则消去P ,得特解 2x y -= 2)2()y pxlnx xp =+; ??? ? ?=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ??++= ??? 当0=+p dx dp x 时,得 c px = 从而可得原方程以p 为参数的参数形式通解: 2 ()y pxln xp px c ?=+?=? 或消p 得通解 2y Clnx C =+ 当20lnx xp +=时,消去p 得特解 21()4 y lnx =- 3)() 21p p x y ++= ??? ??=cx dy p 解 利用微分法,得 x dx p p p - =+++22 11 两边积分得 () c x P P P =+++2211

由此得原方程以P 为参数形式的通解: 21(p p x y ++= ,() .11222c x p p p =+++ 或消去P 得通解 222)(C C X y =-+ 1. 用参数法求解下列微分方程 1)45222=?? ? ??+dx dy y 解 将方程化为 2215 42=??? ??+dx dy y 令2sin y t = 2cos 5 dy t dx = 由此可推出 1 515(2sin )22cos 2 cos 5dx dy d t dt t t ===从而得 c t x +=25 因此方程的通解为 52x t c = + ,2sin y t = 消去参数t ,得通解 22sin ()5 y x C =- 对于方程除了上述通解,还有2±=y , 0=dx dy ,显然 2=y 和2-=y 是方程的两个解。 2)223()1dy x dx -= 解:令u x csc =, u dx dy cot 31-= 又令tan 2 u t = 则t t u x 21sin 12+==

第五章常微分方程习题

第五章 常微分方程 §1 常微分方程的基本概念与分离变量法 1. xy dx dy 2=,并求满足初始条件:0,1x y ==的特解. 2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5. x y dy e dx -= 答案 1.通解2 x y ce =;特解2 x y e = 2.通解1ln 1y c x = ++;另有解0y =;特解11ln 1y x = ++ 3.ln ;0x y xy c y -+== 4.1ln y cy x += 5.y x e e c =+ §2 一阶线性微分方程 1.(1)( )是微分方程。 (A ) (B ) (C ) (D ) (2)( )不是微分方程。 (A ) (B ) (C ) (D )

2.求微分方程的通解 ;(2)。 (1) 3.求微分方程的特解 (1);(2) 4.解下列微分方程 ;(2); (1) 答案1.(1)B;(2)C 2.(1)y=cx;(2)y4-x4=C。 3.(1)2/x3;(2)。 4.(1); (2)y=Csinx; §3 二阶常系数线性微分方程 1.求下列微分方程的通解 ;(2); (1) (3) (5) 2.求微分方程的特解 3.求下列微分方程的通解

(1) ; (2) ; (3) ; (4) 。 4.求方程2100y y y '''++=满足初始条件0 2x y ==和01x y ='=的特解 5.求方程221y y y x '''+-=+的一个特解 6.求方程22x y y y xe '''+-=的一个特解 7.求方程32(41)x y y y x e '''-+=-的一个特解 答案 1.(1) ; (2) ; (3) ; (4) ; (5) ; (6) 。 2. 3.(1) ; (2) ; (3) ; (4) 。

常微分课后答案解析第二章

第一章 绪论 §1.1 微分方程:某些物理过程的数学模型 §1.2 基本概念 习题1.2 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

常微分方程第四章考试卷1

常微分方程第四章测验试卷(1) 班级 姓名 学号 得分 一、 填空(30分) 1、如果),...,2,1)((n i t x i =为齐线性方程的n 个线性无关解,则这 一齐线性方程的所有解可表为————————————————。 2、形如————————————————的方程称为欧拉 方程。 3、如果),...,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x i 为非齐线性方程的一个特解,则非齐线性方程的所有解可表为————————————。 4、设0)(1≠t x 是二阶齐线性方程021=+'+''x a x a x 的一个解,则方程的通解可表为—————————————————————。 5、微分方程t x x 3 sin 1 = +''的基本解组为——————————。 6、函数组t t t e e e 2,,-的伏朗基行列式为—————————。 7、若),...,2,1)((n i t x i =b t a ≤≤上线性相关,则伏朗基行列式满足——————。 8、解线性方程的常用方法有————、————、————、————。 9、n 阶齐线性方程的线性无关解的最大个数为————。 二、 计算(50分) 1、 求32254+=-'+''-'''t x x x x 的通解。 2、 求方程0)()(32='+'-''x x x x

3已知。的解,试求方程的通解是0sin 2=+'+''= x x x t t x t 4、求方程t t x x t x t ln 22=+'-''的通解。 5、的解。求方程1)0()0()0()0(,2)4(='''=''='==+x x x x e x x t 三、 证明题(20分) 1、 ),...,2,1)((n i t x i =是齐次线性方程组的n 个解,则有:当 )()......,(1t x t x n 在[a,b]上线性无关时,伏朗斯基行列式w(t)≠0, t ],[b a ∈. 2、若()(1,2)i x t i =是非齐次线性方程43sin x x x x ''''''++=的2个解,则 有:当12lim ()()n x t x t →∞ -存在。

常微分方程第1章教案

第一章 绪论 定义:指含有未知量的等式. 代数方程:2210x x -+ = 1=,3121x x x --=+ 超越方程:sin cos 1x x +=,221x e x x =+- 以上都是一元方程,一般形式可以写成()0F x = 二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210 x y z ++-=等等 根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算 一、引例 例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程. 解:设所求曲线的方程为()y f x =,由题意 1d 2(1)d 2(2)x y x x y =?=???=? 由(1)得2d y x x =?,即2y x C =+ (3) 把条件“1x =时,2y =,”代入上式(3)得221 C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+ 例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式 00 220d 0.4(4) d d 20(5)d 0*t t t s t s v t s ===?=-???==???=??() 把式(4)两端积分一次,得1d 0.4d s v t C t = =-+ (6)

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(222222222 2)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++-=?++-+=?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++= =++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+=?=?=+-=+-=?-+-=?-=?-=?=+=++?++++==+=(特解)解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32323232sin 2cos 231313322323232 2sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=?=?=?=-+=?=?-=?=+=-+?=+-+?=-++?-(通解) 2.用参数法求解下列微分方程:、接口不严等问题,合电气设备进行调试工作案。高中资料试卷保护装置调

第二章 微 分 方 程 模 型.

第二章 微 分 方 程 模 型 建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来。这一章我们由浅入深地介绍一些微分方程模型。 2.1 简单模型 例1 物体在空气中的下落与特技跳伞问题 假设质量为m 的物体在空气中下落,空气阻力与物体的速度平方成正比,阻尼系数为k (>0),求物体的运动规律。 解 所谓运动规律即下落距离与时间的关系,如图2.1.1, 建立坐标系。设x 为物体下落的距离,于是物体下落的速度为 dx v dt =, 加速度为 22d x a dt =, 根据牛顿第二定律F ma =,可以列出微分方程 2 22d x d x m k m g d t d t ?? =-+ ???, (2.1.1) 负号表示阻力方向与速度方向相反。 例2 单摆的自由振动问题。 如图2.1.2 为一个单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为L (摆杆的质量忽略不计)。单摆的平衡位置为铅垂线'OO 。将质点M 拉开,使OM 与'OO 成一个角度0θ,然后放手任其自由运动,试求摆杆OM 和铅垂线'OO 的夹角θ与时间t 的关系。 解 将重力分解为径向力F 与切向力T ,T 的大小为sin mg θ,M 的切向加速 度为22d a L dt θ =,于是,由牛顿第二定律,列出微分方程 22s i n d m a m L m g dt θ θ== , 即 22s i n d g dt L θθ=-, (2.1.2)

设初始时刻0t =,摆杆的初始位置为0θ,初始角速度为0,则单摆的运动规律的研究就化为微分方程的初值问题 ()()22 00' 0s i n ,,0.t t d g dt L t t θθθθθ==?=-??? =??=??? (2.1.3) 图2.1.1 图2.1.2 例3 考古和地质学中文物和化石年代的测定问题。 考古、地质学等方面的专家常用14C (碳14)来估计文物或化石的年代。它们的依据是,宇宙射线不断轰击大气层,使之产生中子,中子与氧气作用生成具有放射性的14C 。这种放射性碳可以氧化成二氧化碳。二氧化碳被植物所吸收,而动物又以植物为食物,于是放射性碳就被带到各种动植物体内。由于14C 是放射性的,无论存在于空气中或生物体内它都在不断衰变,活着的生物通过新陈代谢不断地摄取14C ,使得生物体内的14C 与空气中的14C 有相同的百分含量。生物体死后它停止摄取14C ,因而尸体内的14C 由于不断衰变而不断减少。碳定年代法就是根据14C 的衰变减少量的变化情况来判定生物的死亡时间的。 基本假设 (1)现代生物体中14C 的衰变速度与古代生物体中14C 的衰变速度相同(依据是地球周围大气中14C 的百分含量可认为基本不变,即宇宙射线照射大气层的强度自古至今基本不变); (2)14C 的衰变速度与该时刻14C 的含量成正比(这条假设的根据来自于原子物理学理论)。 下面用微分方程建模。 设在时刻t (年)生物体中14C 的存量为()x t ,由假设(2)知

第五章 微分方程

第五章 微分方程 第一节 微分方程的基本概念 一、基本概念 微分方程的定义: ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解: 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. 初始条件与特解: 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。 例1 课本294页 例1 二、独立的任意常数 线性相关与线性无关: 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k 成立,则称函数)(),(21x y x y 在区间),(b a 内线性相关,否则称为线性无关. 显然,函数)(),(21x y x y 线性相关的充分必要条件是 ) () (21x y x y 在区间),(b a 内恒为常数. 如果 ) () (21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 内线性无关.

独立的任意常数: 在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中, 1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关. 例2 课本297页 例4 第二节 可分离变量的微分方程 一、定义 形如 )()(d d y g x f x y = 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数. 二、求解方法 可分离变量的微分方程 )()(d d y g x f x y =的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ??= x x f y y g d )(d )(. 【例1】求微分方程ydy dx y xydy dx +=+2 的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1 1 12 -=- 两端积分 ? ? -=-dx x dy y y 111 2得 ||ln |1|ln |1|ln 2 1 12C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下, 用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解

常微分方程第一章初等积分法

第一章 初等积分法 方程对于学过中学数学的人来说是比较熟悉的,在初等数学中就有各种各样的方程,比如线性方程、二次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知量和未知量之间的关系找出来,列出包含一个未知量或几个未知量的一个或者多个方程式,然后求取方程(组)的解.这里,方程(组)的解为常数. 然而在实际生活中,常常出现一些特点和以上方程完全不同的问题.比如:求物体在一定条件下运动的规律(比如某物体做匀速直线运动,速度为5,求其位移变化的规律);求满足一定条件(比如在某曲线任意点处的斜率为该点横坐标的2倍)的曲线的方程等等. 物体运动规律、曲线方程在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求出一个或者几个未知的函数. 在数学上,解决上述问题也需要建立方程,不过建立的是含有未知函数自变量、未知函数及未知函数的导数的方程(比如上述两个问题建立的方程为: 5=dt ds ,x dx dy 2=) ,这类方程就叫做微分方程. 本章主要介绍微分方程的基本概念及几类简单的微分方程的解法. 1.1 微分方程的基本概念 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现.而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为:微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系.而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一

相关文档
相关文档 最新文档