文档库 最新最全的文档下载
当前位置:文档库 › 100-250节能环保中开泵

100-250节能环保中开泵

100-250节能环保中开泵
100-250节能环保中开泵

100-250节能环保中开泵

100-250节能环保中开泵是一种卧式离心泵,该类型的水泵具有流量范围比IS型的广,扬程不是很高的特点,主要适用于工厂、城市、电站、水利工程、农田灌溉等排水或给水用泵。输送的物质固体颗粒杂质直径不能超过10mm,含量不能超过5%。水泵输送的介质温度不能超过80°,入口压力不能超过0.6Mpa。

100-250节能环保中开泵结构说明:

100-250节能环保中开泵的吸入口与吐出口均在水泵轴心线下方,水平方向与轴线成垂直位置、泵壳.中开,检修时无需拆卸进水,排出管路及电动机(或其他原动机)从联轴器向泵的方向看去,水泵均为逆吋针方向旋转。如根据用户特殊订货需要也可改为顺吋针旋转。

SH型农田灌溉水泵的主要另件有:泵体、泵盖、叶轮、轴、双吸密封环、轴套、轴承等。除轴的材料为优质碳素钢外,其馀多为铸铁制成。

泵体与泵盖构成叶轮的工作室,在进出水法兰上制有安装真空表和压力表的管螺孔,进出水法兰的下部制有放水的管螺孔。

叶轮经过静平衡校验,用轴套和两侧的轴套螺母固定,其轴向位置可以通过轴套螺母进行调整,叶轮的轴向力利用其叶片的对称布置达到平衡,可能还有一些剩馀轴向力则同轴端的轴承承受。

泵轴由两个单列向心球轴承支承,轴承装在泵体两端的轴承体内,用黄油润滑,双吸密封环用以减少水泵压水室的水漏回吸水室。

100-250节能环保中开泵参数范围:

流量(Q):160—18000m3/h

扬程(H):12—125m

 100-250节能环保中开泵型号意义:

6-SH-6-A

6-泵的进口直径为6寸

SH-卧式单级双吸清水中开泵

6-泵的比转速的1/10取整

A-叶轮外径切割代号

100-250节能环保中开泵装配、拆卸与安装

装配与拆卸

1 、装配转子部件:依次将叶轮、轴套、轴套螺母、填料套、填料环、填料压盖,挡水圈、轴承部件装在泵轴上,并套上双吸密封环,然后装上联轴器。

2、将转子部件装在泵体上,调整叶轮的轴向位暈到两侧双吸密封环的中间加以固定,将轴承体压盖同固定螺钉紧固。

3、装上填料,放好中开面纸垫,盖上泵盖打紧螺尾柱销后,拧紧泵盖螺母,最后装上墳料压盖。但不要将填料压得太紧,填料过紧会使轴套发热,耗费功率较大,也不要压得太松,过松会使 液体渗漏大,水泵效率降低。

装配完成后,用手转动泵轴,没有擦碰现象,转动比较轻滑均勻即可,拆卸可按上述装配顺序相反地进行。

安装

1 、检査水泵和电动机应无损坏。

2、水泵的安装高度,加上吸入管路的水力损失,及其速度能,不得大于样本规定的允许吸上真空高度值。基础尺寸应符合泵机组的安装尺寸。

泵型号

流量Q

扬程

H

(m)

转速

n

(r/min)

功率N(KW)

效率

η

(%)

最大允许

吸上

真空高度

(m)m3/h L/S轴功率Pa配套功率

6SH-6126

162

198

35

45

55

84

78

70

2900

40

45.8

51.0

55

72

75

74

5

6SH-6A 112

144

180

31

40

50

67

62

55

2900

30

33.8

38.5

45

68

72

70

5

6SH-9130

170

220

36.2

47.2

61.2

52

47.6

35

2900

25.3

27.6

31.3

37

74

80

67

5

6SH-9A 120

144

180

31

40

50

43.8

40

35

2900

18.5

20.9

24.5

30

72

75

70

5

8SH-6290

234

288

50

65

80

100

93.5

82.5

2900

79.1

85.0

88.6

110

62

71

73

4.5

8SH-6A 160

215

265

44.5

59.7

73.6

85.1

75.6

70.2

2900

60.3

64.2

71.4

90

61

69

71

4.5

8SH-9213

288

351

60

80

97.5

69

62.5

50

2900

55

61.3

67.8

75

74

80

71

5.3

4.5

5

8SH-9A 180

270

324

50

70

90

54.5

46

37.5

2900

41

48.3

51

55

65

70

65

5.5

5.0

3.8

8SH-13216

288

342

60

80

95

48

41.3

35

2900

34.9

38.1

40.2

45

81

85

81

5.0

3.6

1.8

8SH-13A 198

270

310

55

75

86

43

36

31

2900

30.5

33.1

34.4

37

76

80

76

5.2

4.2

3.0

10SH-6360

486

100

135

71

65.11450

91.5

109132

76

796

6121705613072

10SH-6A 360

486

540

95

130

150

61

54

50

1450

76.7

89.4

98

110

74

77

75

6

10SH-9360

486

612

100

135

170

42.5

38.5

32.5

1450

55.5

61.5

67.7

75

75

83

80

6

10SH-9A 324

468

576

90

130

160

35.5

30.5

25

1450

40.2

45.7

47.8

55

78

85

82

6

10SH-13360

486

576

100

135

160

27

23.5

19

1450

33.1

36.2

36.4

45

80

86

82

6

10SH-13A 342

414

482

95

115

134

22.2

20.3

17.4

1450

25.8

27.6

28.6

37

80

83

80

6

10SH-19360

486

576

100

135

160

17.5

14

11

1450

21.4

21.8

22.1

30

80

85

78

6

10SH-19A 320

432

504

89

120

140

13.7

11

8.6

1450

15.4

15.8

15.8

22

78

82

72

6

12SH-6590

792

936

164

220

260

98

90

82

1450

213

245

279

300

74

80

75

5.4

4.5

3.5

12SH-6A 576

755

918

160

210

255

86

78

70

1450

190

217

246

260

71

74

71

5.5

4.7

3.6

12SH-6B 540

20

900

150

200

250

72

67

57

1450

161

180

200

250

70

73

70

5.6

4.9

3.8

 

12SH-9576

792

972

160

220

270

65

58

50

1450

128

149

168

180

80

84

79

4.5

4.5

4.5

12SH-9A 530

720

893

147

200

248

55

49

42

1450

99.2

116

131

155

80

83

78

4.5

12SH-9B 504

684

835

140

190

232

47.2

43

37

1450

82.5

97.7

108

135

79

82

78

4.5

12SH-13612

792

900

170

200

250

38

32.2

25.5

1450

76.2

79.8

78.1

90

83

87

80

4.5

12SH-13A 550

720

810

153

200

225

31

26

20.5

1450

58.1

60.7

58

75

80

84

78

4.5

12SH-19612

792

935

170

220

260

23

19.4

14

1450

47.3

49.8

47.6

55

81

84

75

4.5

12SH-19A 504

720

900

140

200

250

20

16

11.5

1450

34.8

38.3

37.6

45

79

82

75

4.5

12SH-28611

792

900

170

220

250

14.5

12

10

1450

21.8

32.2

33.1

37

81

83

74

4.5

12SH-28A 522

685

792

145

190

220

11.8

10

8.7

1450

22.4

23.3

24.4

30

75

80

77

4.5

14SH-6850

1250

236

347

140

1251450

450

525680

72

81 3.5

166346110062073

14SH-6A 850

1180

1570

223

328

436

125

112

90

1470

391

462

550

630

70

8

70

3.5

14SH-6B 745

1100

1460

207

305

405

108

96

77

1470

313

373

422

500

70

77

72.5

3.5

14SH-9972

1260

1440

270

350

400

80

75

65

1470

268

306

319

400

79

84

80

3.5

14SH-9A 900

1170

1330

250

325

370

70

65

56

1450

220

247

257

300

78

84

79

3.5

14SH-9B 826

1080

1225

230

300

340

59

55

47.5

1450

178

198

206

260

75

82

77

3.5

14SH-13972

1260

1480

270

350

410

50

43.8

37

1470

164

179

188

220

81

84

79

3.5

14SH-13A 864

1120

1330

240

310

370

41

36

30

 

1470

121

130

136

180

80

84

80

3.5

14SH-19971

1260

1440

270

350

400

32

26

22

1450

99.7

102

95.7

132

85

88

82

3.5

14SH-19A 864

1120

1296

240

310

360

26

21.5

16.5

1450

76.5

77

80

110

80

85

73

3.5

14SH-28971

1260

1440

270

350

400

20

16.2

13.4

1450

64.4

65.3

70

75

82

85

75

3.5

14SH-28A 864

1044

1260

240

290

350

16

13.4

10

1450

50.2

47.6

48.3

55

75

80

71

3.5

20SH-61450

2016

2300

403

560

640

108

98.4

89

970

585

680

735

800

72.5

79.5

76

4

20SH-6A 1349

1870

2140

375

520

595

93

85

77

970

490

564

607

630

70

77

74

3.6

20SH-91150

2016

2450

430

560

680

66

59

50

970

340

390

433

500

82

83

77

 

4

20SH-9A 1405

1910

2270

390

530

630

58

50

42

970

300

347

360

400

74

75

72

4

20SH-9B176349042970273355744

20SH-131550

2016

2410

430

560

670

40

35.1

30

970

206

219

247

280

82

88

80

4

20SH-13A187052031970186240854

20SH-191620

2016

2340

450

560

650

27

22

15

970

148

117

137

180

80

82

70

4 12963602311173

20SH-19A1870

2016520

560

17

14

970108

101

13080

76

4

20SH-281620

2016

2325

450

560

646

15.2

112.8

10.6

970

78.9

79

78

110

85

89

86

4

24SH-92750

3420

3930

764

950

1092

80

71

60

960

689

727

730

900

87

91

88

1.3

24SH-9A 2550

3168

3640

708

880

1010

64

61

53

960

516

585

610

710

86

90

86

2.5

24SH-9(J)2600

 

7503973031938090 4.8

24SH-132502

3168

3499

695

880

972

56

47.4

38

970

460

465

426

550

83

88

80

2.5

24SH-192480

3170

3960

700

880

1100

37

32

22

970

295

310

279

380

86

89

85

2.5

24SH-19A 2304

2880

3600

640

800

1000

31.5

27

20

970

235

238

231

280

84

89

85

2.5

24SH-202500

3600

3800

694.4

1000

1055

24.5

21

20.4

745

238.3

248

255.9

340

70

83

82.5

5.5

5

4.8

24SH-282340

2880

3420

650

800

950

23.5

21

18

970

187

195

207

250

80

84.5

81

2.5

24SH-28A 2340

2880

3420

650

800

950

17.5

15.5

13

970

145

148

154

185

77

82

78.5

2.5

32SH-194700

5500

6010

6460

1305

1350

1670

795

35

32.5

28.9

25.4

730

575

580

567

567

630

78

84

83.5

80.4

3.5

32SH-19A 4550

5310

5800

6250

1260

1475

1600

1735

31

29

26.5

23

730

492

500

496

487

560

78

84

83.5

80.4

3.5

泵流量控制方法(经典)

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。 流量调节方法连续调节泵的流量特性曲线变化泵系统的效率变化流量减小20%时,泵的功率消耗出口阀开度调节可以最大流量减小,总压头不变,流量特性略微变化明显降低94% 旁路阀调节可以总压头减小,曲线特性发生变化明显降低110% 调整叶轮直径不可以最大流量和压头均减小,流量特性不变轻微降低67% 调速控制可以最大流量和压头均减小,流量特性不变轻微降低65%

泵与风机课程总结

《泵与风机》课程总结 引言: 2010年下半学年,我们热能专业学习了《泵与风机》这门专业课程,通过一学期的学习与认识,我初步掌握了泵与风机的专业常识及操作方面的知识。 泵与风机是一种利用外加能量输送流体的机械。通常将输送液体的机械称为泵,输送气体的机械称为风机。按其作用,泵与风机用于输送液体和气体,属于流体机械;按其工作性质,泵与风机是将原动机的机械能转化为流体的动能与压能,因此又属于能量转化机械。 泵与风机在生活中应用十分广泛,在农业中的排涝、灌溉;石油工业中的额输油和注水;化学工业中的高温、腐蚀性流体的排送;冶金工业中的鼓风机流体的输送等等都离不开泵与风机。 从我们专业角度来看,泵与风机在火力发电厂中的作用也不容小视。在火力发电厂中,泵与风机是最重要的辅助设备,担负着输送各种流体,以实现电力生产热力循环的任务。如:排粉机或一次风机、送风机、引风机、给水泵、循环水泵、主油泵等等一些辅助设备。总之,泵与风机在火电厂中应用极为广泛,起着极其重要的作用。其运行正常与否,直接影响火力发电厂的安全及经济运行。 随着科学的发展,泵与风机正向着大容量、高参数、高转速、高效率、高自动化、高性能和低噪音的方向发展。 课程学习: 第一章泵与风机的概述 第二节泵与风机的性能参数 泵与风机的性能参数有流量、扬程或全压、功率、效率、转速,水泵还有允许吸上真空高度或允许气蚀余量等。 第三节泵与风机的分类及工作原理 泵与风机按工作原理可分为三大类: (一)叶片式 (二)容积式 (三)其他形式(喷水泵、水击泵) 按产生的压头分: (一)低压泵、高压泵 (二)通风机、压气机(离心通风机、轴流通风机) 按产生的作用分: (一)给水泵、凝结水泵、循环水泵、主油泵等等 各种泵与风机的工作原理及特点: 1、离心式泵与风机1、 2、 3、 2、轴流式泵与风机 3、混流式泵与风机 4、往复式泵与风机 5、齿轮泵 6、螺杆泵 7、罗茨泵

我国火力发电厂节能措施汇总

中国火力发电厂 节能降耗措施汇总 一、火力发电厂整体节能评价 1.火力发电厂节能评价体系中的54个指标 煤耗及相关指标42个 水耗及相关指标6个 材料消耗指标3个 能源计量指标3个 2.按相互影响的层面划分,火力发电厂节能评价指标构成如下图所示:

1.火力发电厂燃煤锅炉畅通节能技术 由于锅炉所燃烧的燃料中含有越来越多的炉渣,因此SO3含量是始终变化的。水冷壁、过热器后屏、再热器后屏及后端表面上的炉渣含量加大,因此导致SO3的生成量增加,导致受热面换热效率降低。 畅通节能法?工艺被设计为一个炉渣和结垢控制计划,它特别针对锅炉的辐射和对流区域。由于该技术针对锅炉的问题区域,而不是简单地将化学物质运用于燃料,因此采用该技术所达到的效果和成本效益都超过了相对不够完善的方法。 化学处理剂与空气和水混和,然后被喷射到烟气之中。“标靶性”区域是依据计算流体动力学(CFD)确定的,由此在已知存在问题区域的情况下确保达到最大的覆盖率。化学制品被添加到烟气中,并针对传热问题区域或者对形成SO3的化学反应有利的区域。这样即可保证:被喷射的物质能够到达问题区域,并得到有效的利用。然后,添加剂在炉渣形成的时候与炉渣发生反应,并能够渗透已有的沉积物,从而影响它们的晶体物理特性。 通过采用这种方法,飞灰更易碎,而且更容易从表面清除。将这些结果融合在一起即可提高锅炉的效率。因此,除了提供解决排放问题的解决方案之外,该方法还能够实现相当可观的经济效益。 畅通节能法?技术改进了设备性能,并通过增强燃料的灵活性得到额外的节约,投资回报率一般在4比1以上(ROI)。 2.飞灰含碳量在线监测—节能优化 锅炉飞灰含碳量在线监测装置是为电站锅炉烟气飞灰含 碳量实时连续监测而设计的专用设备。它由飞灰含碳量现场检测

浅析城市污水处理厂节能降耗主要措施

浅析城市污水处理厂节能降耗主要措施 发表时间:2018-01-07T10:13:04.867Z 来源:《基层建设》2017年第29期作者:游洁 [导读] 摘要:随着社会的不断进步,面临诸多环境污染问题,水对污水处理及加大污水处理设施建设越来越重视。 四川省泸州市兴泸污水处理有限公司四川泸州 646000 摘要:随着社会的不断进步,面临诸多环境污染问题,水对污水处理及加大污水处理设施建设越来越重视。为顺应工业和生活污水处理需求的增长趋势,我国污水处理厂的数量快速增长,在扩增的同时也应引起企业对节能降耗的重视,因此对城市污水处理厂节能降耗技术研究是非常必要的。 关键词:城市;污水处理厂;节能降耗 引言 随着人们生活水平的提高,城市中生活污水和工业污水量明显增加,随之也新建了许多污水处理厂,为减轻环境负担提高水环境质量做出了很大的贡献,但是城市污水处理厂是属于高能耗的产业之一,这也造成了污水处理成本的提高,迫使一些污水处理厂因高额的处理费用而难以运行,同时这也是对能源的一种消耗和浪费,所以污水处理厂要在保证出水水质的前提下,对污水厂中高能耗单体及设备进行节能降耗的技术探索,保证自然资源和污水厂的可持续发展。想要实现这一目标就需要认真分析污水厂内的能源消耗分布,从处理过程中的各个环节入手探讨节能降耗新举措是优化污水厂管理的必要方法。 1城市污水处理厂主要能耗分析 1.1泵能耗 污水处理厂进水均处于管网系统末端,其高程相对较低,所以需要用提升泵将污水提升至处理系统中,此过程耗能较多,是节能降耗的重要节点之一。目前我国污水处理厂泵能耗较高的原因包括电机效率低、设计能力与运行能力不符、水量波动大和运行控制管理能力低等。污水提升角度的节能降耗需要从污水提升系统进行全面的分析。 1.2曝气能耗 污水中污染物去除主要通过微生物生化代谢过程实现。我国污水处理生化工艺主要包括 A2O 工艺、氧化沟工艺和SBR工艺。微生物去除污染物的生化代谢过程需要存在电子受体,此过程主要通过曝气供氧提供。因此,有效曝气是实现污染物去除和污水有效处理的重要保障手段。其中,曝气系统和其他机械系统是生化处理单元的主要组成,这也是污水处理厂的核心部分,全厂能耗的50%~70%是在这里产生的,对整个水厂的成本影响较大的就是曝气系统的节能降耗。与曝气效率的高低有着直接关系是曝气设备的调节能力,如果控制不到位或者调节能力,均会造成能源浪费,所以,为提升曝气效率降低能耗,我们应选择调节能力合适的曝气设备。 1.3药耗 在城市污水处理厂中所需要的妖姬主要是生化反应中化学除磷需要的聚合氯化铝(PAC)和污泥脱水系统中添加的絮凝剂聚丙烯酰胺(PAM)。但是,通常在污水厂的运行过程中由于药剂投加量投加时间的控制不够智能化等原因导致絮凝效果不理想,促使药剂的投加量增加,大大增加了污水处理成本,同时,这些药剂的降解性能较差容易对环境造成二次污染。 1.4水耗 国内许多污水处理厂的中水回用系统都尚未健全,污水处理工艺中的冷却水、反冲洗水、喷淋用水、办公用水等均采用自来水,而处理后达到出水标准的中水并未得到充分利用,因此,造成污水厂内水资源的消耗,对净水资源造成了浪费,同时也增加了处理成本。 2城市污水处理厂节能降耗措施分析 2.1污水提升泵节能降耗 污水提升泵是能源消耗的主要方面,想要降低污水提升泵的能耗主要从以下几个方面着手:首先,是根据水量养成选择合适的污水提升泵,使其能够在高效率的情况下运行,提高佛能够做效率。在设计之初就要尽量降低污水提升的高度,减小提升泵的扬程需求。当来水量不连续、水量不均匀的情况下,通过安装变频器调节提升泵频率降低电机转速、减小扬程使之符合实际需要。对于提升泵的运行台数也要合理控制,尽量保证提升泵在高水位状态下运行,当污水提升水池水位降低时可适当减少运行台数,避免不必要的能源消耗。提升泵的工况也影响着电量的消耗,所以要定期对提升泵进行养护,减少机械磨损造成的工况下降。目前市面上新出的节能型污水提升泵也是节能降耗很好的选择。 2.2曝气系统节能降耗 城市污水处理厂处理工艺大多是采用活性污泥法的鼓风曝气。鼓风曝气是将空气通过管道送入曝气池的扩散设备,以气泡形式分散进入混合液,使气泡中的氧迅速扩散转移到混合液中,供给活性污泥中的微生物。曝气系统是整个污水厂电量消耗最大的部分,所以探索曝气系统的节能方法是污水厂节能降耗的重点和难点。首先,鼓风机的选择上需要选择高效率的曝气设施,能够满足生化反应中不同曝气量的需求,形成微孔气泡、中气泡、大气泡和水力剪切等几种类型。常用的鼓风机机型主要有罗茨风机、单级离心鼓风机和悬浮鼓风机等。鼓风机可以通过变频装置来控制实现调节叶轮旋转的速度,使鼓风机保持在高效率的情况下运转。风机风量也要根据生化反应的需求进行适当调节,通过对池面翻花的程度及溶解氧含量的大小调节曝气风量和曝气时间,避免发生曝气过度的情况造成不必要的能源浪费。同时,还要通过实时监测水质变化调节生化周期及曝气时间,当进水水质条件较好时,适当减少曝气时间便可使生化出水满足要求,当进水水质较差时,适当增加曝气及生化时间。 2.3药剂的节约措施 污水处理厂药剂消耗主要是针对深度处理、消毒处理和污泥处理工艺中的中的药剂消耗。絮凝剂的分类有很多种,包括单一的有机絮凝剂、无机絮凝剂、微生物絮凝剂和复合絮凝剂,污水厂在选择絮凝剂时要综合价格和絮凝性能综合进行选择。尽量选择投加量少的高效能絮凝剂,这样既可以防止对环境造成二次污染,同时还可以降低污水处理成本,例如一些微生物絮凝剂。絮凝剂的投加量和投加时间对处理效果也有非常大的影响,所以要采用智能化的药剂投加系统,减少误差避免不必要的浪费。 2.4污泥处理节能降耗 污泥处理的目的是使污泥减量、稳定、无害化及促其综合利用。污泥处理主要包括污泥的浓缩、稳定和脱水。污泥脱水系统主要是将生化处理中的剩余污泥进行絮凝脱水处理,最后切割外送或填埋,在污泥脱水过程中的离心机的选择关系着能源消耗的大小,不同类型的

变频水泵节能原理及分析

前言 离心式水泵在我国当前的工农业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,其流量和压力等控制对象大多采用管道阀门截流的调节方式。这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。在电力能源越发短缺的今天,找寻并普及一种既经济又方便的水泵运行方式,对节能工作有着重大的意义。 1、离心式水泵工作特性 1.1 离心式水泵工作原理 离心式水泵是一种利用水的离心运动的抽水机械。由泵壳、叶轮、泵轴、泵架等组成。起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。 1.2 泵类负载特性分析 为适应用户用水量的变化,调节出水流量,现通常采用两种方法来完成流量的连续调节。一种是利用控制阀或节流阀进行节流,以改变出水流量;另一种是泵的调速控制,调节泵的转速来改变出水流量。图1为水泵调速时的全扬程特性(H—Q)曲线。 图1 水泵调速时的H-Q曲线

在上图中,曲线n0表示,管路中阀门开度不变时,水泵在额定转速下的扬程—流量曲线。R1表示水泵转速不变时,全扬程与流量之间的关系曲线,又称管阻特性曲线。H0为供水量Q接近0时,所需的扬程等于实际扬程,其物理意义是:如果全扬程小于实际扬程,系统将不能供水。 由上图可知,水泵的扬程特性曲线和管网的管阻特性曲线有交叉点,这个点就是水泵工作时既满足扬程特性又满足管阻特性,供水系统工作于平衡状态,系统稳定运行。 在使用管道阀门控制时,当流量要求从QA减小到QB,就必须减小阀门开度。这时供水管道的阻力变大,管阻特性曲线从R1移到R2,扬程则从HA上升到HB,运行工况点从A点移到B点。 在使用水泵调速控制时,当流量要求从QA减小到QB,由于阀门开口度不变,管道的阻力曲线R不变,此时水泵的特性取决于其转速。如果把速度从n0降到n1,运行工况点则从A点移到C点,扬程从HA下降到HC。 根据离心泵特性曲线公式: 其中:P——为泵使用的工况点轴功率(KW); Q——为使用工况点的水压或流量(m2/s); H——为使用工况点的扬程(m); ρ——为输出介质的密度(kg/m3); η——为使用工况点的泵的效率(%)。 由公式1,可得出在使用阀门调节时,水泵运行在B点的轴功率,和用转速调节时,水泵运行在C点的轴功率分别为:

《泵与风机》论文

《泵与风机》课程论文 论文名称浅析泵与风机的运行方式与节能措施姓名 学号 院系 专业年级 指导教师 职称 2014年 6 月 7 日

浅析泵与风机的运行方式与节能措施 [内容摘要] 电厂的泵与风机有不同的运行方式,但不同的运行方式,其能耗或节能效果大不相同。本文就主要以电厂泵与风机的不同运行方式,利用泵与风机自身固有特点以及通过其他措施来共同实现节能的方法进行论述。 [关键词]运行方式调速驱动节流节能措施 一. 概论 随着现代电厂机组的大型化,锅炉运行的安全性愈来愈重要。锅炉能否安全运行,不但关系自身的安全,而且对外界用户也非常重要。尤其是企业的自备热电站,它的热用户有时是庞大而复杂的系统(如石油化工企业),电站锅炉能否安全、灵活运行,对其热用户的安全性和经济效益至关重要。 其次,在缺乏水电调峰的地区,一些电厂又担任着电网调峰的任务,这就需要锅炉能够滑压运行,具有足够灵活的负荷适应性。而热电站又必须不断调节锅炉负荷,以适应用户对蒸汽需求的变化。锅炉负荷的变化就必须调节辅机的运行。为了锅炉能安全长期运行,灵活适应外界要求,除锅炉本身质量外,鼓、引风机和给水泵的运行方式也有着非常重要的作用;另一方面,鼓、引风机和给水泵的运行方式不同,对电厂的基建投资、运行维修费用、自身能耗与电厂经济性有着很大的影响。 在电厂中,自身能耗占其运行成本的相当比例,而鼓、引风机和给水泵的功率在电厂自身能耗中所占比例很大。因此,选择合理的运行方式,使其适应锅炉负荷变化的需要,尽可能减少因节流而引起的能量损失,降低生产成本,对电厂来说至关重要。 二. 鼓、引风机和给水泵的运行方式 (一). 锅炉给水泵的运行方式 锅炉给水系统概括地分为单元制和母管制。 1.如果锅炉负荷频繁变化,单元制系统的锅炉给水泵最好是常用泵选择调速驱动

污水提升泵的节能措施实用版

YF-ED-J6913 可按资料类型定义编号 污水提升泵的节能措施实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

污水提升泵的节能措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 对于我车间4台提升泵,节能的关键在于控制方式,只有实行提升过程的最优控制,才能达到节能的目的。 一、合理确定水泵的台数 对污水提升过程中进行流量调节时,要避免阀门调节来节省能耗。冬季水量大时通常可采用一台变频泵和两台工频泵组合调节的形式,水量较小时,可采用一台或两台变频泵运行。 总之,运行过程中要尽量减少水泵台数,选用高效率的污水泵。

二、采用合理的流量控制 污水量往往随着季节、天气、用水时间等变化,目前理性的做法是采用最大流量作为选泵依据,实际上水泵全速运转的时间不超过10%,相当部分时间水泵处于低效运转。由水泵的轴功率N=Nu/n(n为运行效率)可见,水泵处于高效运转状态下可以节省大量电能。因此应选择合适的调控方式,合理确定泵流量,保持泵的高效运转。一般来说,水泵调控的方式主要有以下几点: (1)对位控制 对位控制就是在集水池水位发生变化时,根据事先确定的水位等级,控制对应水泵机组的自动开停,以适应泵站来水量的变化。这种控制方式简单易行,使用方便,应用广泛。但

泵与风机节能技术研究

电厂泵与风机的节能研究 摘要:文章对我国火力发电厂目前泵与风机的使用情况(耗能)进行了分析,并且描述了目前我国发电厂泵与风机的节能潜力,提出了泵与风机节能技术改造的方法及国内外的发展趋势。 关键词:火力发电厂泵与风机节能技术改造 一、前言 能源工业作为国民经济的基础,对于社会、经济的发展和人民生活水平的提高都极为重要。在高速增长的经济环境下,中国能源工业面临经济增长与环境保护的双重压力。而且,受资金、技术、能源价格等因素的影响,中国能源利用效率比发达国家低很多,只及发达国家的50%左右,90%以上的能源在开采、加工转换、储运和终端利用过程中损失和浪费。由此可见,对能源的有效利用在我国已经非常迫切。火电厂是最主要的能源消耗大户,在我国的二次能源结构中,约占74%。而在火力发电厂中,泵与风机是最主要的耗电设备,加上这些设备存在着"大马拉小车"的现象,同时由于这些设备长期连续运行和经常处于低负荷及变负荷运行状态,运行工况点偏离高效点,运行效率降低,大量的能源在终端利用中被白白地浪费掉。因此,对电厂泵与风机进行节能研究有着突出重要的意义。 二、我国发电厂泵与风机节能潜力分析 火力发电厂中运行的泵与风机种类繁多,数量多,总装机容量大,耗电量大,约占全国火电发电量的6%。发电厂辅机的经济运行,尤其是大功率的泵与风机的经济运行,直接关系到厂用电率的高低,而厂用电率的高低是影响供电煤耗和发电成本的要素之一。 1.运行方式的分析 对大容员单元制机组,有些大力发电厂每台机组配置了三台50%容量的锅炉给水泵,一般在高负荷时两台运行.一台备用。当机组负荷变化时,通过改变结水泵的运行方式以适应变负荷的要求。如图所示.M点是主机全负荷时流量点,这时并联运行的两台泵都处于全负荷运行状态a点。若机组负荷降低至某一负荷(如50%负荷)q v时,则泵的运行方式可能如下:两台泵全速定压运行,节流调节,其并联工作点为b,并联运行的每台泵的工作点为b’;单台泵全速定压运行.节流调节,运行工作点为a;两台泵变速定压运行,变速调节,其并联工作点力c。并联运行的每台泵的工作点c':单台泵变速定压运行、变速调节其工作点为c’。如果变负荷时主机和滑压运行。则在同一负荷下泵还仔在下列运行方式:两台泵变速滑压运行.其并联工作点为d,并联运行的每台泵的工作点为d’:单台泵变速滑压运行,其工作点为d。可见,当机组负荷变化时,给水泵有多种运行方式可供选择,并且和机组负荷、给水阻力特性、以及主机的运行方式有关。究竟选择哪种运行方式,应当考虑既安全可靠又经济运行两方面的因素。

污水提升泵的节能措施详细版

文件编号:GD/FS-6076 (解决方案范本系列) 污水提升泵的节能措施详 细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

污水提升泵的节能措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 对于我车间4台提升泵,节能的关键在于控制方式,只有实行提升过程的最优控制,才能达到节能的目的。 一、合理确定水泵的台数 对污水提升过程中进行流量调节时,要避免阀门调节来节省能耗。冬季水量大时通常可采用一台变频泵和两台工频泵组合调节的形式,水量较小时,可采用一台或两台变频泵运行。 总之,运行过程中要尽量减少水泵台数,选用高效率的污水泵。 二、采用合理的流量控制 污水量往往随着季节、天气、用水时间等变化,

目前理性的做法是采用最大流量作为选泵依据,实际上水泵全速运转的时间不超过10%,相当部分时间水泵处于低效运转。由水泵的轴功率N=Nu/n(n 为运行效率)可见,水泵处于高效运转状态下可以节省大量电能。因此应选择合适的调控方式,合理确定泵流量,保持泵的高效运转。一般来说,水泵调控的方式主要有以下几点: (1)对位控制 对位控制就是在集水池水位发生变化时,根据事先确定的水位等级,控制对应水泵机组的自动开停,以适应泵站来水量的变化。这种控制方式简单易行,使用方便,应用广泛。但是,这种方式集水池水位的变化幅度较大,水泵扬程也随之发生相应的变化。因此,节能效果不好,而且水泵起动频繁,忙闲不均。 (2)自动流量及配编组控制

车间节能降耗措施.doc

车间节能降耗措施 企业还需要继续努力,加大节能降耗、革新挖潜的力度,为企业带来更高的效益,同时也避免浪费资源,保护环境,保护地球。以下是我整理的资料,仅供参考,欢迎阅读。 车间节能降耗措施 一. 节电方面 为了节能降耗,合理的用电避峰,车间制定了《关于生产车间用电避峰的通知》,并于9月10日开始发放实施。建议将运转班中班取消,改上早班和大夜班。这样车间峰期用电从原先的8小时减为3小时。大大降低了用电费用。峰谷平具体用电价格和时段如下: 宿州大企业用电峰谷平时段及其电价 峰期电价 1.0167元/度 9 ,10 ,11月份1.0786元/度低谷电价 0.4203元/度 平期电价 0.675元/度 峰期时段 9:00------:00 17:00------22:00 低谷时段 23:00------8:00 其余时段为平期时段。 1. 在光线能达到生产要求的情况下禁止开启照明用电,建议更改现有的照明用电 控制开关,分开控制。(现有的一个开关控制十几盏灯)

2. 冷水机组在水温能达到生产要求的情况下限时开启。 3. 品质部及技术部实验室用电应与车间用电分开计量,建议增加分表。 合理的安排生产,在生产任务不饱和的情况下尽量集中处理在线产品,(特别是退火、浸润、喷涂岗位)。 4.车间生产操作人员应减少设备空载运行,加强人员的巡检,杜绝跑、冒、滴、漏的现象发生。 二.物料管控方面 1.规范车间物料领用流程,所有使用的物料领用由专职人员凭有效领料单领取,对所领用的物资领料人员必须严把质量、价格、数量关。由车间主任负责监督;不符合要求的物料车间坚决不领用。生产车间物资领用,原则上要求采用以旧换新制度(消耗性物资除外),没有旧物,物料管理员不得发放物资。对当月所领用的物资要分类建立台账,合理控制。 2.生产岗位做好所有物料的周转、防护工作,杜绝人为原因造成的浪费。 3.生产压制领粉实行工单制度,即领多少粉就要压多少产品,压不到数量的必须找出原因,给出对策。 4.模具和机修备件要建立月使用计划和更换记录台账,合理的提前做好预算,减少库存数量,避免资金积压。 三.工艺技术改进方面 1. 建议公司购买了脱漆炉,可将所有的外观不良产品进

中央空调水泵节能方案

中央空调水泵节能方案 作者admin来源浏览249发布时间08/06/25 中央空调水泵节能方案 1、中央空调运行控制方法分析 中央空调系统设计首先是根据室外气象参数和室内空调设计参数计算冷负荷,按分区结构特点,根据产品样本选择相应的设备,组合成一个系统。但空调系统绝大部分时间是在不满负荷的情况下工作。在不满负荷工作的控制方式不合理,系统能效比会大大降低。现在空调系统在运行调节方式上,风水系统主要是阀门(手动、自动阀门调节),主机利用卸荷方式,而这些方式是牺牲了阻力能耗来适应末端负荷要求,造成运行成本居高不下。 若采用变频控制,能量的传递和运输环节控制为变水量(VWV )和变风量(VAV),使传递和运输耦合并达到最佳温差置换,其动力仅为其它控制系统的30-60% ,而且节能是双效的,因为对制冷主机的需求能耗同时下降。主机采用变频节能控制,保持设计工况下的制冷剂运动的物理量(如温差、压力等)变化,节能较其它调荷方式明显,如约克(YORK )的YT型离心式冷水机组,配置变频机组在部分负荷下能效比可降至冷吨,可见变频控制方式在 空调系统中应用前景十分广阔。 过去在中央空调系统中应用变频技术为什么推广难呢?可能是价格的原因吧?在变频技术、计算机自动化控制技术非常成熟的今天,用此技术与暖通空调专业技术相结合,它并不是一门高价的技术,在小功率空调中其经济性都可承受,在中央空调系统中更不应该成问题:(1)中央空调运行时间更长,节能问题更突出;(2)变频控制在整个系统中所占的造价比例不高;(3)变频控制器的容量越大, 每千瓦功率单价越低。 中央空调系统采用变频器是可行的,其投资回收一般在6 ~ 12个月以变频控制器使用寿命10年计, 其净收益在10倍投资额以上。 2、中央空调调速节能原理制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将

泵与风机杨诗成第四版习题集及标准答案

4-1 输送20℃清水的离心泵,在转速为1450r/min 时,总扬程为25.8m, q v =170m 3/h, P=15.7kW, ηv =0.92, ηm =0.90,求泵的流动效率ηh 。 4-1 解: 76.07 .151000/8.253600/17081.91000=???=== P H gq P P v e ρη h v m ηηηη??= ∴92.092 .090.076 .0=?= ?= v m h ηηηη 4-2 离心风机叶轮外径D 2=460mm,转速n=1450r/min,流量q v =5.1m 3/s,υ1u ∞=0,υ2u ∞ =u 2,(1+P)=1.176,流动效率ηh =0.90,气体密度ρ=1.2kg/ m 3。试求风机的全压及有效功率。 4-2,解: p T ∞=ρ(u 2v 2u ∞-u 1 v 1u ∞) ∵v 1u ∞=0 ∴p T ∞=ρu 2v 2u ∞=1.2×6046.014506046.01450?????ππ=1462.1(Pa ) 根据斯托道拉公式:P K +=11,∴855.017 .11==K ∴p= K·ηh ·p T ∞=0.855×0.90×1462.1=1124.7(Pa ) P e =pq v /1000=1124.7×5.1/1000=5.74 (kw) 4-3 离心风机n=2900r/min ,流量q v =12800 m 3/h ,全压p=2630Pa ,全压效率η=0.86,求风机轴功率P 为多少。 4-3 P=η P e =0.86×pq v /1000=0.86×2630×12800/3600/1000=8.04 (kw) 4-4 离心泵转速为480r/min ,扬程为136m ,流量q v =5.7m 3/s,轴功率P=9860kW 。设容积效率、机械效率均为92%,ρ=1000kg/m 3,求流动效率。 4-4解: 77.09860 1000/1367.581.91000=???=== P H gq P P v e ρη 91.092 .092.077 .0=?= ?= v m h ηηηη 4-5 若水泵流量q v =25L/s,泵出口出压力表读数为320kPa ,入口处真空表读数为40kPa ,吸入管路直径d=100cm,出水管直径为75cm ,电动机功率表读数为12.6kW ,电动机效率为0.90,传动效率为0.97。试求泵的轴功率、有效功率及泵的总效率。 ∵P e =ρg·q v ·H ∵()w Z g v v g p p H h Z 2122 12212+-+-+-=ρ

水泵节能改造的方法

水泵节能改造的方法 对于水泵节能这个问题,不少人都有一个疑问,水泵有什么好节能的,平时不都那么用吗?水泵运行得很好啊,根本不需要节能啊,也没耗多少电的,不可能有多大的节能空间啊,针对这一系列的问题,下面泽德污水提升器就水泵节能问题详细给大家介绍下,我们为什么要节能,还有一些常见的水泵节能改造方法。 水泵节能的原因: 由于水泵大量广泛应用,水泵是中国的能耗大户啊,每年的耗电总量达到全车总耗电量的20%之多,并且每年还呈现出大幅递增的趋势呢,从水泵的设计方面的水平来看,中车的水泵设计水泵十分接近国外发达国家的先进水平了,但是在水泵的制造,工艺技术和系统运行的效率这些方面来说,相对发达国家都还存在很大的差距,2010年就因为水泵造成的能量浪费就达到了1700亿千瓦时,在水泵造成这么严重的能源的浪费,中国的水泵节能改造迫在眉睫啊,现在国家对水泵的节能服务有很强的政策扶持, 水泵节能改造方法: 要对水泵节能改造主要分两步,先是对水泵能耗进行准确的评估,然后进行有效的改造,特别是针对能耗浪费严重的地方进行对症下药,实施有效的整改方案,减少并做到杜绝浪费,我们根据水泵运行原理可以知道,流量与转速的一次方成正比的,扬程与转速的平方成正比,功率与转速的立方成正比。假如水泵的效率一定,当要求调节流量下

降时,转速可成比例的下降,而此时功率成立方关系下降。 我们举个例:如果一台水泵电机功率为200kW,当转速下降到原转速的80%时,其耗电量为102.4kW,省电48.8%。 第一、功率因数补偿方法节能,无功功率不但增加线损和设备的发热,更主要的是功率因数的降低从而导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重。使用变频调速装置后,由于变频器内部滤波电容的作用,功率因数很高,从而减少了无功损耗,增加了电网的有功功率。 第二、软启动方法节能,电机一般为直接启动或Y/D启动,启动电流等于4~7倍额定电流,这不但要求电网容量高,而且启动时会对设备和电网造成严重的冲击,影响使用寿命。使用变频装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备的使用寿命。 第三、采用闭式(或开式)变频控制技术,由能耗优化模块、智能控制系统、变频控制系统、远程监控制系统等组成,实时监控泵系统工艺参数并与目标值比较,自寻优给出满足工艺要求且实时电耗最低的运行匹配和调速策略,实行最优运行调度方案,达到最佳节能效果。 第四、采用国内名优变频器和电气元件,性能稳定,设备运行安全可靠。 第五、自动寻优功能。自寻优给出满足工艺要求且实时能耗最低

水泵节能技术发展现状及趋势展望

水泵节能技术发展现状及趋势展望 火力发电厂中,厂用电约占总发电量的8%~10%,泵与风机的耗电量约占厂用电的70%~80%,因此,降低泵与风机的功耗对于提高电厂经济效益有很大作用。循环水泵的耗电量与季节和负荷都有关系,对其进行变频改造,既可以保证其有效地工作,又可以保证其在低负荷和不同季节的最低功耗,运用灵活、节能效果明显。 一、水泵节能技术在我国发展的趋势 目前,国内外许多电力拖动场合已将矢量控制的变频器广泛应用于通用机械、纺织、印染、造纸、轧钢、化工等行业中交流电动机的无级调速,已明显取得节能效果并满足工艺和自动调速要求。但在风机、水泵应用领域仍没有得到充分应用。其主要原因是对风机、水泵类负载可大量节能了解不够。故此,我们将风机、水泵的节能原理和应用状况向客户介绍。全国风机、水泵用电量占工业用电的60%以上,如果能在这个领域充分使用变频器进行变频无级调速,对我们发展加工制造业又严重缺电的国家,是兴国之策。风机,是传送气体装置。水泵,是传送水或其它液体的装置。就其结构和工作原理而言,两者基本相同。现先以风机为例加以说明。自然通风冷却塔、循环水泵、循环水管道及管道附件是电厂循环水系统的重要组成部分,在电厂初步设计中研究系统方案确定最优化系统配置,对于降低工程建设造价具有积极意义。循环水系统设计中最核心部分就是自然通风冷却塔、

循环水泵的合理选择配置,在循环水系统建设中它们的投资费用最多、施工最复杂,对电厂总投资影响最大。直接影响电力工程建设的单位造价与电厂投资回收年限。供水系统优化设计是系统方案选择的基础,其中对方案设计影响最大的是循环水泵电动机的年费用。在保证汽轮机运行安全满负荷发电的前提下,如何降低电动机的年费用,值得每一位工程设计人员思考。 二、水泵在使用过程中的问题 1、水泵本身设计技术含量不高 现阶段我国水泵设计主要是沿袭传统的模型换算法和速度系数法,这些设计方法从某种程度上来说已经过时,因为这是建立在旧的水泵设计经验的基础上的,在设计过程中无法超越过去的设计水平,无法在效率提升上有所突破。再加上水泵设计单位对技术的资金投入和人员投入不足,水泵设计人员的创新动力不足、缺乏创新意识,从而导致了水泵产品的技术含量得不到一个质的提升,水泵本身的技术含量无法提升,节能工作自然也做不到。再加上水泵制造企业片面着重经济效益,而忽视了水泵的节能工作,国家也没有这方面的政策扶持和财政优惠,造成了水泵制造企业对水泵节能、提高水泵效率也没有积极性。 2、水泵节能存在误区 我们过去对水泵节能的理解主要是提高水泵的各项效率指标,其实这是对水泵节能理解的一个误区,是一种片面的理解。我们所说的节能范围不只是一个效率指标,而且也包含水泵的性能的稳定性、水

污水处理厂的节能降耗措施与应用

污水处理厂的节能降耗 措施与应用 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

污水处理厂的节能降耗措施与应用摘要:近年来,由于城市的发展速度加快,城市的污水量也不断增加,这些污水如果不经处理就排放到江河中,则会导致水源受 到污染,使生态环境受到破坏。所以对这部分城市污水进行处理是必不可少的。文章针对衡水市污水处理厂的实际运行情况,对 节能技术改造进行了分析,并进一步对通过建立激励机制加强员工的管理进行了具体的阐述。 在进行污水处理技术方面我国处于落后状态,而且在进行污水处理过程中存在着耗电量大的问题,所以与先进国家相比,我国在污水处理上还存在着很大的节能空间,无论是曝气设备还是污水污泥设备,都具有较大的节能潜力,目前普通存在着能耗过高的问题,所以当前污水处理成本偏高,而且使能源消耗过度,不利于能源的可持续利用,另一方面也加强了环境的污染,这与当前我国建立节约型社会的宗旨相违背,所以需要在污水处理过程中,实现节能降耗,从而推动建设资源节约型社会的进程,实现社会的可持续发展。

1、节能技术改造1.1增设快速浓缩池 随着我国对排水标准的不同提升,目前不仅需要对出水COD进行控制,同时还要控制NH3-N、TP等,而且一些浓缩池所剩余的部分污泥还会释放磷,所以针对这种情况,目前在一些新建的污泥处理厂内,则不再进行浓缩池的设置,这就为后期污水处理的成本增加埋下了伏笔。因为这势必会在污泥脱水时电耗增加,而且药耗量也会上升。所以针对于剩余污泥在浓缩池内停留时释放磷的问题,则需要在利用向污泥内添加絮凝剂来解决,而且这些絮凝剂也不需要再额外购置,其只需将脱水滤液中剩余的部分进行添加即可,这样可以有效的减少污泥在浓缩池内停留的时间,避免了磷的释放,而且也达到了浓缩的效果,这样在污水处理时,其脱水效率也会有较大程度的提高,同时也不用过多的增加药耗,对节约成本起到关键的作用。 1.2、污水提升泵的变频改造通常在选择污水提升泵时,其都会以最大扬程和最大流量的设计来对水泵的参数进行选择,这就导致使用过程中,水泵则处于低扬程、大流量和低效区的状态下,直接导致耗电量的增加,而且电机极易出现过热的情况。 针对于这个问题,可以通过对水泵的性能曲线进行改变,从而对其效率进行调整,而通过对转速进行调整,可以使水泵趋于高效区内,而且没有能量的损失,运行的效率也处于较高的水平。所以利用变频调速技术

污水提升泵的节能措施示范文本

污水提升泵的节能措施示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

污水提升泵的节能措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 对于我车间4台提升泵,节能的关键在于控制方式, 只有实行提升过程的最优控制,才能达到节能的目的。 一、合理确定水泵的台数 对污水提升过程中进行流量调节时,要避免阀门调节 来节省能耗。冬季水量大时通常可采用一台变频泵和两台 工频泵组合调节的形式,水量较小时,可采用一台或两台 变频泵运行。 总之,运行过程中要尽量减少水泵台数,选用高效率 的污水泵。 二、采用合理的流量控制 污水量往往随着季节、天气、用水时间等变化,目前 理性的做法是采用最大流量作为选泵依据,实际上水泵全

速运转的时间不超过10%,相当部分时间水泵处于低效运转。由水泵的轴功率N=Nu/n(n为运行效率)可见,水泵处于高效运转状态下可以节省大量电能。因此应选择合适的调控方式,合理确定泵流量,保持泵的高效运转。一般来说,水泵调控的方式主要有以下几点: (1)对位控制 对位控制就是在集水池水位发生变化时,根据事先确定的水位等级,控制对应水泵机组的自动开停,以适应泵站来水量的变化。这种控制方式简单易行,使用方便,应用广泛。但是,这种方式集水池水位的变化幅度较大,水泵扬程也随之发生相应的变化。因此,节能效果不好,而且水泵起动频繁,忙闲不均。 (2)自动流量及配编组控制 多台工频水泵流量级配编组控制,就是根据泵站的实际来水量,将泵站中的几台水泵并联组成几种流量级配,

火力发电厂泵与风机的节能分析

火力发电厂泵与风机的节能分析 摘要:本文对我国火力发电厂目前泵与风机的使用情况(耗能)进行了分析,提出了泵与风机节能技术改造的方法。 关键词:火力发电厂;泵与风机;节能;技术改造 一、前言 能源工业作为国民经济的基础,对于社会、经济的发展和人民生活水平的提高都极为重要。在高速增长的经济环境下中国能源工业面临经济增长与环境保护的双重压力。而且受资金、技术、能源价格等因素的影响,中国能源利用效率比发达国家低很多,只及发达国家的50%左右,90%以上的能源在开采、加工转换、储运和终端利用过程中损失和浪费。由此可见,对能源的有效利用在我国已经非常迫切。 火电厂是最主要的能源消耗大户,在我国的二次能源结构中约占74%。而在火力发电厂中,泵与风机是最主要的耗电设备,加上这些设备存在着“大马拉小车”的现象,同时由于这些设备长期连续运行和常常处于低负荷及变负荷运行状态,运行工况点偏离高效点,运行效率降低,大量的能源在终端利用中被白白地浪费掉。因此,对电厂泵与风机进行节能研究有着突出重要的意义。 二、我国发电厂泵与风机运行状况及节能潜力分析 火力发电厂中运行的泵与风机种类繁多,数量多,总装机容量大,耗电量大,约占全国火电发电量的6%。发电厂大功率的泵与风机的经济运行,直接关系到厂用电率的高低,而厂用电率的高低是影响供电煤耗和发电成本的主要因素之一。 目前我国火电厂的水泵和风机基本上都是采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于水泵和风机的运行偏离高效点,使运行效率降低。目 前我国约2/3的泵、风机类机械在运行中需要调节流量,用阀门式挡板调节,能 源损失和浪费很大,已经到了非改不可的地步。 造成这种现象的原因是多方面的,主要是科研开发投入不足,科研与生产缺乏有机的结合;生产工艺落后,型线误差大,过流表面粗糙。目前我国大多采用木模整体铸造。由于中、高比转速离心式泵与风机叶片扭曲,造型起模困难,造

污水提升泵的节能措施

编号:AQ-JS-00007 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 污水提升泵的节能措施 Energy saving measures of sewage lift pump

污水提升泵的节能措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 对于我车间4台提升泵,节能的关键在于控制方式,只有实行提升过程的最优控制,才能达到节能的目的。 一、合理确定水泵的台数 对污水提升过程中进行流量调节时,要避免阀门调节来节省能耗。冬季水量大时通常可采用一台变频泵和两台工频泵组合调节的形式,水量较小时,可采用一台或两台变频泵运行。 总之,运行过程中要尽量减少水泵台数,选用高效率的污水泵。 二、采用合理的流量控制 污水量往往随着季节、天气、用水时间等变化,目前理性的做法是采用最大流量作为选泵依据,实际上水泵全速运转的时间不超过10%,相当部分时间水泵处于低效运转。由水泵的轴功率N=Nu/n (n为运行效率)可见,水泵处于高效运转状态下可以节省大量电能。因此应选择合适的调控方式,合理确定泵流量,保持泵的高效运转。

一般来说,水泵调控的方式主要有以下几点: (1)对位控制 对位控制就是在集水池水位发生变化时,根据事先确定的水位等级,控制对应水泵机组的自动开停,以适应泵站来水量的变化。这种控制方式简单易行,使用方便,应用广泛。但是,这种方式集水池水位的变化幅度较大,水泵扬程也随之发生相应的变化。因此,节能效果不好,而且水泵起动频繁,忙闲不均。 (2)自动流量及配编组控制 多台工频水泵流量级配编组控制,就是根据泵站的实际来水量,将泵站中的几台水泵并联组成几种流量级配,使泵站的出水量比较接近实际的来水量。这样就可以保证吸水池中的水位较长时间地稳定在高水位上,从而使水泵的工作扬程减小,最终达到节能的目的。 (3)转速加台数控制 目前大多数大中型污水厂普遍采用转速加台数控制方法。工频定速方式下水泵按平均流量选择,定速运转以满足基本流量的要求;水泵变频就是变速运转以适应流量的变化,流量出现较大波动时以

相关文档