文档库 最新最全的文档下载
当前位置:文档库 › 培养基因子对粉蕉芽分化的影响

培养基因子对粉蕉芽分化的影响

选用和设计培养基的原则

一、选用和设计培养基的原则和方法 (一)配制培养基的4个原则 1.目的明确 培养不同的微生物必须采用不同的培养条件;培养目的不同,原料的选择和配比不同;例如枯草芽孢杆菌: 一般培养:肉汤培养基或LB培养基; 自然转化:基础培养基; 观察芽孢:生孢子培养基; 产蛋白酶:以玉米粉、黄豆饼粉为主的产酶培养基; 根据不同的工作目的,微生物不同的营养需要,运用自己丰富的生物化学和微生物学知识来配制最佳的培养基。 2.营养协调 微生物细胞组成元素的调查或分析,是设计培养基时的重要参考依据。 微生物细胞内各种成分间有一较稳定的比例。 在大多数化能异养菌的培养基中,各营养要素间在量上的比例大体符合以下十倍序列的递减规律: 要素:H2O>C源+能源>N 源>P、S>K、Mg>生长因子 含量:(~10-1) (~10-2) (~10-3) (~10-4) (~10-5) (~10-6) A.选择适宜的营养物质,实验室的常用培养基: 细菌:牛肉膏蛋白胨培养基(或简称普通肉汤培养基); 放线菌:高氏1号合成培养基培养; 酵母菌:麦芽汁培养基; 霉菌:查氏合成培养基; 实验室一般培养:普通常用培养基; 遗传研究:成分清楚的合成培养基; 生理、代谢研究:选用相应的培养基配方; B.营养物质浓度及配比合适 营养物质的浓度适宜, 营养物质之间的配比适宜; 高浓度糖类物质、无机盐、重金属离子等不仅不能维持和促进微生物的生长,反而起 到抑制或杀菌作用。 培养基中各营养物质之间的浓度配比也直接影响微生物的生长繁殖和(或)代谢产 物的形成和积累,其中碳氮比(C/N)的影响较大。 真菌需C/N比较高的培养基;(素食) 细菌(动物病原菌)需C/N比较低的培养基;(荤食) 发酵生产谷氨酸时: 碳氮比为4/1时,菌体大量繁殖,谷氨酸积累少; 碳氮比为3/1时,菌体繁殖受到抑制,谷氨酸产量则大量增加。 NH3 > CO(NH2)2 > NH4NO3 > (NH4)2CO3 > (NH4)2SO4 含氮量(82%)(46%)(35%)(29.2%)(21%) 这说明在同样重量时,在以上各氮源中含氮量以氨为最高,尿素次之,硝酸铵和碳酸铵更次之,而硫酸铵则最低。 3.理化适宜 指培养基的pH值、渗透压、水活度和氧化还原电势等物理化学条件较为适宜。 包括:pH、渗透压和水活度、氧化还原电位

实验三--果树花芽分化的观察实验

实验三果树花芽分化的观察 一、目的要求 通过对花芽分化不同阶段的花器分化情况的观察,以便加深和验证课堂讲授的内容。要求初步掌握观察花芽分化的徒手切片及镜检技术。 二、材料用具 材料采取花芽分化各时期的苹果(或桃)的结果枝,苹果和桃花芽分化各个时期的固定切片。 用具双目立体显微镜(或解剖镜),刀片,镊子,解剖针,烧杯(500毫升),培养皿,载玻片,盖玻片。 (一)制作徒手切片按采取时期顺序取苹果(或桃)的结果枝,用镊子由外及里剥去花芽的鳞片,露出花序原始体,然后用力片从花序原始体的左上方轻轻往右下方切割,切割的花序原始体习芍片,愈薄愈好,1个花序原始体可连续切割数片,将切下的薄片放入盛水的培养皿中。1个花序原始体切割完毕后,将培养皿中的小薄片,依次排列于载玻片上,用1%的刚果红染色,经1-3分钟后,用清水洗净,加上盖玻片,即可在显微镜下观察。如无染色剂,亦可直接在显微镜下观察。 (桃的花芽徒手切片的操作与苹果大体相同,唯剥去外部较硬鳞片后,可保留柔软苞片,即可切割。) (二)镜检观察将制成切片置于双目立体显微镜或低倍显微镜下依次检查。并与 标准固定切片相对照,以识别花芽分化所处的时期。 苹果的花芽分化时期(参阅《各论》图1-4:苹果花芽分化图) (1)未分化期生长点平滑不突出,但四周凹陷不明显。 (2)分化始期生长点肥大,突起。虽半球形,四周下陷。 (3)花原始体出现期肥大的生长点四周有突起的状态,为花原基体。 (4)萼片形成期生长点下陷,四周突起,即萼片原始体。 (5)花瓣形成期萼片原始体伸长,其内侧基部产生新的突起,即花瓣原始体。 (6)雄蕊形成期花瓣原始体内侧基部产生新的突起,即雄蕊原始体。 (7)雌蕊形成期花蕾原始体中心基部产生突起,即雌蕊原始体。 四、作业 绘制观察到的苹果的花芽切片图,并注明分化时期及花器各部名称

高等植物花芽分化机理研究进展

第28卷 第2期 经济林研究 V o l.28 No.2 2010年6月Nonwood F orest Research Jun.2010 高等植物花芽分化机理研究进展 郜爱玲,李建安,刘 儒,何志祥,孙 颖 (中南林业科技大学经济林育种与栽培国家林业局重点实验室,湖南长沙410004) 摘 要: 花芽分化是一个高度复杂的生理生化和形态发生过程,是植物体内各种因素共同作用、相互协调的结果。 了解植物花芽分化的机理对于制定合理的栽培措施进行花期调控,缩短果树童期,加速植物的育种进程,实现植物的遗传调控具有重要意义。对近年来高等植物花芽分化机理研究的主要进展进行了综述,包括花芽分化与环境因素、植物激素的关系,与激素有关的花芽分化机理假说及花芽分化的分子机理等方面的内容。 关键词: 高等植物;花芽分化;机理;分子遗传学 中图分类号: Q943文献标志码: A文章编号: 1003-8981(2010)02-0131-06 Advances in research on flower bud differentiation mechanism in higher plants G A O A i ling,L I Jian an,L IU R u,HE Zhi x iang,SU N Y ing (T he key Lab of N on w ood Fo rest P roducts o f Fo restry M inistr y,Central South U niversity of Fo restry&T echnolo gy,Chang sha410004,Hunan,China) Abstract:Flow er bud differentiation is a highly co mplex bio chemical and physiolog ical mor pho genesis pro cess,w hich is the r esult of all kinds of factor s interacting and coo rdinating tog et her in plants.U nderstanding the mechanism of flow er bud differentiatio n of plants has g reat significance fo r making reasonable measures contr ol flo wer ing,shor tening the fr uit trees child stag e,speeding up process o f breeding and achiev ing genetic reg ulatio n of plants.Advances in research on hig her plant flo wer bud differ ent iatio n mechanism w ere r eview ed,including relationship betw eenit and env iro nmental facto rs,relat ionship betw een it and plant hor mones,flow er bud differentiatio n mechanism hy po theses relat ed to ho rmones,mo lecular mechanism of flo wer bud differentiatio n,and so o n. Key words:higher plants;flow er bud differentiat ion;mechanism;molecular g enetics 开花是高等植物生活史上的一个质变过程,是植物生殖发育过程中最重要的标志。植物生长到一定阶段便由叶芽生理和组织状态转化为花芽生理和组织状态,发育成花器官雏形,这个过程称作花芽分化(flow er bud differentiation)。花芽分化是有花植物发育中最为关键的阶段。近年来,分子生物学的发展,为花芽分化机理的研究开辟了新的途径,提供了新的方法,打破了花芽分化机理研究长期徘徊不前的局面,极大地推动了花芽分化机理的研究。本文中就近10多年来花芽分化机理研究的主要进展进行了综述,以期为更好地研究植物花芽分化机理及其调控机制提供参考。 收稿日期:2010 01 20 基金项目:国家自然科学基金项目油桐成花机理及其对激素信号的分子应答!(30671710)。 作者简介:郜爱玲(1972-),女,河南焦作人。硕士研究生,研究方向:经济林栽培育种。 通讯作者:李建安(1964-),男,湖南茶陵人。教授,博士,博士研究生导师,主要从事经济林培育与林木生物技术方面的研究。 E mail:lja0733@https://www.wendangku.net/doc/581159463.html,。

花芽分化

图1-1 番茄花芽0级图1-2 番茄花芽1级图1-3 番茄花芽2级 图1-4 番茄花芽3级图1-4 番茄花芽4级 图2-1 茄子花芽0级图2-2 茄子花芽1级图2-3 茄子花芽2级图2-4 茄子花芽3级图2-5 茄子花芽4级 花冠 花萼 雌蕊 雄蕊 花萼原基 花冠原基 雄蕊原基 雌蕊原基 花萼 花冠 雄蕊 雌蕊 花萼原基 雄蕊原基 雌蕊原基 花冠原基

图3-1 辣椒花芽0级 图3-2 辣椒花芽1级 图3-3 辣椒花芽2级 图3-4 辣椒花芽3级 图3-5 辣椒花芽4级 图4-1黄瓜花芽分化0级 图4-2黄瓜花芽分化1级 图4-3黄瓜花芽分化2级 图4-4-1 黄瓜雄花花芽3级 图4-5-1 黄瓜雄花花芽4级 花萼原基 雄蕊原基 雌蕊原基 花冠原基 花萼 花冠 雄蕊 雌蕊 雄蕊原基 花萼 花冠 雄蕊 花冠原基 花萼原基

图4-4-2 黄瓜雌花花芽3级图4-5-2 黄瓜雌花花芽4级 图5-1 南瓜花芽分化0级图5-2 南瓜花芽分化1级图5-3 南瓜花芽分化2级 3.结果与分析 3.1番茄的花芽分化 番茄子叶期开始为花芽分化0级特征如图1-1,之后出现1级特征如图1-2,而在两片真叶时期出现2级特征见图1-3,在达到肉眼可见的小花蕾的时候达到3级见图1-4,而大花蕾则彰显的番茄花芽进入发育的4级状态见图1-5,详细分布见表1。 3.2茄子的花芽分化 茄子子叶期有花芽0级特征见图2-1,而出现一片真叶时出现1级特征见图2-2,之后部分出现2级特征见图2-3,而出现肉眼可见小花蕾时即为出现3级特征见图2-4,而大花蕾即有明显的4级特征见图2-5,详细分布见表1。 3.3辣椒的花芽分化 辣椒子叶期展现花芽0级见图3-1,之后在子叶期未出现真叶时出现1级特征见图3-2,当出现四片真叶时达到2级特征见图3-3,出现肉眼可见小花蕾程度时出现3级特征见图3-4,而成长到大花蕾时即为出现4级特征见图3-5,详细分布见表1。 花萼 花冠 雌蕊 花萼原基 花冠原基 雌蕊原基

细胞培养基种类及用途

基础细胞培养基通常指基础合成培养基,主要成分为氨基酸、维生素、碳水化合物、无机盐、辅助物质(核酸降解物、氧化还原剂等)。 据不同细胞和研究目的,选用合适培养基,?还可补加新成分。?如杂交瘤中常用DMEM加丙酮酸钠、2-巯基乙醇(相当于胎牛血清可透析组分的作用)。 合成培养基使用时加5-30%血清。 1. 199细胞培养基及其改良品种 1950年Morgan等设计,除BSS外,含有53种成分,为全面培养基,广用于各类细胞培养,广泛用于病毒学、疫苗生产。 2. BME细胞培养基 基础Eagle培养基(Basal Medium Eagle),1955年Eagle设计,BSS+12种氨基酸+谷氨酰胺+8种维生素。简单、便于添加,适于各种传代细胞系和特殊研究用,在此基础上改良的细胞培养基品种有MEM、DMEM、IMEM等。 3. MEM细胞培养基 低限量Eagle培养基(Minimal Essential Medium),1959年修改,删去赖氨酸、生物素,氨基酸浓度增加,适合多种细胞单层生长,有可高压灭菌品种,是一种最基本、试用范围最广的培养基,但因其营养成分所限,针对生产之特定细胞培养与表达时,并不一定是使用效果最佳或者最经济的培养基。 4. DMEM细胞培养基及其改良品种 DMEM由Dulbecco改良的Eagle培养基,各成份量加倍,分低糖(1000mg/L)、高糖(4500mg/L)。生长快,附着稍差肿瘤细胞、克隆培养用高糖效果较好,常用杂交瘤的骨髓瘤细胞和DNA转染的转化细胞培养。例如CHO细胞表达生产乙肝疫苗、CHO细胞表达EPO。 5. IMEM细胞培养基 IMEM由Iscove's改良的Eagle培养基,增加了几种氨基酸和胱氨酸量。 6. RPMI-1640细胞培养基 Moore等人于1967年在Roswell Park Memorial Institute研制,针对淋巴细胞培养设计,BSS+21种氨基酸+维生素11种等,广泛适于许多种正常细胞和肿瘤细胞,也用做悬浮细胞培养 7.Fischer’s细胞培养基 用于白血病微粒细胞培养。 8. HamF10、F12细胞培养基 1963年、1969年Ham设计,含微量元素,可在血清含量低时用,适用于克隆化培养。F10适用于仓鼠、人二倍体细胞,特适于羊水细胞培养。 9. DMEM/F12细胞培养基 DMEM和F12细胞培养基按照1:1比例混合效果最佳,营养成分丰富,且可以使用较少血清,或作为无血清培养基的基础培养基。 10. McCoy5A培养基 1959年MeCoy为肉瘤细胞设计,

植物花芽分化生理

专题一植物花芽分化生理 一、植物花芽分化机理(学说) 二、植物花芽分化研究进展 ●花芽分化是有花植物发育中最为关键的阶段,同时也是一个复杂的形态建成过程。这一过程是在植物体内外因子的共同作用和相互协调下完成。 ●了解植物花芽分化的机理对于制定合理的栽培措施、进行花期调控等具有重要意义。 ●通常情况下,植物生长到一定阶段后便由叶芽生理和组织状态转变为花芽生理和组织状态,然后发育成花器官原基雏形,此过程称之为花芽分化。 ●由于花芽分化对植物开花的数量、质量以及坐果率都有直接影响,进而影响产量。因此,对植物花芽分化的生理生化研究极具理论和现实意义。 一、植物花芽分化机理(学说) ●1、花芽分化的临界节数学说 ●苹果的花芽是一个带有21个叶状物的短缩枝轴,其上由下而上螺旋状地排列着9片鳞片,3片过渡叶,6片真叶和3片苞叶,花原基着生于顶端及其下苞叶和远轴真叶的叶腋中(图1-6)。 ●苹果花芽分化取决于芽轴上相邻叶原基形成的间隔时间——间隔期。 ●苹果的芽只有达到一定的临界节数后,梢尖及其下的叶腋中才有可能开始成花诱导。 ●临界节数具有品种特征,如苹果品种橘苹为20节,金冠为16节。 ●在果树生产实践中,一方面可以看到充实饱满芽的中轴上产生的节数通常较多,也容易成花; 但另一方面,象苹果和梨等树种的腋花芽,其成花的临界节数也仅需8-10节,与顶花芽迥异。 因此,关于成花临界节数的理论,尚待重新认识和研讨,特别在不同树种方面更是如此。 2、碳氮比学说和蛋白质成花学说 ●Klebs(1903、1918)最早提出,只有当植物体内碳水化合物的积累比含氮化合物在数量上占优势时,植物才开始开花。 ●Kraus和Kraybill(1918)通过对番茄的研究提出了著名的碳氮比学说,即营养生长的强度和花芽的形成取决于碳水化合物与氮的数量之比。 ●该学说提出后获得了广泛的支持。1920-1940年期间,不少人即以果树为试材验证碳氮比(C/N)学说的正确性,运用了遮光、摘叶、修剪和施氮等措施作为处理,结果如图1-7和表1-2。 总结: ●碳水化合物既是结构物质又是能量提供者,它的积累与花芽分化密切相关,对此人们做了大量研究工作。 ●李天红的试验表明,虽然碳水化合物对红富士苹果花芽孕育的启动影响较小,但是它对花芽形成的质量起到重要作用。 ●吴月燕研究了葡萄叶片中碳水化合物的变化对花芽分化的影响,结果表明,花芽分化进度与可溶性糖、蔗糖含量呈极显著正相关,与果糖含量呈显著正相关,叶片中的淀粉积累有利于花芽分化,叶片的淀粉含量与花芽分化呈显著正相关。 3、花芽分化的激素平衡学说 ●试验1:将苹果幼果挖去果心和种子,结果这种果实经手术后生长基本正常,并在同一短枝上形成花芽。 ●若在挖去果心和种子的空腔内加入0.1%的2,4-D羊毛脂软膏,则在同一短枝上就不会再有花芽发生。 ●由此推想,在自然发育的胚中能产生一种激素,可以阻止该短枝上花芽的形成。 ●试验2:无子果实的结实作用对翌年短枝的开花没有任何影响。 ●试验3:在花后不同时期的疏果试验中也证明苹果种子的发育抑制花芽的形成,并主要发生在受精5周以后。 ●结论:果实发育对花芽形成的限制因子不是营养竞争所致,而是由种子所产生的某种激素。 ●这类激素主要是赤霉素类的物质,尤其是GA4+7,并被称为“抑花激素”。

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工业应用的目的留在脑海里。 一.发酵培养基的成分 现代分离的微生物绝大部分是异养型微生物,它需要碳水化合物、蛋白质和前体等物质提供能量和构成特定产物的需要。其营养物质一般包括碳源、氮源(有机氮源、无机氮源)、无机盐及微量元素、生长因子、前体、产物促进和抑制剂等。另外,在设计培养基时还必须把经济问题和原材料的供应问题等因素一起考虑在内。 此外,还要考虑所筛选的菌种来源的地点环境,比如本实验室长期从事红树林微生物的分离及其研究工作,红树林的环境处于海洋与陆地之间,所以配制培养基所用的水除了一般的去离子水外还包括陈海水。 如果在知道产物结构或者产物合成途径的情况下,我们可以有意识地加入构成产物和合成途径中所需的特定结构物质。我们也可以结合某一菌株的特定代谢途径,加入阻遏或者促进物质,使目的产物过量合成。例如青霉素的合成会受到赖氨酸的强烈抑制,而赖氨酸合成的前体α-氨基已二酸可以缓解赖氨酸的抑制作用,并能刺激赖氨酸的合成。这是因为α-氨基已二酸是合成青霉素和赖氨酸的共同前体。如果赖氨酸过量,它就会抑制这个反应途径中的第一个酶,减少α-氨基已二酸的产量,从而进一步影响青霉素的合成。 二.发酵培养基的设计和优化 由于发酵培养基成份众多,且各因素常存在交互作用,很难建立理论模型;另外,由于测量数据常包含较大的误差,也影响了培养基优化过程的准确评估,因此培养基优化工作的量大且复杂。许多实验技术和方法都在发酵培养基优化上得到应用,如:生物模型、单次试验、全因子法、部分因子法、PlackettandBurman法等。但每一种实验设计都有它的优点和缺点,不可能只用一种试验设计来完成所有的工作。 1.单次单因子法 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题:

迎春桃花花芽分化观察

第33 卷第2 期佛山科学技术学院学报(自然科学版)V o l. 33 N o. 2 2015年3月Journal of Foshan University (Natural Sciences Edition)Mar. 2015 文章编号:1008-0171(2015)03-0018-04 迎春桃花花芽分化观察 任敬民,文素珍,聂呈荣,吕慧,王剑飞 (佛山科学技术学院园林系,广东佛山528231) 摘要:以南方观赏桃花的花芽为材料,通过植物冰冻切片的方法系统地对花芽分化进行切片观察,以得到“茶中红”花芽在分化时期的形态变化图像。结果显示:桃花花芽分化时期主要集中于9月中下旬至12月上旬,历时大约2个多月。茶中红桃花花芽形态分化主要分为未分化时期,花芽分化初期,萼片分化期,花瓣分化期,雄蕊分化期,雌蕊分化期六个时期。分化初期共37 d,花萼分化期共21 d,花瓣的形成期共20 d,雄蕊分化期7 d,雌蕊在12月1号之后全部形成。 关键词:桃花;花芽;分化;切片 中图分类号:文献标志码:A 买枝桃花过新年是独特的传统岭南民俗,故迎春桃花是广州的春节“圣诞树”,是年宵花市人们必选的传统花卉之一。随着人们的生活水平不断提高,近年来在珠江三角洲和港澳地区盛行的迎春花市开始向内陆地区渗透,现今在上海、北京、大连等大中城市买枝桃花、买盆金桔过新年也不是什么新鲜事。人们的生活质量提高了,迎春花市开始在全国悄然流行了,桃花的需求市场不断扩大,无疑给迎春桃花的生产带来更大的发展机遇和空间。 桃(Prunus Persica)依果实品质及花、叶的观赏特性,将桃树分为果桃和观赏桃两大类,园林上最早用的是果桃[1]。一直以来,各种研究都集中在果桃上面。观赏桃大多数是我国的地方品种资源,相对其它观赏树种(梅花、杜鹃等)或果桃,对其系统研究的报道尚少。20世纪80年代之前观赏桃还只是作为种质资源被保存[2]。迎春桃花又隶属于观赏桃,是在狭窄的岭南气候条件下形成的独特品种,单列对其研究尚未见报道。对迎春桃花的花芽分化进行观察,以期掌握花芽分化的规律,为广东气候条件下的迎春桃花的花期调控、栽培、育种等提供科学依据。 1材料与方法 试验在年佛山科学技术学院园艺基地进行。供试品种为迎春桃花“茶中红”品种。在2012年7至12月,每次取芽50个,每星期取芽一次。取芽后迅速剥去鳞片,F.A.A固定液固定,然后用Leica1850型恒冷冰冻切片机切片[3],切片厚度12~16μm;利用NIKON ECLIPSE E400电子显微镜,4×10倍数观察切片,找寻需要的目标区域与目标细胞,观察并拍照记载。 收稿日期:2015-01-16 基金项目:广东省科技计划项目(2010B020305015) 作者简介:任敬民(1966-),男,湖南汨罗人,佛山科学技术学院副教授。

培养基设计与优化

培养基的设计与优化 原料:碳源,氮源 十大元素: 碳, 氢, 氧, 氮, 磷, 钾, 硫, 钙, 镁 微量元素: 硼, 锰, 锌, 钼, 钴, 碘, 铜, 等 生长因子、前体和产物促进剂 生长因子 从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子。如以糖质原料为碳源的谷氨酸生产菌均为生物素缺陷型,以生物素为生长因子,生长因子对发酵的调控起到重要的作用。有机氮源是这些生长因子的重要来源,多数有机氮源含有较多的B簇维生素和微量元素及一些微生物生长不可缺少的生长因子。 前体 前体指某些化合物加入到发酵培养基中,能直接为微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。产物促进剂 指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂。其提高产量的机制还不完全清楚,其原因可能是多方面的,主要包括:有些促进剂本身是酶的诱导物;有些促进剂是表面活性剂,可改善细胞的透性,改善细胞与氧的接触从而促进酶的分泌与生产,也有人认为表面活性剂对酶的表面失活有保护作用;有些促进剂的作用是沉淀或螯合有害的重金属离子。 水 对于发酵工厂来说,恒定的水源是至关重要的,因为在不同水源中存在的各种因素对微生物发酵代谢影响甚大。水源质量的主要考虑参数包括pH值、溶解氧、可溶性固体、污染程度以及矿物质组成和含量。 培养基的设计与优化 目前还不能完全从生化反应的基本原理来推断和计算出适合某一菌种的培养基配方,只能用生物化学、细胞生物学、微生物学等的基本理论,参照前人所使用的较适合某一类菌种的经验配方,再结合所用菌种和产品的特性,采用摇瓶、玻璃罐等小型发酵设备,按照一定的实验设计和实验方法选择出较为适合的培养基。 培养基设计的基本步骤是: 1.根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分. 2.通过单因子实验最终确定出最为适宜的培养基成分。 3.当培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方法。这些实验往往基于多因子实验,包含均匀设计、正交实验设计、响应面分析等。

草莓花芽分化研究进展

草莓花芽分化研究进展 摘要:概述了花芽分化机理的5种假说,综述了在草莓花芽分化研究方面所取得的最新研究进展,提出了草莓花芽分化研究中存在的不足借鉴其他园艺作物花芽分化所取得的研究成果展望了草莓花芽分化今后的研究方向。 草莓的生产周期短、见效快、收益高,且含有丰富的蛋白质和维生素素有“水果皇后”的美誉深受生产者,消费者青睐。随着农村产业结构的调整和人民生活水平的不断提高,市场对草莓提出了成熟期早、结果期长、品质优的新要求,而目前生产上设施草莓上市期一般为12月下旬至翌年1月上旬,1月底前的早期果产量较低,这制约了大棚草莓经济效益的进一步提高,因此在培育早发壮苗的基础上积极采取促进花芽分化的技术是草莓提早成熟以及产量和品质提高的必要措施。花芽分化是有花植物发育的关键阶段,是一个较为复杂的形态建成的过程是在植物体内外因子的共同作用和相互协调下完成的,因此影响花芽分化的因素也很多。除外界因素以外,影响花芽分化的内因也极其复杂,其中内源激素是花芽分化的关键养分是花芽分化的基础,基因表达是花芽分化的途径。 本文旨在概述花芽分化机理假说的基础上,综述近十几年来人们在促进草莓花芽分化研究方面所取得的主要进展并借鉴其他园艺作物中花芽分化的研究成果,以期为研究草莓花芽分化机理及其调控机制提供参考。 1 花芽分化机理假说 1.1 营养假说 1977年Sachs 提出了营养假说,即生长点内部不同组织所获得的营养差异决定花芽的形成与否,当中心分生组织获得较多的养分供应时,则转向花芽分化方向发育。 1.2 碳氮比理论 Klebes提出了开花的碳氮比理论,认为植物体内氮化合物与同化糖类含量的比例是决定花芽和分化的关键,当碳占优势时,花芽分化受促进;当氮占优势时营养生长受到促进但高含量的碳水化合物不是成花的唯一决定因子。 1.3 基因表达假说 Bernier等[5]提出了基因表达假说:花的形成受多种相互交叉的途径控制不同的成花诱导刺激可以启动不同的成花基因,只要有一条途径畅通,那么花芽分化就能启动。 1.4 激素平衡假说激素平衡假说人们在长期研究花芽孕育同激素的关系时发现,花芽孕育是各种激素在时间空间上的相互作用而产生的综合结果该假说提出了花芽孕育所需的条件或激素环境,在理论和实践上都具有重要的意义。 1.5 激素信号调节假说激素信号调节假说正在发育的果实种子所输出的激素是果树花芽分化的信使,而否定了前人所提出的碳、氮化合物对果树花芽分化起决定作用的假说但该假说也有一定的局限性如它仅涉及正在发育果实的种子,而未包括旺盛营养生长的梢尖输出的激素信号 2 草莓花芽分化的影响因素 2.1 外界因子对草莓花芽分化的影响 2.1.1 温度和光照目前,温度和光照对草莓花芽分化的影响研究较多[8-10]。一般认为,草莓花芽分化的温度为5~27℃,适宜温度为10~20℃,平均为15℃;5℃以下时花芽分化停止,高温和低温对花芽分化均有抑制作用。叶少平等[11]研究表明:草莓薄层水耕栽培采用液冷装置对幼苗进行低温、黑暗处理以促进花芽分化,实现了10月初开始采收的超促成早熟栽培。Manakasem等[12]认为,短日照品种在长日照下花芽分化受到抑制,

观赏植物的花芽分化

《观赏植物花期控制》教案

第一课时4、花芽分化应具备的条件:(植物芽顶端分生组织的三个发育阶段) ①一定的营养生长阶段 花芽分化是要有一定的条件的:那我们依旧从花的生长发育阶段来看,种 子在发芽后需要经历一个营养生长阶段才能进入生殖生长,若不经过一定 的营养生长,即使在适宜开花的条件下也不能开花,通常把这种状态叫做 童期。在具有开花能力之前的发育阶段。幼年期的长短,因植物类型的不同存 在很大差异。例如,日本牵牛、油菜等,几乎没有幼年期,萌发后2~3天, 就可感受外界因素——光周期的影响,诱导花芽分化。大多数植物都有相 当长的幼年期。特别是树木,幼年期可达几年(桃三杏四梨五年,枣树当 年就换钱) ②进入花熟期:指植物可进行花芽分化的年龄。(成年营养生长期) 营养生长是一个基础,但仅有营养生长还不够,植物在要想进行花芽分化, 还需要达到一种可以进行花芽分化的状态,然后才可感受外界条件而进行 花芽分化,那也就是进入花熟期。它与幼年期的区别是具有花芽分化能力。 ③花芽诱导期 ④诱导条件 5、总结:这一全过程由花芽分化前的诱导阶段及之后的花序与花分化的具 体进程所组成。一般花芽分化可分为生理分化、形态分化两个阶段。生理 分化期先于形态分化期1个月左右 生理分化期 形态分化期 6、花芽形态分化类型 7、花芽可分两种类型:纯花芽和混合花芽。 8、花芽分化的类型 3.1生理分化 导入:生理分化期是控制分化的关键时期,因此也称“花芽分化临界期”。 3.1.1 遗传物质的变化 1、遗传物质、DNA 2、遗传物质变化过程 总结:观赏植物花芽的形成过程实际上就是DNA—RAN—蛋白质,这一遗 传信息传递转化的过程的最终结果 如何启动 ①指令细胞的作用(P35) ②开花刺激物:开花刺激物的作用可能活化了开花基因,从而生产花原基 发端所必需的mRNA等物质,但这仅是一个设想,其作用过程并不清楚, RNA、蛋白质的产生于开花的相互联系还缺少确凿的证据,即使从分子生 物学的途径探究出花芽分化的分子基础,但是这在很长一段时间内对于了 解植物体开花的宏观过程还会有着一定的距离,因为分子生物学所解决的 幻灯片

什么是花芽分化

常听人说花芽分化,到底什么是花芽分化呢? 柑橘花芽分化是指柑橘由营养生长过度到生殖生长的转折点,他开始于芽的原始体出现,结束于芽的雌雄蕊的形成。 一、柑橘花芽分化的过程 柑橘花芽从叶芽转化为花芽,从花器官完全分化为止,这段时期称为花芽分化期 花芽分化期一般分为生理分化期和形态分化期 生理分化期 生理分化期先于形态分化期一个月左右,积累形成花芽的营养物质、激素调节物质,遗传物质等,这时叶芽生长点组织(芽眼)尚未发生形态变化 形态分化期 生理分化期完成后,生长点组织(芽眼)形态开始发生变化,逐渐可以区分出花芽和叶芽,就进入了花芽的形态分化期 二、花芽分化的进化机理 一般柑橘营养生长到一定程度,就开花结果,但也有隔年开花,及几年不开花或一年开两次花的,是什么因素决定开花呢,一个芽决定开花还是出叶(花芽还是叶芽),其内部变化是怎样?了解掌握柑橘成花的机理问题,人工就可以创造条件控制开花和出叶的数量,克服隔年结果,保证连年高产 这里简略介绍几种比较流行的花芽分化机理 1、营养物质总量与花芽分化 2、一个芽开花还是长叶,主要取决于芽及枝条碳水化合物储藏的多少,决定于开花的不是碳水化合物的绝对量而是相对量。 3、高含量的碳水化合物(及光合产物)并不一定促使柑橘成花,必须是碳水化合物比无机物占优势时,才可以开花,相反,氮占优势则出芽,即所谓的碳氮比。 4、促进柑橘开花。往往采取环割,圈枝(除去木质部5cm表皮用黄泥保果外套塑料袋)。结扎(停止果树生长,但是不想让他枯死,就是给果树结扎的意思),或控水、断根等办法,这就是增加地上部分碳水化合物积累,减少地下部分对水分和氮的吸收两个方面来增加碳水化合物的比值(比如,我们要一杯水变甜,有两个办法,一个是多放一些糖,另一个是少放一些水,前者相当于环割,圈枝,结扎促进开花的原因,而后者是利用控水、断根等促进开花) 5、氮:足够的氮素营养可促进多种果树花芽分化,增加木质部汁液中细胞分裂素含量,但大量施氮,会导致徒长,赤霉素(植物激素:刺激叶和芽的生长,植物各部分的赤霉素含量不同,种子里最丰富,特别是在成熟期)含量上升,抑制成花,不利于花芽分化。 6、磷:树体中有效磷水平在很大程度上调控着果树的花芽分化,能够促进花芽形成。(能量元素,植物运转的动力,过量会导致早熟) 7、钾:钾是光合作用过程的重要物质,而光合产物的含量是影响柑橘花芽的主要原因,另一方面,钾元素提高影响着激素水平,树体缺钾有类似于赤霉素的抑花作用。 在柑橘芽生理分化期前,喷施锌、钼、硼、镁钙等营养元素能促进成花,增加结果母枝的数量,因此,各种营养物质可通过不同相互作用,影响柑橘生长发育过程。 三、内源激素与花芽分化 上面我们讲了柑橘树体的营养水平和女物质代谢方面与花芽分化的关系,但是,是什么机制来控制物质代谢呢?这其中与植物内源激素密切相关! 1、细胞分裂素 细胞分裂素对花芽孕育起促进作用,自柑橘花芽分化期,柑橘花芽内细胞分裂素的水平逐渐增加,在形态分化初期达到最高水平。

培养基优化设计

课程设计说明书 课程名称:新编生物工艺学 设计题目: 培养基优化设计 院系:生物与食品工程学院 学生姓名: 学号:200806040035 专业班级:08生物技术 指导教师:关现军 2011 年6月3 日

课程设计任务书

目录 1.摘要··页码 2.关键字··页码 3.设计背景·页码 3.1培养基简介··页码 3.2培养基优化设计的重用意义··页码 4 设计方案·页码 4.1原材料制备··页码 4.2菌种的选择··页码 4.3营养因子的比例设··页码 4.4理化条件控制··页码 4.5总工艺流程列叙··页码 5 预期结果··页码 6 方案实施时可能出现的问题与对策·页码 7 设计感受··页码 7.1 关于本方案··页码 7.2 关于自我··页码 8参考文献··页码 .

1 摘要 以改良MRS发酵培养基为墓础,选择玉米浆、牛肉膏、乳糖、番茄汁、际蛋白陈等7个营养因子增菌培养乳酸菌进行优化。利用L8(2的7次方)正交实验,优化出培养墓营养因子最佳组成是:玉米浆3%、牛肉膏1%、乳糖1%。研究结果表明,嗜酸乳杆菌、嗜热链球菌、保加利亚乳杆菌、嗜酸乳酸菌,在优化后的MRS培养基发酵液中,37℃培养20h,菌落数均高于原MRS培养基发酵液的菌落数,达到1护cumL以上,乳酸菌发酵液得到了浓缩,大大降低了乳酸菌发酵培养墓的成本,原料成本降低了约40%,同时使菌种数量达到最大。 2 关键字 乳酸菌,营养因子,优化培养,最大产菌 3. 设计背景 3.1乳酸菌培养基简介 乳酸菌工业产品为菌体本身细胞,因而设计出能增菌的培养基在工业上具有重要意义。设计选用工业上佳美低廉的原料,便于降低成本,也有利于降低菌种的适应期,利于增值。 乳酸菌增菌液配方设计中因营养要求复杂,影响生长的因素多,在实际工作中还应做其他条件的优化,如增菌液氧化还原电势、pH值、温度等,因工作量大而时间有限,只能对配方作初步的优化设计。为了降低生产成本,在工业应用时可选用乳清和脱脂乳经蛋白酶水解,用以提高增菌效果,再加入乳糖、啤酒酵母的自溶水解物,在发酵罐内完成乳酸

培养基的制作

第 3 单元(Unit)第 3 周(Week) 6 学时(Periods) 单元标题(Title): 培养基的制作 教学地点(Place):育贤阁 教学目标(Teaching Target): 1.熟悉培养基的成分及作用 2.掌握母液和培养基的配制 教学方法(Teaching Approaches): 讲授法、项目教学法、提问 教学材料及工具(Teaching Materials & Aids): 教案、教材、ppt、组培苗 考核与评价方式(Testing & Evaluating Mode): 考勤、提问、作业

任务一培养基的配制 培养基(culture medium)是植物组织培养的重要基质。在离体培养条件下,不同种植物的组织对营养有不同的要求,甚至同一种植物不同部位的组织对营养的要求也不相同,只有满足了它们各自的特殊要求,它们才能很好地生长。因此,没有一种培养基能够适合一切类型的植物组织或器官,在建立一项新的培养系统时,首先必须找到一合适的培养基,培养才有可能成功。在植物组织培养历史进程中,事实上也紧密地伴随着培养基的研制史。对植物的营养要求的不断认识,对已有培养基的改进,或者将新发现的植物激素、新的有益成分应用于培养基之中,都大大促进了组织培养研究的迅速发展,取得越来越多的成功。 一、培养基的成分 培养基的成分主要可以分水、无机盐、有机物、天然复合物、培养体的支持材料等五大类。 1.水 水是植物原生质体的组成成分,也是一切代谢过程的介质和溶媒。它是生命活动过程中不可缺少的物质。配制培养基母液时要用蒸馏水,以保持母液及培养基成分的精确性,防止贮藏过程发霉变质'大规模生产时可用自来水。但在少量研究上尽量用蒸馏水,以防成分的变化引起不良效果。 2.无机元素(inorganicelement) 大量元素,指浓度大于0.5mmol/L的元素,有N,P,K,Ca,Mg,S等。其作用是: (1) N 是蛋白质、酶、叶绿素、维生素、核酸、磷脂、生物碱等的组成成分,是生命不可缺少的物质。在制备培养基时以N03-N和NH4-N两种形式供应。大多数培养基既含有NO,-N又含NH4-N。NH4-N对植物生长较为有利。供应的物质有KN03、NH4NO3等。有时,也添加氨基酸来补充氮素。 (2) P 是磷脂的主要成分。而磷脂又是原生质、细胞核的重要组成部分。磷也是ATP、ADP等的组成成分。在植物组织培养过程中,向培养基内添加磷,不仅增加养分、提供能量,而且也促进对N的吸收,增加蛋白质在植物体中的积累。常用的物质有KH2P04或NaH2P04等。 (3) K 对碳水化合物合成、转移、以及氮素代谢等有密切关系。K增加时,蛋白质合成增加,维管束、纤维组织发达,对胚的分化有促进作用。但浓度不易过大,一般为1-3mg /L为好。制备培养基时,常以KCl、KNO,等盐类提供。 (4) Mg、S和Ca、Mg 是叶绿素的组成成分,又是激酶的活化剂;S是含S氨基酸和蛋白质的组成成分。它们常以MgS04·7H20提供。用量为1~3mg/L较为适宜;Ca 是构成细胞壁的一种成分,Ca对细胞分裂、保护质膜不受破坏有显著作用,常以 CaCl2·2H20提供。 (5) 微量元素指小于0.5mmol/L的元素,Fe,B,Mn,Cu,Mo,Co等。铁是一些氧化酶、细胞色素氧化酶、过氧化氢酶等的组成成分。同时,它又是叶绿素形成的必要条件。培养基中的铁对胚的形成、芽的分化和幼苗转绿有促进作用。在制做培养基时不用Fe2(S04)3和FeCl3(因其在pH值5.2以上,易形成Fe(OH),的不溶性沉淀),而用

设计培养基注意事项

设计培养基注意事项 (一)四个原则 1.目的明确在设计新培养基前,首先要明确配制该培养基的目的,例如,要培养何菌?获何产物?用于实验室作科学研究还是用于大规模的发酵生产?作生产中的“种子”,还是用于发酵?等等。 如果某培养基将用于实验室研究,则一般不必过多地计较其成本。但必须明确对该培养基是作一般培养用,还是作精细的生理、代谢或遗传等研究用。如属前者,可尽量按天然培养基的要求来设计,如系后者,则主要应考虑设计一种组合培养基(即“合成培养基”,详后)。拟培养的微生物对象也十分重要。不同大类的微生物,对培养基中碳源与氮源间的比例、pH的高低、渗透压的大小、生长因子的有无以及特殊成分的添加等都要作相应的考虑。 如果某培养基将用于大规模的发酵生产上,则用作“种子”的培养基,一般其营养成分宜丰富些,尤其氮源的含量应较高(即C/N比低);相反,如拟用作大量生产代谢产物的发酵培养基,则从总体来说,它的氮源含量宜比“种子”培养基稍低(即C/N比高)。除了对不同类型的微生物应考虑其特定条件外,在设计发酵培养基时,还应特别考虑到生产的代谢产物是主流代谢产物,或是次生代谢产物。如属主流代谢产物(一般指通过主要代谢途径产生的那些结构较简单、产量较高、价值较低的降解产物),则生产不含氮的有机酸或醇类时,培养基中所含的碳源比例自然要比生产含氮的氨基酸类产物时高,反之,生产氨基酸类含氮量高的代谢产物时,氮源的比例就应高些。如属生产次生代谢产物(一般是指通过复杂合成途径产生的那些结构复杂、产量低、价值高的合成产物),例如抗生素、维生素或赤霉素等,则还要考虑是否在其中加入特殊元素(如维生素B12中的Co)或特定前体物质(如生产苄青霉素时加入的苯乙酸)。

培养基设计方法

微生物发酵培养基的优化方法 作者:余继叁中国热带农业科学院热带生物技术研究所 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步[2]。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)[7]。设计发酵培养基时还应时刻把工业应用的目的留在脑海里[22]。 1 发酵培养基的成分 现代分离的微生物绝大部分是异养型微生物,它需要碳水化合物、蛋白质和前体等物质提供能量和构成特定产物的需要[2]。其营养物质一般包括碳源、氮源(有机氮源、无机氮源)、无机盐及微量元素、生长因子、前体、产物促进和抑制剂等。另外,在设计培养基时还必须把经济问题和原材料的供应问题等因素一起考虑在内[6]。 此外,还要考虑所筛选的菌种来源的地点环境,比如本实验室长期从事红树林微生物的分离及其研究工作,红树林的环境处于海洋与陆地之间,所以配制培养基所用的水除了 一般的去离子水外还包括陈海水。 如果在知道产物结构或者产物合成途径的情况下,我们可以有意识地加入构成产物和合成途径中所需的特定结构物质。我们也可以结合某一菌株的特定代谢途径,加入阻遏或者促进物质,使目的产物过量合成。例如青霉素的合成会受到赖氨酸的强烈抑制,而赖氨酸合成的前体α-氨基已二酸可以缓解赖氨酸的抑制作用,并能刺激赖氨酸的合成。这是因为α-氨基已二酸是合成青霉素和赖氨酸的共同前体。如果赖氨酸过量,它就会抑制这个反应途径中的第一个酶,减少α-氨基已二酸的产量,从而进一步影响青霉素的合成。 2发酵培养基的设计和优化 由于发酵培养基成份众多,且各因素常存在交互作用,很难建立理论模型;另外,由于测量数据常包含较大的误差,也影响了培养基优化过程的准确评估,因此培养基优化工作的量大且复杂[8]。许多实验技术和方法都在发酵培养基优化上得到应用,如:生物模型(Biologicalmimicry)、单次试验(One at a time)、全因子法(Full factorial)、部分因子法(Partialfactorial)、Plackett andBurman法等。但每一种实验设计都有它的优点和缺点,不可能只用一种试验设计来完成所有的工作[22]。 2.1 单次单因子法

相关文档