文档库 最新最全的文档下载
当前位置:文档库 › 循环伏安法测定配合物的稳定性

循环伏安法测定配合物的稳定性

循环伏安法测定配合物的稳定性
循环伏安法测定配合物的稳定性

循环伏安法测定配合物的稳定性

一实验目的:

1.学习循环伏安法的基本原理及操作技术

2.了解配合物的形成对金属离子的氧化还原电位的影响

二实验原理

所谓的循环伏安法(Cyclic Voltammetry CV),是在工作电极,如铂电极上,加上对称的三角波扫描电势,即从起始电势E0开始扫描到终止电位E1后,再回到扫至起始电势,记录得到相应

的电流-电势(i-E)曲线。

图中表明:在三角波扫描的

前半部,记录峰形的阴极

波,后半部记录的是峰形的

阳极波。一次三角波电势扫

描,电极上完成一个还原-氧

化循环,从循环伏安图的波形及其峰电势(Epc和Epa)和峰电流可以判断电极反应的机理。

电极反应可逆性的判据

可逆O+ne =R 准可逆不可逆O+ne→R

电势响应的性质E p与v无关。25℃时,ΔE p

=59/n mV,与v无关E p随v移动。低速时,

ΔE p≈60/n mV,但随着

v的增加而增加,接近

于不可逆。

v增加10

倍,Ep移向阴

极向30/αn mV

电流函数的性质(ip/v1/2)与v无关(ip/v1/2)与v无关(ip/v1/2)与v无关

阳极电流与阴极电流比的关系ipa/ipc≈1,与v无关仅在α=0.5时,ipa/ipc

≈1

反扫或逆扫时没有相应

的氧化或还原电流

循环伏安法是一种十分有用的近代电化学测量技术,能够迅速地观察到所研究体系在广泛电势范围内的氧化还原行为,通过对循环伏安图的分析,可以判断电极反应产物的稳定性,它不仅可以发现中间状态产物并加以鉴定,而且可以知道中间状态实在什么电势范围及其稳定性如何。此外,还可以研究电极反应的可逆性。因此,循环伏安法已广泛应用在电化学、无机化学、有机化学和生物化学的研究中。

一般在测定时,由于溶液中被测样品浓度一般都非常低,为维持一定的电流,常在溶液中加入一定浓度的惰性电解质如KNO3,NaClO4等。

本实验是用循环伏安法测定Fe(III)与几种配体形成配合物的峰电位,来比较由于配位作用对金属离子形成对电位的影响,同时还测定Fe(III)和Co(II)与同种配体形成配合物的峰电位,比较由于配位作用对两种不同金属离子形成电位的影响。

金属离子的标准还原电位在配位时由于不同电荷金属离子的自由能的不同变化而发生变化。下列方程式表示金属离子在不同氧化态M n+、M(m-n)+时与中性配体L 反应时的自由能变化。

M m++ ne →M(m-n)+ΔG1θ=-n F E aq

M m+ + pL → ML p m+ ΔG 2θ

=-RTlnK m

M (m-n)+ + qL → ML q (m-n)+ ΔG 3θ=-RTlnK m-n

式中K m 、K m-n 分别为ML p m+、ML q (m-n)+ 的稳定常数,即

K m =[ML p m+][ M m+][ L]p K m-n =[ML p (m-n)+][ M (m-n)+][ L]q 由上述的式子可以得出:

ML p m+ + ne → ML q (m-n)+ + (p-q)L ΔG 4θ=-n F E θaq + -RTln(K m /K m-n ) 则ΔG 4θ-nF =E θMLp = E θaq - RT

nF ln(K m /K m-n )

从上式中可以看出,形成配合物时配离子的标准还原电位E θMIp 决定于

ln(K m /K m-n )的值。实验中测定的是形式电位,它包含了标准电位介质中其他组分的贡献。根据循环伏安理论,峰电位E p (对于可逆体系)与形式电位E θ的关系为:

Ep =E θ-RT nF ln[D o D r

]1/2-1.109RT

nF

其中的D o 和D r 分别是氧化态和还原态配合物的扩散系数。当配体的浓度足够大能形成ML p m+ ,ML q (m-n)+配离子,则配离子的峰电位E pMLp 为:

E pMLp =E θ

MLp -RT nF (p -q)lnc L - RT nF ln D'o D'r

-1.109[RT nF ]

式中D ’o 和D ’r 分别是ML p m+和ML q (m-n)+的扩散系数;c L 是溶液中配体L 的浓度。若D o D r =D'o

D'r

、p =q ,则可得:

E pMLp -E p =E θ’MLp -E θ

aq = ln[K'm-n K'm

]

其中的K’m-n 、K ’m 是条件形成常数。上式表示,可以由M m+在有配体L 存在和没有配体L 存在时峰电位E p 之间的差值,就可以求得条件形成常数的比值,若已知其中一个条件形成常数,则就可求得另一条件形成常数。

三、仪器和试剂

1. 仪器

CHI600C 电化学分析仪(上海辰华仪器有限公司) 电磁搅拌器

氮气钢瓶 量筒100ml 容量瓶(50ml )4只 烧杯250ml 1只 吸量管 2ml 1支 烧杯 50ml 4只

2. 试剂

硫酸铁铵(A.R.) 硝酸铁(A.R.) 硝酸钴(A.R.) 硝酸钾(A.R.) 硝酸(A.R.) 邻二氮菲(A.R.) 乙二胺四乙酸二钠盐(EDTA ) (A.R.)

四 实验步骤

1.溶液的配制

(1)硫酸铁铵溶液

称取一定量硫酸铁铵和硝酸钾,溶解于30ml水中,转移到50ml容量瓶中

定容,使硫酸铁铵的浓度为0.005mol/L,硝酸钾的浓度为0.1mol/L。

(2)硫酸铁铵和EDTA溶液

称取一定量硫酸铁铵和EDTA,溶解于约30ml 水中,转移到50ml容量瓶

中,定容。使硫酸铁铵的浓度为0.005mol/L,EDTA的浓度为0.02mol/L (3)硝酸铁-邻二氮菲溶液

称取一定量邻二氮菲溶解于约40ml水中,在加入一定量硝酸铁和硝酸,转移到50ml容量瓶中,稀释至刻度,是硝酸铁浓度为0.005mol/L,邻二氮菲浓度为0.01mol/L,硝酸浓度为0.1mol/L。

(4)硝酸钴-邻二氮菲溶液

配制方法同(3)。

2.循环伏安图的测定

分别以铂片、玻碳为工作电极,饱和甘汞电极为参比电极,铂丝为辅助电极,用CHI600C型电化学分析仪测定上述四种溶液的循环伏安图。测定前溶液

除氧。

3.紫外-可见光谱的测定

以蒸馏水为参比,在400~800nm间测定上述四种溶液的可见光谱曲线。

五实验结果和处理

1.从测得的循环伏安图上求出Fe(III)和Co(II)在不同配体存在时的还原电位

E pMLp;

2.计算金属离子在配体L存在和无配体L时的还原电位的差值ΔE。

3.根据金属离子还原电位的差值ΔE,比较Fe(III)、Fe(II)、Co(III)、Co(II)与配体EDTA和邻二氮菲所形成配合物的稳定性。

思考题:

1.根据金属离子的电子组态和配位键理论,说明邻二氮菲与Fe(III)、还是Fe(II)能形成更稳定的配合物?

2.怎样利用循环伏安法来计算配合物的稳定常数?

实验4循环伏安法测定电极反应参数实验报告

华南师范大学实验报告 学生姓名学号2014 专业新能源材料与器件年级、班级2014 课程名称电化学实验实验项目循环伏安法测定电极反应参数实验类型□√验证□设计□综合实验时间2016年4月25日 实验指导老师吕东生实验评分

一、实验目的 1.了解循环伏安法的基本原理及应用 2. 掌握循环伏安法的实验技术和有关参数的测定方法。 二、实验原理 循环伏安法(Cyclic Voltammetry)是一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法。该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多研究领域被广泛使用。循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),,一支参比电极,一支对电极。外加电压在工作电极和辅助电极之间,反应电流通过工作电极与辅助电极。 图1 循环伏安法测得的氧化还原曲线 正向扫描的峰电流i p 与v^0.5和C都成线性关系,对研究电极过程具有重要意义。标准 电极电势为:EΘ=(E pa +E pc )/2。所以对可逆过程,循环伏安法是一个方便的测量标准电极 电位的方法。 三、实验器材 CHI电化学工作站;玻碳电极;铂电极;Hg/Hg2SO4电极;0.1 mol/L VO2+ + 0.1 mol/L VO2+ +3 mol/L H2SO4溶液 四、实验步骤 1. 预处理电极

循环伏安法测定铁氰化钾电极反应过程

循环伏安法测定铁氰化钾的电极反应过程 一、实验原理 1.循环伏安法 循环伏安法是将循环变化的电压施加于工作电极和对电极之间,记录工作电极上得到的电流与施加电压的关系曲线。此方法也称为三角波线性电位扫描方法。图1-1表明了施加电压的变化方式。选定电位扫描范围E1~E2 和扫描速率, 从起始电位E1开始扫描到达E2 , 然后连续反向在扫描从E2回到E1。由图1-2 可见,循环伏安图有两个峰电流和两个峰电位。i pc 和 i pa 分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc 和E pa 。 图1-1 循环伏安法的典型激发信号 图1-2 K3Fe(CN)6在KCL 溶液中的循环伏安图 2.判断电极可逆性 根据Nernst 方程,在实验测定温度为298K 时,计算得出 △Ep = Epa- Epc≈59/n mV (1-1) 阳极峰电流ipa 和阴极峰电流ipc 满足以下关系: ipc/ipa ≈1 (1-2) 同时满足以上两式,即可认为电极反应是可逆过程。如果从循环伏安图得出的 △Ep/mv = 55/n ~65/n 范围,也可认为电极反应是可逆的。 3.计算原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 [Fe(CN)6]3- + e - = [ Fe(CN)6]4- Φ=0.36v 电极电位与电极表面活度的Nernst 方程: 峰电流与电极表面活度的Randles-Savcik 方程: i p = 2.69×105n 3/2ACD 1/2v 1/2 二、实验仪器与试剂 0'Ox pa Red C RT In F C ???=+ E / V t / s 阳极 i / μA 阴极 ? / v

数据结构堆栈与队列实验报告

实验二堆栈和队列 实验目的: 1.熟悉栈这种特殊线性结构的特性; 2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算; 3.熟悉队列这种特殊线性结构的特性; 3.熟练掌握队列在链表存储结构下的基本运算。 实验原理: 堆栈顺序存储结构下的基本算法; 堆栈链式存储结构下的基本算法; 队列顺序存储结构下的基本算法; 队列链式存储结构下的基本算法; 实验内容: 第一题链式堆栈设计。要求 (1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化StackInitiate(S),非空否StackNotEmpty(S),入栈StackiPush(S,x),出栈StackPop(S,d),取栈顶数据元素StackTop(S,d); (2)设计一个主函数对链式堆栈进行测试。测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈并在屏幕上显示出栈的数据元素; (3)定义数据元素的数据类型为如下形式的结构体, Typedef struct { char taskName[10]; int taskNo; }DataType; 首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。 第二题对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当前的対尾位置下标,对头指针用于指示当前的対头位置下标。现要求: (1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空; (2)编写主函数进行测试。 程序代码: 第一题: (1)源程序"LinStack.h"如下: #define NULL 0 typedef struct snode { DataType data; struct snode *next; } LSNode; /*(1)初始化StackInitiate(LSNode ** head) */ void StackInitiate(LSNode ** head) /*初始化带头结点链式堆栈*/

电化学实验报告

电化学分析实验报告 院系:化学化工学院专业班级:学号:姓名: 同组者: 实验日期: 指导老师: 实验一:铁氰化钾在玻碳电极上的氧化还原 一、实验目的 1.掌握循环伏安扫描法。 2.学习测量峰电流和峰电位的方法。 二、实验原理 循环伏安法也是在电极上快速施加线性扫描电压,起始电压从ei开始,沿某一方向变化, 当达到某设定的终止电压em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫 描速率可以从每秒数毫伏到1v。 当溶液中存在氧化态物质ox时,它在电极上可逆地还原生成还原态物质,即 ox + ne → red;反向回扫时,在电极表面生成的还原态red则可逆地氧化成ox,即 red → ox + ne.由 此可得循环伏安法极化曲线。 在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。从循环伏安法图中 可以确定氧化峰峰电流ipa、还原峰峰电流ipc、氧化峰峰电位φ pa 和还原峰峰电位φpc。 对于可逆体系,氧化峰峰电流与还原峰峰电流比为:ipa/ipc =1 25℃时,氧化峰峰电位 与还原峰峰电位差为:△φ条件电位为:φ=(φpa+ φpc)/2 由这些数值可判断一个电极过程的可逆性。 =φ pa - φpc≈56/z (mv) 三、仪器与试剂 仪器::电化学分析仪va2020, 玻碳电极、甘汞电极、铂电极。试剂:铁氰化钾标准溶 液,0.5mol/l氯化钾溶液,蒸馏水。 四、实验步骤 1、溶液的配制 移取铁氰化钾标准溶液(10mol/l)5ml于50ml的塑料杯中,加入0.5mol/l氯化钾溶液, 使溶液达到30ml 。 2、调试 (1)打开仪器、电脑,准备好玻璃电极、甘汞电极和铂电极并清洗干净。(2)双击桌 面上的valab图标。 3、选择实验方法:循环伏安法 设置参数:低电位:-100mv;高电位600mv;初始电位-100mv; 扫描速度:50mv/s;取样间隔:2mv;静止时间:1s;扫描次数:1;量程: 200μa。 4. 开始扫描:点击绿色的“三角形”。 5. 将上述体系改变扫描速度分别为10mv/s、50mv/s、100mv/s、160mv/s、200mv/s,其 他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线,其峰值电流与扫描速度的平方 根成正比关系。 -3 五、实验数据及处理 1. 找到循环伏安曲线上对应的氧化与还原峰,然后手动做切线。

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程

循环伏安法判断铁氰化钾K3Fe(CN)6的电极反应过程 一、实验目的 1. 掌握用循环伏安法判断电极反应过程的可逆性 2. 学会使用伏安极谱仪 3. 学会测量峰电流和峰电位 二、实验原理 循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。 循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。 典型的循环伏安图如图所示: 选择施加在a点的起始电位E i,然后沿负的电位即正向扫描,当电位负到能够将Ox还原时,在工作电极上发生还原反应:Ox + Ze = Red,阴极电流迅速

增加(b-d),电流在d点达到最高峰,此后由于电极附近溶液中的Ox转变为Red而耗尽,电流迅速衰减(d-e);在f点电压沿正的方向扫描,当电位正到能够将Red氧化时,在工作电极表面聚集的Red将发生氧化反应:Red = Ox + Ze,阳极电流迅速增加(i-j),电流在j点达到最高峰,此后由于电极附近溶液中的Red转变为Ox而耗尽,电流迅速衰减(j-k);当电压达到a点的起始电位E i时便完成了一个循环。 循环伏安图的几个重要参数为:阳极峰电流(i pa)、阴极峰电流(i pc)、阳极峰电位(E pa)、阴极峰电位(E pc)。对于可逆反应,阴阳极峰电位的差值,即△E=E pa-E pc ≈56 mV/Z,峰电位与扫描速度无关。 而峰电流i p=2.69×105n3/2AD1/2V1/2C,i p为峰电流(A),n为电子转移数,A 为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。由此可见,i p与V1/2和C都是直线关系。对于可逆的电极反应,i pa ≈ i pc。 三、仪器和试剂 1. CHI832B 电化学分析仪,三电极系统(金盘电极为工作电极、饱和甘汞电极为参比电极、铂丝电极为辅助电极) 2. 铁氰化钾标准溶液(5.0×10-3 mol/L,含H2SO4溶液0.5 mol/L),10 mL电解杯,10 mL容量瓶 四、实验步骤 1. 打开仪器预热20分钟,打开电脑,打开CHI832B电化学分析仪操作界面。 2. 电极抛光:用AI2O3粉将金盘电极表面抛光,然后用蒸馏水清洗,待用。 3. 将铁氰化钾标准溶液转移至10 mL电解池中,插入三支电极,在“实验”菜单中选择“实验方法”,选择“Cyclic V oltammetry”,点“确定”,设置实验参数:起始电位(+0.6 V);终止电位(-0.2 V);静止时间(2 s);扫描时间(任意扫速);扫描速度(0.1 V/s);灵敏度(1.0×e-5);循环次数(2);点“确定”。从“实验”菜单中选择“开始实验”,观察循环伏安图,记录峰电流和峰电位。 4. 考察峰电流与扫描速度的关系,使用上述溶液,分别以不同的扫描速度:0.1、0.2、0.5 V/s(其他实验条件同上)分别记录从+0.6V~ -0.2V扫描的循环伏安图,记录峰电流。 5. 考察峰电流与浓度的关系,分别准确移取上述溶液1.00、2.00、5.00 mL,置

循环伏安法原理及结果分析

循环伏安法原理及结果 分析 Revised as of 23 November 2020

循环伏安法原理及应用小结 1 电化学原理 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显着消耗而引起电流衰降。整个曲线称为“循环伏安曲线”

经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围,扫描速度50mV/S,起始电位0V。 图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲线持续波动的现象; 3 数据挖掘

循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验 【实验目的】 学习和掌握循环伏安法的原理和实验技术。 了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【实验原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫 描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN) 63-/4- 的氧化还原行为作电化学探针。首先,固体 电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的 材料有金钢砂、CeO 2、ZrO 2 、MgO和α-Al 2 O 3 粉及其抛光液。抛光时总是按抛 光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨 后,再用一定粒度的α-Al 2O 3 粉在抛光布上进行抛光。抛光后先洗去表面污物, 再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙 醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳 图2:循环伏安曲线(i—E曲线)

电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105 )n 3/2 AD o 1/2ν1/2 C o 其中A 为电极的有效面积(cm 2 ),D o 为反应物的扩散系数(cm 2 /s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3 ),i p 为峰电流(A )。 【仪器和试剂】 1. CHI 660D 电化学系统,玻碳电极(d = 4mm ) 为工作电极,银/氯化银电极为参比电极,铂片电极为辅助电极; 2. 固体铁氰化钾、H 2SO 4 溶液、高纯水; 3. 100 mL 容量瓶、50 mL 烧杯、玻棒。 【实验内容】 1. 配制5 mM K 3Fe(CN)6 溶液(含0.5 M H 2SO 4),倒适量溶液至电解杯中; 2. 将玻碳电极在麂皮上用抛光粉抛光后,再用蒸馏水清洗干净; 3. 依次接上工作电极(绿)、参比电极(白)和辅助电极(红); 4. 开启电化学系统及计算机电源开关,启动电化学程序,在菜单中依次选择Setup 、Technique 、CV 、Parameter ,输入以下参数: 5. 点击Run 开始扫描,将实验图存盘后,记录氧化还原峰电位E pc 、E pa 及峰电流I pc 、I pa ; 6. 改变扫速为0.05、0.1 和0.2 V/s ,分别作循环伏安图; 7. 将4个循环伏安图叠加比较; Init E (V) 0.8 V Segment 2 High E (V) 0.8 V Smpl Interval (V) 0.001 Low E (V) ?0.2 V Quiet Time (s) 2 Scan Rate (V/s) 0.02 V Sensitivity (A/V) 5e?5

队列实验报告

一.实验项目名称 循环队列和链式队列的创建 二、实验目的 1、掌握队列的特点 (先进先出 FIFO) 及基本操作 ,如入队、出队等, 2、队列顺序存储结构、链式存储结构和循环队列的实现,以便在 实际问题背景下灵活应用。 三、实验内容 1.链式队列的实现和运算 2.循环队列的实现和运算 四、主要仪器设备及耗材 VC++6.0 运行环境实现其操作 五.程序算法 (1)循环队列操作的算法 1>进队列 Void enqueue (seqqueue &q, elemtype x) { if ((q.rear+1)%maxsize = = q.front) cout<< ” overflow”; else { q.rear=(q.rear+1)%maxsize; // 编号加 1 或循环回第一个单元 q.queue[q.rear]=x; } } 2>出队列 Void dlqueue(seqqueue &q ) { if (q.rear= =q.front)cout<< ” underflow”; else q.front =(q.front+1)%maxsize; } 3>取对头元素

elemtype gethead(seqqueue q ) { if(q.rear= =q.front) { cout<<” underflow;” return NULL;} else return q.queue[(q.front+1)%maxsize]; //front 指向队头前一个位置 } 4>判队列空否 int empty(seqqueue q ) { if (q.rear= =q.front) else return 0; reurn 1; } (2).链队列操作的算法 1>.链队列上的初始化 void INIQUEUE( linkqueue&s) {link *p; p=new link; p->next=NULL;//p 是结构体指针类型,用 s.front=p;//s 是结构体变量,用. s.rear=p;//头尾指针都指向头结点 -> } 2>.入队列 void push(linkqueue &s, elemtype x) { link*p;//p 是结构体指针类型,用-> p=new link; p->data=x; p->next=s.rear->next;//s 是结构体变量,用s.rear->next=p; s.rear=p;//插入最后 . } 3>判队空 int empty( linkqueue s ) {if (s.front= =s.rear) return 1; else return 0; } 4>.取队头元素 elemtype gethead( linkqueue s ) { if (s.front= =s.rear) else retuen return NULL; s.front->next->data; }

循环伏安法测定亚铁氰化钾

实验报告 实验课程:仪器分析 学生姓名:崔清玥 学号:41307209 专业班级:化学(创新)1301 实验名称:循环伏安法测定亚铁氰化钾

i —E 曲线 一、实验目的 1、学习固体电极表面的处理方法。 2、掌握循环伏安仪的使用技术。 3、了解扫描速率和浓度对循环伏安图的影响。 二、实验原理 铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 电极电位与电极表面活度的Nernst 方程 峰电流与电极表面活度的Cotroll 方程 其中:i p 为峰电流;n 为电子转移数;D 为扩散系数;v 为电压扫描速度;A 为电极面积;c 为被测物质浓度。 从循环伏安图可获得氧化峰电流i pa 与还原峰电流i pc ,氧化峰电位ψpa 与还原峰电位ψpc 。 对于可逆体系,氧化峰电流i pa 与还原峰电流i pc 绝对值的比值。 i pa /i pc =1 氧化峰电位ψpa 与还原峰电位差ψpc : △ψ=ψpa -ψpc =2.2RT/nf≈0.058/n(V) 条件电位ψθ′ : ψθ′=(ψpa +ψpc )/2 在一定扫描速率下,从起始电位(-0.2 V )正向扫描到转折电位(+0.8 V )期间,溶液中 [Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.8 V )变到 原起始电位(-0.2 V )期间,在指示电极表面生成的[Fe(CN)6]3- 被还原生成[Fe(CN)6]4- ,产生还原电流。 为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。实验前电极表面要处理干净。 [] [] 3466Fe(CN)Fe(CN)e - - -+=Red ox ' 0pa ln c c nF RT + =???c v AD n i 2/12/12/35p 1069.2?=

循环伏安法原理及结果分析

循环伏安法原理及应用小结 1 电化学原理 1.1 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 1.2 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线” 1.3 经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。

图1 原理图图2 CBZ的循环伏安扫描图 图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲

实验报告-循环伏安法测定亚铁氰化钾

循环伏安法测定亚铁氰化钾 实验目的 (1) 学习固体电极表面的处理方法; (2) 掌握循环伏安仪的使用技术; (3) 了解扫描速率和浓度对循环伏安图的影响 实验原理 铁氰化钾离子[Fe(CN)6]3--亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为 [Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表面活度的Nernst 方程式为 φ=φθ+ RT/Fln(C Ox /C Red ) -0.2 0.00.20.4 0.60.8 -0.0005 -0.0004-0.0003-0.0002-0.00010.0000 0.00010.00020.0003i pa i pc I /m A E /V vs.Hg 2Cl 2/Hg,Cl - 起始电位:(-0.20V) 终止电位:(0.80 V) 溶液中的溶解氧具有电活性,用通入惰性气体除去。 仪器与试剂 MEC-16多功能电化学分析仪(配有电脑机打印机);金电极;铂丝电极;饱和甘汞电极; 容量瓶:250 mL 、100mL 各2个,25 mL 7个。 移液管:2、5、10mL 、20mL 各一支。 NaCl 溶液、K 4[Fe(CN)6]、、Al 2O 3粉末(粒径0.05 μm ) 实验步骤

1、指示电极的预处理 金电极用金相砂纸细心打磨,超声波超声清洗,蒸馏水冲洗备用。 2、溶液的配制 配制0.20 mol/L NaCl溶液250mL,再用此溶液配制0.10 mol/L的K4[Fe(CN)6]溶液100mL备用。 3、支持电解质的循环伏安图 在电解池中,放入25mL 0.2 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为0.1V/s;起始电位为-0.20V,终止电位为0.80V。开始循环伏安扫描. 4、K4 [Fe(CN)6]溶液的循环伏安图 在-0.20至0.80V电位范围内,以0.1V/s的扫描速度分别作0.01 mol·L-1、0.02 mol·L-1、0.04 mol·L-1、0.06 mol·L-1、0.08 mol·L-1的K4 [Fe(CN)6]溶液(均含支持电解质NaCl浓度为0.20mol·L-1)循环伏安图 5、不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图 在0.08 mol·L-1 K4 [Fe(CN)6]溶液中,以0.1V/s、0.15 V/s、0.2V/s、0.25 V/s、0.3V/s、0.35V/s,在-0.20至0.80V电位范围内扫描,做循环伏安图 数据处理 1、从K4[Fe(CN)6]溶液的循环伏安图,测量i pa、i pc值。 -1;起始电位为-0.20V,终止电位为0.80V) 2、分别以i pa和i pc对K4[Fe(CN)6]溶液浓度c作图,说明峰电流与浓度的关系。

实验十 循环伏安法分析

实验十循环伏安法分析 一、实验目的 1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。 2.熟练使用循环伏安法分析的实验技术。 二、实验原理 循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。 现代电化学仪器均使用计算机控制仪器和处理数据。CV测试比较简便,所获信息量大。采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线

表1. 图1的实验条件和一些重要解释

零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。 分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。 循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。多圈电位扫描的循环伏安实验常可用于电化学合成导电高分子。 图1为3 mmol L-1 K4Fe(CN)6 + 0.5 mol L-1 Na2SO4水溶液中金电极上的CV实验结果。实验条件和一些重要的解释列于表1中。 三、仪器和试剂 仪器:CHI400电化学工作站 磁力搅拌器 铂片工作电极 铅笔芯对电极 KCl饱和甘汞电极 试剂:K3Fe(CN)6(分析纯或优级纯) KNO3(分析纯或优级纯) 溶液及其浓度:1.0 mol L-1 KNO3水溶液。实验中每组学员使用30.0 mL。 0.100 mol L-1 K3Fe(CN)6水溶液储备液。实验中每组学员使用100 L微量注射 器依次注射适量体积的0.100 mol L-1 K3Fe(CN)6水溶液到30 mL的1.0 mol L-1 KNO3水溶液中,详见如下4.3.节。

实验六 循环伏安法测定电极反应参数-091115

实验六循环伏安法测定电极反应参数 一、实验目的 1. 学习循环伏安法测定电极反应参数的基本原理。 2. 熟悉伏安法测量的实验技术。 二、方法原理 循环伏安法(CV)是最重要的电分析化学研究方法之一。在电化学、无机化学、有机化学、生物化学的研究领域广泛应用。由于它仪器简单、操作方便、图谱解析直观,常常是首先进行实验的方法。CV方法是将循环变化的电压施加于工作电极和参比电极之间,记录工作电极上得到的电流与施加电压的关系曲线。这种方法也常称为三角波线性电位扫描方法。 图6—1 循环伏安法的典型激发信号图6—2 图6—1中表明了施加电压的变化方式:起扫电位为0.8V,反向起扫电位为-0.2V,终点又回扫到0.8V,扫描速度可从斜率反映出来,其值为 50mV/s。图6-1循环伏安法的典型激发信号三角波电位,转换电位为0.8V和-0.2V(vs.SCE〉虚线表示的是第二次循环。一台现代的电化学分析仪具有多种功能,可方便地进行一次或多次循环,任意变换扫描电压范围和扫描速度。当工作电极被施加的扫描电压激发时;其上将产生响应电流。以该电流(纵坐标)对电位(横坐标)作图,称为循环伏安图。 典型的循环伏安图如图6-2所示。该图是在1.0mol/L KNO3电解质溶液中,6×10-3mol/LK3Fe(CN)6在Pt工作电极上的反应所得到的结果。从图可见,起始电位Ei为+0.8V(a点),电位比较正的目的是为了避免电极接通后发生电解。然后沿负的电位扫描,如箭头所指方向,当电位至可还原时,即析出电位,将产生阴极电流(b点)。其电极反应为:,随着电位的变负,阴极电流迅速增加(b→d),直至电极表面的浓度趋近零,电流在d点达到最高峰。然后电流迅速衰减(d→g),这是因为电极表面附近溶液中的几乎全部电解转变为而耗尽,即所谓的贫乏效应。当电压扫

数据结构-队列实验报告

《数据结构》课程实验报告 一、实验目的和要求 (1)熟悉C语言的上机环境,进一步掌握C语言的结构特点。 (2)掌握队列的顺序表示和实现。 二、实验环境 Windows7 ,VC 三、实验内容及实施 实验三:队列 【实验要求】 构建一个循环队列, 实现下列操作 1、初始化队列(清空); 2、入队; 3、出队; 4、求队列长度; 5、判断队列是否为空; 【源程序】 #include #define MAXSIZE 100 #define OK 1; #define ERROR 0; typedef struct { int *base; int front; int rear; }SqQueue;//队列的存储结构 int InitQueue(SqQueue &Q) {

Q.base=new int[MAXSIZE]; Q.front=Q.rear=0; return OK; }//队列的初始化 int EnQueue(SqQueue &Q,int e) { if((Q.rear+1)%MAXSIZE==Q.front) return ERROR; Q.base[Q.rear]=e; Q.rear=(Q.rear+1)%MAXSIZE; return OK; }//队列的入队 int DeQueue(SqQueue &Q,int &e) { if(Q.front==Q.rear) return ERROR; e=Q.base[Q.front]; Q.front=(Q.front+1)%MAXSIZE; return OK; }//队列的出队 int QueueLength(SqQueue &Q) { int i; i=(Q.rear-Q.front+MAXSIZE)%MAXSIZE; return i; }//求队列长度 void JuQueue(SqQueue &Q) { if(Q.rear==Q.front) printf("队列为空"); else printf("队列不为空"); }//判断队列是否为空 void QueueTraverse(SqQueue &Q)

超级电容器实验报告

实验报告 题目C,MnO2的电化学电容特性实验姓名许树茂 学号20104016005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的

扫描电镜实验报告

HUNAN UNIVERSITY 姓名:扫描电镜实验报告 姓名:高子琪 学号: 2

一.实验目的 1.了解扫描电镜的基本结构与原理; 2.掌握扫描电镜样品的准备与制备方法; 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像; 4.了解扫描电镜图片的分析与描述方法。 二.实验设备及样品 1.实验仪器:D5000-X衍射仪 基本组成:1)电子光学系统:电子枪、聚光镜、物镜光阑、样品室等 2)偏转系统:扫描信号发生器、扫描放大控制器、扫描偏转线圈 3)信号探测放大系统 4)图象显示和记录系统 5)真空系统 2.样品:块状铝合金 三.实验原理 1.扫描电镜成像原理 从电子枪阴极发出的电子束,经聚光镜及物镜会聚成极细的电子束(0.00025微米-25微米),在扫描线圈的作用下,电子束在样品表面作扫描,激发出二次电子和背散射电子等信号,被二次电子检测器或背散射电子检测器接收处理后在显象管上形成衬度图象。二次电子像和背反射电子反映样品表面微观形貌特征。而利用特征X射线则可以分析样品微区化学成分。 扫描电镜成像原理与闭路电视非常相似,显像管上图像的形成是靠信息的传送完成的。电子束在样品表面逐点逐行扫描,依次记录每个点的二次电子、背散射电子或X射线等信号强度,经放大后调制显像管上对应位置的光点亮度,扫描发生器所产生的同一信号又被用于驱动显像管电子束实现同步扫描,样品表面与显像管上图像保持逐点逐行一一对应的几何关系。因此,扫描电子图像所包含的信息能很好地反映样品的表面形貌。 2.X射线能谱分析原理 X射线能谱定性分析的理论基础是Moseley定律,即各元素的特征X射线频率ν的平方根与原子序数Z成线性关系。同种元素,不论其所处的物理状态或化学状态如何,所发射的特征X射线均应具有相同的能量。

实验一 循环伏安法判断电极过程

实验一循环伏安法判断电极过程 一.实验目的 1.学习和掌握循环伏安法的原理和实验技术。 2.了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 3.学会使用电化学工作站 二.实验原理 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN)63-/4-的氧化还原行为作电化学探针。首先,固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的材料有金钢砂、CeO2、ZrO2、MgO和α-Al2O3粉及其抛光液。抛光时总是按抛光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨后,再用一定粒度的α-Al2O3粉在抛光布上进行抛光。抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳电极放入含一定浓度的K3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc/i pa=1),峰峰电位差ΔE p约为70mV(理论值约60 mV),即说明电极表面已处理好,否则需要重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik公式: 在25℃时,i p=(2.69×105)n3/2AD o1/2v1/2C o 其中A为电极的有效面积(cm2),D o为反应物的扩散系数(cm2/s),n为电极反

湖南大学材料化学电化学实验报告汇总

实验一 线性极化法测定金属Fe 在稀H 2SO 4中的腐蚀速度 一、基本要求 1. 掌握动电位扫描法测定电极极化曲线的原理和实验技术。通过测定Fe 在 0.1M 硫酸溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。 2. 讨论极化曲线在金属腐蚀与防护中的应用。 二、实验原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属铁在盐酸体系中为例: 阳极反应: Fe-2e=Fe 2+ 阴极反应: H ++2e=H 2 阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。 在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数 )]ex p()[ex p( k c a c corr k a i i i I β? ?β??---=-=

线性扫描伏安法与循环伏安法实验

**大学本科实验报告专用纸 课程名称 仪器分析实验 成绩评定 实验项目名称 线性扫描伏安法与循环伏安法实验 指导教师 实验项目编号 实验项目类型 实验地点 学生姓名 学号 学院 系 化学系 专业 实验时间2015年11月13日下午~11月13日下午 温度 ℃湿度 一.实验目的 1.掌握线性扫描伏安法及循环伏安法的原理; 2.掌握微机电化学分析系统的使用及维护。 3.掌握利用线性扫描伏安法进行定量分析及利用循环伏安法判断电极反应过程。 二.实验原理 1. 线性扫描伏安法: 线性扫描伏安法是在电极上施加一个线性变化的电压,记录工作电极上的电解电流的方法。记录的电流随电极电位变化的曲线称为线性扫描伏安图。 ⑴可逆电极反应的峰电流如下: c v AD n i p 121351069.2?= 式中,n 为电子交换数;A 为电极有效面积;D 为反应物的扩散系数;v 为电位扫描速度;c 为反应物(氧化态)的本体浓度。当电极的有效面积A 不变时,上式可简化为:c Kv i p 21= 即峰电流与电位扫描速度v 的1/2次方成正比,与反应物的本体浓度成正比。这就是线性扫描伏安法定量分析的依据。 ⑵可逆电极反应,峰电位与扫描速度无关,nF RT E E p /1.121±= 电极反应为不可逆时,峰电位p E 随扫描速度v 增大而负(或正)移。 2. 循环伏安法: 循环伏安法的原理与线性扫描伏安法相同,只是比线性扫描伏安法多了一个回扫,所以称为循环伏安法。循环伏安法是电化学方法中最常用的实验技术,也是电化学表征的主要方法。循环伏安法有两个重要的实验参数,一是峰电流之比,二是峰电位之差。对于可逆电极反应,峰电流之比pa pc i i /(阴极峰电流pc i 与阳极峰电流pa i 之比)的绝对值约等于1。峰电位之差p E ?(阴极峰电位pc E 与阳极峰电位pa E 之差)约为60mV(25℃),即 nF RT E p /22.2=?。

相关文档
相关文档 最新文档