文档库 最新最全的文档下载
当前位置:文档库 › 复变函数复习要点

复变函数复习要点

复变函数复习要点
复变函数复习要点

复变函数复习要点

第一章复习要点

1、熟悉复数的三种表示,熟练掌握复数基本运算(加、减、乘除、乘方、开方以及共轭运算)并熟悉其它们的几何意义;

2、熟练掌握直线和圆周的各种形式的复数方程;

3、熟练掌握用复数关系来表示平面点集,能画出复数关系表示的平面点集的草图,并能判断一个给定的平面点集是否区域,如果是区域还要能判定此区域是单连通区域还是多连通区域;

4、熟悉复变函数的三种表示(代数表示、极坐标表示、映射表示),熟练掌握复变函数极限和连续的定义以及复变函数极限、连续与其实部、虚部二元函数极限和连续的关系。

5、能准确地写出并证明复变函数极限和连续的基本性质(如:局部不等性、局部有界性等);掌握有界闭集上连续函数的整体性质(有界性、模函数的最值性、一致连续性)。

第二章复习要点

1、熟练掌握复变函数导数和微分的定义,复变函数导数的运算法则;

2、熟练掌握解析函数的定义(包括区域内解析、一点解析和闭区域上解析),熟悉复变函数在一点可导和解析的关系,以及复变函数在区域内解析(在闭区域上解析)与在点的解析的关系;熟练掌握解析函数的运算法则(包括四则运算、复合运算、逆运算);

3、熟练掌握复变函数可导和解析的充要条件以及利用实部、虚部两个二元函数的偏导数计算复变函数导数的计算公式,能利用充要条件准确判断给定的具体复变函数在平面上的可到性和解析性;熟悉复变函数可导和解析的柯西—黎曼条件,能熟练地运用柯西-黎曼条件解决解析函数为常函数的各种条件;

4、熟练掌握解析函数与其实部、虚部两个二元函数调和的关系,并能利用解析函数的实部或虚部,求出虚部或实部,从而求出解析函数;

5、熟悉常用的初等单值解析函数(如:常函数,多项式函数、有理函数,指数函数,三角函数,双曲函数);

6、熟悉讨论多值函数的基本方法(找支点,作支割线,将多值函数的各分支函数单值化),并熟练掌握幅角函数、对数函数、根式函数和一般幂函数的单值化方法;

7、熟悉幅角函数、对数函数、根式函数、一般幂函数的一般计算(即直接利用这些函数的结构表示来计算);

8、熟练幅角连续改变量的计算公式;熟练掌握幅角函数、对数函数、根式函数、一般幂函数的分支函数的已知初值求终值的公式,并能用这些公式正确计算相应的分支函数的函数值;

P z是多项式)的单值化方法(包括支点的确定方法,支割线的作法),

9、()

以及它的分支函数的已知初值求终值的公式。

第三章复习要点

1、熟悉复积分的定义,复积分与实部、虚部两个二元实函数的实积分的关系;

2、熟悉复积分的基本运算性质(线性性,曲线可加性,沿正向积分与负向积分的关系,估值性);

3、熟练掌握复积分的基本计算法(即参数方程法),熟练掌握复积分的牛顿—莱布尼茨公式;

4、熟悉柯西积分定理的三种常用形式(基本形式、推广形式、一般形式),并能熟练运用柯西积分定理简洁地计算某些复积分和某些实积分;能用柯西积分定理解决解析函数的原函数的存在问题;

5、熟悉几个典型积分的值(如:)

6、熟练掌握柯西积分公式,并能利用该公式简洁地计算某些复积分和实积分;

7、熟练掌握解析函数的无穷可微性(包括解析函数的高阶导数公式,以及利用高阶导数公式简洁计算某些复积分和实积分)和解析函数的积分定义法;

8、熟练掌握柯西不等式,并能用柯西不等式解决关于整函数的刘维尔定理;

9、掌握刘维尔定理以及刘维尔定理的应用(如判断整函数为常函数,证明代数学基本定理)。

第四章复习要点

1、能正确理解复级数收敛和发散以及绝对收敛、条件收敛等概念.掌握复级数收敛的必要条件(例如,通项的极限为零)和充要条件(例如,级数收敛的柯西收敛准则;复级数收敛与实、虚部级数收敛之间的关系),特别是复级数收敛与实、虚部级数收敛之间的关系,并能熟练地运用这种关系来讨论复级数的有关问题以及利用复级数来讨论实级数的有关问题。

例如:利用复级数的和求实级数的和的问题等,如利用

1

1n n q q

==

-∑, 其中1q <,i q re θ

=,求实级数

cos n

n r

n θ∞

=∑和1

sin sin n

n n n r n r n θθ∞

===∑∑,的和。

2、了解复级数绝对收敛与条件收敛,掌握收敛以及绝对收敛级数的若干性质,比如:收敛级数的线性性、添项减项性和添加括号性;绝对收敛级数的项的重排性、乘积性等;两指标级数,,1

n m

n m A

=∑的

求和法则,即在

,11

()n m

n m A

∞∞

==∑∑,,11

()n m m n A ∞∞

==∑∑以及

,,1

n m

n m A

=∑,

都是同号级数或至少有一个绝对收敛的条件下,有

,,,11

,1

11

()()n m

n m

n m n m n m m n A

A

A ∞∞

∞∞

======

=∑∑∑∑∑,

成立。

注意:上面所列的性质中,乘积性和两指标级数的求和法则也是今后求有些复杂解析函数的幂级数展式或洛朗展式的完整形式时经常用的技巧,而这样的技巧往往是传统数学分析教材中忽略的。

3、了解复函数项级数收敛、一致收敛和内闭一致收敛的含义;掌握一致收敛的柯西准则和魏尔斯特拉斯判别法,并能熟练运用此判别法判断复函数项级数的一致或内闭一致收敛;掌握一致或内闭一致收敛的函数项级数和函数的连续性、逐项积分性以及解析函数项级数和函数的解析性、逐项求任意阶导数性。

下面关于复函数项级数在区域内(内闭)一致收敛的几个结论是数学分析中忽略或没有的:

1

()n n f z ∞

=∑

在区域D 内内闭一致收敛?对任意a D ∈,存在a 的某邻域()U a D ?,使得

1

()n n f z ∞

=∑

在()U a 内一致收敛(称为内闭一致收敛的局部判别法)

;【此结论的必要性显然,充分性利用柯西准则和有限覆盖定理即可证明】

注意:在数学分析中,我们也可建立类似的平行结论。

● 设解析函数项级数

1

()n n f z ∞

=∑

在区域D 内收敛,则1()n n f z ∞

=∑在区域D 内内闭一致收敛

?1

()n n f z ∞

='∑在区域D 内内闭一致收敛?对任意整数1k ≥,()1

()k n n f z ∞

=∑在区域D 内内闭一致收敛;

● 设D 为有界区域,

C D =?,每一项函数()n f z 在D 内解析,在D D C =?上连续,若1

()

n n f z ∞

=∑在C 上一致收敛,则

1

()n n f z ∞

=∑

在D 上一致收敛,进而在D 内一致收敛。

注意:上面的两个结论是解析函数项级数特有的,对数学分析中的可微函数项级数,上面的两个结

论一般不成立。

4、熟练掌握幂级数收敛半径的两种计算方法:记0

()()

n

n

n f z a z z ∞

==

-∑

,l =1z 是()

f z 的不解析点中距0z 最近的点,则幂级数的收敛半径有下面两个常用的计算公式:

利用系数计算的公式:1

R l

=(常规公式,也称柯西—阿达玛公式)。 利用和函数的计算公式:10R z z =-(技巧性公式,前提是要知道和函数)。

5、熟练掌握同类幂级数的运算性质。比如:设有两个同类幂级数

00

()()n

n n f z a z z ∞==-∑,00

()()n n n g z b z z ∞

==-∑

其收敛半径分别为1R ,2R ,不妨设12R R ≤,则在它们收敛的公共圆域01z z R -<内

● 加、减性:

00

()()()()n

n

n n

n

n

n n n n a z z b z z a

b z z ∞∞∞

===-±-=±-∑∑∑。

● 乘积性:

00000

00

00

(())(())()()()()n

n

n

n

n

n n n n k k k n k n n n k n k a z z b z z a b z z a b z z ∞∞

∞--======-?-=?-=?-∑∑∑∑∑∑。

注意:

(1)在用乘积性时,级数不能缺项,若缺项需要将所缺项补齐后,再用乘积性。 (2)缺奇数项或偶数项幂级数的两种补项技巧:

● 对形如

2200

()n

n n a z z ∞

=-∑的级数可借用因子11(1)2n ??+-??的取值特点进行补项得: 2200001()1(1)()2

n

n n n n n n a z z a z z ∞∞

==??-=+--??

∑∑;

对形如

21

2101

()n n n a

z z ∞

--=-∑的级数可借用因子11(1)2

n ??--??的取值特点进行补项得: 21

21001

1()

1(1)()2n n n

n n n n a z z a z z ∞

--==??-=---??∑∑。 ● 对形如2200(1)()n

n

n n a z z ∞

=--∑的级数可借用正弦值()(1),2sin 120,21k n k

n n k π

?-=+=?=+?

的取值特

点进行补项得:

()22000

(1)()sin

1()2

n

n

n n n n n a z z n a z z π

∞∞

==--=+-∑∑;

对形如

1

21

2101

(1)

()

n n n n a z z ∞

---=--∑的级数可借用正弦值1

0,

2sin

(1),21

2k n k n n k π-=?=?-=-?的取值特点进行补项得:

1

21

21001

(1)

()

sin

()2

n n n n n n n n a z z a z z π

---==--=-∑∑。 6、熟练掌握幂级数和函数的如下性质: 设0

()()

n

n

n f z a z z ∞

==

-∑的收敛半径0R >,则在其收敛圆0z z R -<内

● 逐项积分性:

1000

0()d ()d ()1

z z

n

n n

n z z n n a f a z z z n ξξξξ∞

+===-=-+∑∑

?

?。

● 逐项微分性:

1

001

()()

(1)()n n n n n n f z na z z n a z z ∞

-=='=-=+-∑∑。

● 收敛半径在逐项积分和逐项微分下的不变性,即

00

()n

n n a z z ∞=-∑,1

01

()

n n n na z z ∞

-=-∑(逐项微分),

100()1

n n

n a z z n ∞

+=-+∑(逐项积分) 这三个幂级数具有相同的收敛半径,从而有相同的收敛圆和收敛圆周。

注意:对收敛半径在逐项积分和逐项微分下的不变性,只要注意到下面的上极限等式立即可得

==

● 以上第5和6两个要点是求解析函数幂级数展式的间接法的基础之一。

7、掌握泰勒定理的条件和结论,了解解析函数的(幂)级数定义法,从而理解为什么只有当函数在一点解析时,函数在这一点才能展开成幂级数。熟练掌握如何将解析函数在指定的解析点展开成幂级数的方法(常用的有三种:直接法,间接法和利用解析函数的惟一性的方法)和技巧,并牢记如下几个主要初等解析函数的幂级数展开式(称为基本展式):

① 0

1

!z

n

n e z

n ∞

==

?∑,z <+∞。

② 21

12101

11sin (1)(1)(21)!(21)!n

n n n n n z z z n n ∞

+--===-?=-?+-∑∑,z <+∞;

20

1

cos (1)(2)!

n

n n z z n ∞

==-?∑,z <+∞。 ③ 1

101

11ln(1)(1)(1)1n

n n n n n z z z n n ∞

+-==+=-?=-?+∑∑,1z <,其中ln(1

)z +表示对数函数Ln(1)z +的主值支,即满足0

ln(1)

0z z =+=的单值解析分支函数(其中支割线为:(,1]-∞-)

。 10

1

[Ln(1)]ln(1)22(1)1

n

n k n z z k i k i z n ππ∞

+=+=++=+-?+∑,1z <,其中[Ln(1)]k z +表示Ln(1)z +的第k 个单值解析分支函数。

④ 1

1(1)

(1)(1)11!n

n n n n n z z z n α

αααα∞

==??--++=+

?=+ ???

∑,1z <,其中α为复常数,

(1)z α+表示一般幂函数的主值支,即满足0

(1)1z z α

=+=的单值解析分支函数(其中支割线为:

(,1]-∞-)。

221

21(1)

(1)[(1)](1)(1)

!

(1),

1.

k i

k i

n

k n k i n n n z z e

e

z n n e z z ααπαπαπααααα∞

=∞

=--++=+?=+???

=+< ???

其中[(1)]k z α+表示(1)z α

+的第k 个单值解析分支函数。

特别,当1α=-时,01(1)1n n

n z z ∞==-+∑;0

11n n z z ∞

==-∑,1z <。

注意:

● 在间接法中,除常规方法外,还应关注下面两种数学分析中忽略的方法: ① 对于两个基本展式中所涉及的函数的商()

()

f z

g z 的幂级数展式,可先分别求出()f z 和()g z 的展式,然后用代数中的辗转相除法;

② 对于两个基本展式中所涉及的函数复合而成的函数()()g f z 在0z =处的幂级数展式,可先求

出外函数展式0

()k

k k g u c u

==

∑,再求出()()k

k

u f z =的展式(),0

()k

k

n

n k

n u f z b

z ∞

===

∑,最后用两指标级数的求和法则得出结论()()

,,0

0000()()k

n n k k n k k n k k k n n k g f z c f z c b z c b z ∞

∞∞

∞=====????=

== ? ?????

∑∑∑∑∑,例如,当1z <时,

()1

10010

0110111111()(1)!!!!1(1).

!k n n n z

k k n k k n n n n k n n e

z z z k k k k k k n e z k k ∞

∞∞∞

∞∞--======∞∞

==????????=-=+-=+- ? ? ? ?--????????????=+- ? ?-????∑∑∑∑∑∑∑∑

● 当有些乘积函数可划归为适当简单函数的线性组合时,此时函数的幂级数展式可利用同类幂级

数的线性运算更为简单地算出,例如,

21sin (1cos 2)2z z =

-,21cos (1cos 2)2z z =+,(1)(1)1

cos ()2z i z i z e z e e +-=+, (1)(1)1

sin ()2z i z i z e z e e i

+-=-等。

8、掌握解析函数零点以及零点阶数的定义,掌握解析函数零点阶数的判别方法(即解析函数()f z 以0z 为m 阶零点?存在0z 的某邻域0z z R -<,使得在0z z R -<内

0()()()m f z z z z ?=-,

其中()z ?在0z z R -<内解析,且0()0z ?≠.)并能合理利用零点阶数的定义或零点阶数的判别法确定解析函数零点的阶数。

能正确理解并掌握解析函数零点孤立性。掌握解析函数的唯一性及其初步的应用(比如,利用唯一性证明三角恒等式,解析函数的幂级数展式,解析函数的最大模和最小模原理等),掌握解析函数的最大模和最小模原理的初步应用。

解析函数的最大模原理及其几个相关的结论:

最大模原理:设函数()f z 在区域D 内解析,则()f z 在区域D 内取得最大值的充要条件是()f z 在区域D 内为常函数。

设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,则

max ()max ()z C

z D

f z f z ∈∈=,

即()f z 在D D C =+上的最大值一定能在边界C 上取得。

最小模原理:设函数()f z 在区域D 内解析,且()0f z ≠,则()f z 在区域D 内取得最小值的充要

条件是()f z 在区域D 内为常函数。

设D 为有界区域,C 为其边界,若()f z 在D 内解析,在闭区域D D C =+上连续,且()0f z ≠,则

min ()min ()z C

z f z f z ∈=,

即()f z 在D D C =+上的最小值一定能在边界C 上取得。

第五章复习要点

1、了解形式幂级数(即洛朗级数或双边幂级数)的含义及其收敛的定义,并能解释其收敛范围为什么一般只能是圆环。掌握洛朗级数在其收敛圆环内的性质(解析性,逐项积分和逐项微分性)。掌握圆环形区域内解析函数的洛朗展开定理(即洛朗定理),并能熟练地将解析函数在指定的圆环内展开成洛朗级数。

注意:

● 求解析函数在指定圆环形区域内的洛朗展式的方法,基本上是沿用求幂级数展式的方法。不过在运用"基本展式"时要注意,先根据所求展式的要求(一般由指定的圆环或去心邻域来确定),并兼顾所要用的"基本展式"成立的范围,把0z z -的"适当幂"作为一个整体,再用基本展式。

例如,将函数()1(2)f z z =-在11z <-<+∞内展成洛朗级数,此时,根据基本展式

1(1)n n u u ∞

=-=∑,

成立的范围是1u <,我们可以先将函数变形为

1

111

()211(1)

f z z z z -=

=?----, 然后将1

(1)z --作为一个整体,对1

11(1)z ---在圆环11z <-<+∞内用基本展式0

11n

n u u ∞

==-∑得, 11

00

11111()(1)211(1)1(1)n

n n n f z z z z z z z ∞∞

--+====?=?-=------∑∑。 ● 解析函数在使其解析的圆形区域内的幂级数展式,也就是它在此圆形区域内的洛朗展式,即洛

朗展式是幂级数展式的推广,因此,当函数在一个圆形区域内解析时,要求函数在此圆形区域内的洛朗

展式,只须求出此函数在该圆形区域内的幂级数展式即可。

● 理解函数在圆环内能展开成洛朗级数的条件是什么(注意:条件是函数在圆环内解析)?正确理解函数在使其解析的圆环内的洛朗展式与函数在其孤立奇点去心邻域内洛朗展式的关系和区别(注意:函数在其孤立奇点去心邻域内洛朗展式是指函数在一个内圆半径为零的特殊圆环内的洛朗展式),能正确地求出函数在其孤立奇点去心邻域内的洛朗展式。

2、了解解析函数孤立奇点(包括∞)的含义,会用解析函数在其孤立奇点去心邻域内的洛朗展式,对解析函数的孤立奇点进行分类。

注意:

● 孤立奇点的分类是借助函数在其孤立奇点的去心邻域(这是一个特殊圆环)内的洛朗展式来进行的,而不是借助以孤立奇点为心的一般圆环。

● 若函数()f

z 以∞为孤立奇点,()f z 在∞的主要部分(或奇异部分)是指()f z 在圆环

r z <<+∞内的洛朗展式

011

1

()n n n n n n f z c c c z z ∞

-===?++?∑∑

中的

1

n n

n c

z ∞

=?∑部分,这与函数在有限孤立奇点处的主要部分不同。关于函数()f z 的孤立奇点∞的类

型的判别,虽有类似于有限孤立奇点类型判别的方法,但在实际判别时,我们常常也通过变换1

z ξ

=

它化为判别函数1

()f ξ

的孤立奇点0ξ=的类型进行判别。

3、掌握解析函数的各类孤立奇点的特征定理,并能熟练地运用这些特征定理来判断解析函数的孤

立奇点的类型。

注意:用本性奇点的特征定理判断本性奇点并不一定方便,实际上对本性奇点的判断常用以下方法: ① 定义法(也称洛朗展式法);

② 排除法(即先确定所考虑的点为孤立奇点,然后用反证法说明所考虑的不是可去奇点和极点,进而得出所考虑的点是本性奇点)--------- 此方法的依据就是孤立奇点分类的定义;

③ 利用下面第5点(4)中列举的关于本性奇点的几个结论。 4、(选学内容)初步掌握整函数与亚纯函数的定义,并会用其奇点(包括∞)的类型对它们进行初步的分类。

5、几个有用的结论:

(1)若0z 分别为解析函数()f z 和()g z 的n 阶零点和m 阶零点,则 ① 0z 必为()()f z g z ?的n m +阶零点;

② 当n m ≠时,0z 必为()()f z g z ±的min(,)n m 阶零点;当n m =时,或者0z 为

()()f z g z ±的至少n m =阶零点,或者()()0f z g z ±≡;

③ 当n m >时,0z 必为

()()f z g z 的n m -阶零点;当n m =时,0z 不是()

()

f z

g z 的零点,且为解析点(可去奇点);当n m <时,0z 不是

()()f z g z 的零点,且为()

()

f z

g z 的m n -阶极点. (2)解析函数的四种等价性定义:

设()(,)(,)f z u x y iv x y =+是定义在区域D 内的一个复变函数,则下面的四种说法是等价的 Ⅰ.函数()f z 在区域D 内可导(可微);

Ⅱ.(,)u x y 和(,)v x y 都在区域D 内可微(或具有连续的偏导数)且在区域D 内满足柯西—

黎曼条件,即

u v x y ??=??,u v

y x

??=-

??; Ⅲ.()f z 在区域D 内连续,且对D 内任一条围线C ,只要C 的内部仍含于D ,就有

()d 0C

f z z =?

Ⅳ.()f z 在区域D 内任一点的邻域内都可展开成幂级数。 (3)若0z 分别为解析函数()f z 和()g z 的n 阶极点和m 阶极点,则 ① 0z 必为()()f z g z ?的n m +阶极点;

② 当n m ≠时,0z 必为()()f z g z ±的max(,)n m 阶极点;当n m =时,或者0z 为

()()f z g z ±的至多n m =阶极点,或者()()f z g z ±的可去奇点;

③ 当n m >时,0z 必为

()()f z g z 的n m -阶极点;当n m =时,0z 是()

()

f z

g z 的可去奇点;当n m <时,0z 是

()()f z g z 的零点,且为()

()

f z

g z 的m n -阶零点。 (4)关于本性奇点的几个结论(这些结论都可用排除法得到):

● 设函数

()f z 不恒为零且以z a =为可去奇点(解析点)或极点,而()g z 以z a =为本性奇点,

则z a =必为()()f z g z ±,()()f z g z ?和

()

()

g z f z 的本性奇点; ● 若a 为函数()f z 的本性奇点,且在点a 的某去心邻域0z a ρ<-<内()0f z ≠,则a 必为

1()f z 的本性奇点。

复变函数论文

复变函数在GIS上的运用与地位 一摘要 该论文主要研究复变函数在GIS专业上的作用和地位,通过复变函数发展简介和内容,我们认识到复变函数的发展史和学术地位,因为它运用广泛,作为当代大学生,我们应该明白它在学习中起到举足轻重的作用,从学习中的地位延伸到专业中的地位,从而了解他在GIS的运用,借助复变函数推出柯西—黎曼曲面,进而导出复球面的紧性,得出扩充复平面是紧的,得出结论,体会,心德和认识,最后对结论进行推导和运用。 二关键词 复变函数,地理信息系统,复平面,柯西—黎曼曲面 三正文 (一)复变函数的发展简况与内容 复变函数理论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。复变函数理论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。为复变函数理论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。复变函数理论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数理论主要包括解析函数理论、黎曼曲面理论、几何函数论、留数理论、积分和级数、广义解析函数等方面的内容。复变函数理论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

复变函数与积分变换论文

复变函数与积分变换论文 题目:阐述复变函数与积分变换对电气自动化专业的作用 阐述复变函数与积分变换对电气自动化专业的作用 复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。复数起源于求代数方程的根。通过学习《复变函数与积分变换》这门课程,我了解到它既是一门理论性较强的课程,又是解决实际问题的强有力的工具,它的理论和方法在数学、自然科学和工程技术中有着广泛的应用,同时老师也给我们了解到了更多关于复变函数的历史知识,让我更加对这门产生浓厚的学习兴趣。 《复变函数和积分变换》课程本身应该是一种将数学知识如何应用于工程的学科,是培养创新思维的非常重要的课程。这门课程对于培养创新人才具有特殊作用,而创新能力的基础是创新思维。复变函数和积分变换作为我们学校的电气工程自动化专业大

学生专业必修课,除了要求我们掌握复变函数和积分变换课程的基础知识、基本方法外,更重要的是要培养创新型的思维能力。让学生强化应用、重视实践、淡化专业、消灭书呆子,重视创新能力和实践能力的培养。 我们在复变函数和积分变换课程的学习中面对的处处都是创新模式,没有创新就不能学好该课程。复数域打破了实数域的限制、解析函数突破了二元函数和一元实函数的禁锢、洛朗级数克服了幂级数的局限性、拉普拉斯积分变换是傅里叶积分变换应用方面的创新等等。 在复变函数和积分变换的学习中,我们得到的不仅有作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用。因此,复变函数和积分变换课程的教学,有助于学生创新思维能力的训练和培养。培养我们运用基本理论和方法解决实际问题的意识、兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变换在解微分方程中的应用和求广义积分,培养我们打破思维定式,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。 我们从这门课程上可以学到傅里叶变换是一种对连续时间函数的积分变换。通过我们专业课的实验学习,深刻了解到傅里叶变换在处理和分析工程实际中的一些问题的重要作用。通过变换技术,从另一个角度对问题进行处理和分析,使问题的性质更清楚、更便于分析,也使问题的求解更方便,更便于解决。我以前总认为学这些东西没有用处,只是一些很落后和过时的理论,通过实验学习,我看到了它的重大作用。在我以后的学习中,也要在掌握基本理论的同时,去挖掘生活中的问题,并努力用所学的知识去解决,那样才能更好的理解和运用。我还学到积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使用复频域的状态变量解法可以方便的用计算机对系统进行求解。 通过课程的学习,我们可以了解到,复数可以应用到现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。 复变函数给我们一个新的概念,让我们不局限于实数的学习范围,给我们一个创新思维的学习。

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数期末试卷()

《复变函数论》期末考试试题-A 卷答案 一、 选择题(每小题4分,共20分) ⒈ 21|z |且Im 表示的轨迹为( B ) A 、有界闭区域 B 、有界开区域 C 、无界开区域 D 、无界闭区域 ⒉ 右半平面Re z >0 在映射 ω=i z +i 下的象为( D ) A 、ωIm >0 B 、ωRe >0 C 、ωRe >1 D 、ωIm >1 ⒊ )43(i Ln +-= (C ) A 、)34(5ln arctg i -+π B 、)3 42(5ln arctg k i -+π C 、)342(5ln arctg k i -++ππ D 、)342(5ln arctg k i +++ππ ⒋ ()=f z ( D ) A 、1,2,=∞z B 、0,1,2=z C 、0,1,2,=z ∞ D 、0,=z ∞ ⒌ 0z = 0 为函数 21cos ()z f z z -=的( A ) A 、可去奇点 B 、本性奇点 C 、一阶极点 D 、二阶极点 二、填空题(每小题4分,共36分) ⒈ 设ω=,则()i ω-=( ) ⒉ 设 ?=-++=3 2173)(z z z f ξξξξd ,则 )1('i f +=)136(2i +-π 3. ?=+1)2ln(z z dz = 0 4. ? =++223 4sin z z z z πdz = 0 5. 10?423z =3 (2)()z dz z +z -2= 2i π 6.将函数2 1()(2)f z z =+展成1z -的幂级数,则其收敛圆为(|1|3z -<). 7.||z e 在闭圆|1|1z -≤上的最大值为( 2e )

复变函数小论文格式模板

数学与信息工程学院数学与应用数学专业 张三 1. 周期函数是一类特殊而又十分重要的函数,中学数学中 ,对于周期函数的定义是这样定义的:对于 函数) (x f y=,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,) ( ) (x f T x f= +都成立,那么就把函数) (x f y=叫做周期函数,不为零的常数T叫做函数的周期.这一定义简洁明快,但由于它的“简单性”,其“先天不足”随时可能导致人们出现错误的判断.因此,在进行周期函数的教学时,非经严格论证,绝对不能想当然地搬用其它定义下的周期函数的性质.周期函数) (x f, 2. 2.1周期函数的性质与特征 根据周期函数的定义,在文献[6,7]中介绍了周期函数的一般性质: (1)周期函数不一定有最小正周期. 例如,函数1 ) (= x f是一个常函数,任意的非零实数都是函数的周期,但在正实数集中无最小值.…… 2.2周期函数的判定及其应用 周期函数的判定除了用定义判断外,还可以用定理的形势给出.设a,b是实常数,函数) (x f的定义域为集合A,且对、 、 、 、a x y x y x A y x± ± ± ∈) ( 2 1 ,b x±、x b x a- -、也都 A ∈,则由定义可得,) ( ) (b x f a x f- = +,则) (x f是以) (b a+为周期的函数;……

3.周期函数的微积分性质及应用 …………………………,如表1所示。 表 1 ………………………………………………………………………………………………………………………………,如图2.9所示,

[1]李万山,张沛和.周期函数的对称性质[J].嘉应大学学报(自然科学[2]牛保才 .周期函数的一组判定定理[J].数学通讯,1998,(2):26-29. Notes,2001, 69(3):313-319. [4]G.A.Dzyubenko,J.Gilenice.Copositive problems approximation of Periodic Functions[J].Acta Math.Hungar,2008,120(4):301-314. [5]堵秀凤.周期函数的导函数的周期问题[J].齐齐哈尔师范学院学报(自然科学版),1993,(13):8-10. [6]费定辉,周学圣.

复变函数测试题及答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,50 75100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

大学复变函数期末考试试卷及答案(理工科所有专业)

dz C 2

2.设2 2-+= ni ni n α),3,2,1(ΛΛ=n ,则=∞→n n αlim ( ) A. 0; B. 1; C. -1+i ; D. 1+i 。 3.满足不等式3211≤-+≤i z 的所有点z 构成的集合是( )。 A .有界单连通区域; B. 无界单连通区域; C .有界复连通闭域; D.无界复连通闭域。 4.下列函数中,不在复平面内解析的函数是( ) A.1 )(+=z e z f ; B .- =z z f )( ; C .n z z f =)( ; D .)sin (cos )(y i y e z f x +=。 5 A. ∑∞ =+08)56(n n n i ; C. ∑∞ =02n n i ;三.计算题(每小题71.设z 1+=

2.判定函数)2()()(222y xy i x y x z f -+--=在何处可导,在何处解析。 3.计算积分? - C dz z z 4 )2 (sin π 4.计算积分 4=。

5.设,)1(2y x u -=试求解析函数iv u z f +=)(,使得i f -=)2(。 6.将函数) 2)(1(1 )(--=z z z f ,在圆环域21<

7.利用留数计算积分?C 四.证明函数yi x z f 2)(+=在复平面内不可导。(7分)

参考答案 一、填空题(本大题共8小题,每小题3 1.109 , 2. 4 ,3. 0 ,4. 1,5. -3或 二、单项选择题(本大题共7小题,每小题31. B ,2. B ,3.C,4. B,5. B . 三、计算题(本大题共7小题,15-19 1.解:由i z 31+=得:) sin (cos 2π π i z +=, (1分) 6 24 (cos 23166ππ k i z k +=+=所以)18sin 18(cos 260ππi z +=,)1813sin 1813(cos 262ππi z += , )25sin 1825(cos 264ππi z +=,5z 7分) 2. 解 ) 2()2y xy i x -+,则 (),(22y x y x u -= y u x x u ,12=??-=?? 只在2 1 = y ,x v ??-(6分) 故只在2 1 =y 处可导,处处不解析。(7分) 3z 在2=z 内解析,(2分)

复变函数发展历程

复变函数发展历程 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 校内发展的历史 《复变函数论》,又称《复分析》,是在《数学分析》的基础上,应用分析与积分方法研究复变量复值解析函数的一门分析数学,它是学习与研究《泛函分析》、《微分方程》等课程的重要基础。复变函数论是数学专业的一门专业必修课程,是数学分析的后续课程。它的理论和方法,对于其它数学学科,对于物理、力学及工程技术中某些二维问题,都有广泛的应用。通过本课程的教学,使学生掌握复变函数论的基本理论和方法,提高分析问题和解决问题的能力,培养学生独立地分析和解决某些有关的理论和实际问题的能力。 随着学校的升本成功,该门课程已在本科层面授课两届。 针对学生普遍基础薄弱的特点,在教学中,着力要求任课教师将基本概念讲解正确清楚,基本理论阐述系统简明,对学生的基本运算能力的训练也严格要求。教材选用了国内较成熟且讲解较为简单明了的钟玉泉的复变函数论(第2版),方便学生学习。 实际教学中注意本课程和其它课程的联系,特别是与数学分析的衔接,相应内容在处理方法上的异同。在基本运算方面,应通过适当的例题和习题,加强习题课和练习,使学

复变函数试题库(完整资料).doc

【最新整理,下载后即可编辑】 【最新整理,下载后即可编辑】 《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||00)(z z n z z dz __________.(n 为自然数) 2.=+z z 2 2 cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数0 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中 n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___ )(lim 0=→z f z z . 三.计算题(40分): 1. 设)2)(1(1 )(--= z z z f ,求)(z f 在}1||0:{<<=z z D 内的 罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中}3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证 : ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值. 《复变函数》考试试题(二) 二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z 2.设C iy x z y x i xy x z f ∈+=?+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________. 3. =-?=-1||0 0)(z z n z z dz _________.(n 为自然数)

广州大学2011-2012复变函数期末考试卷B卷

学院领导 审批并签名 B 卷 广州大学20011-2012学年第二学期考试卷(答 案) 课 程: 复 变 函 数 考 试 形 式: 闭卷 考查 学院:_ _ _ _ 系:_ _ _ _ _ 专业:_ _ _ _ 班级:_ _ _ _ _ 学号:_ _ 姓名:_ _ _ _ _ 题 次 一 二 三 四 五 六 总分 评 卷 人 分 数 24 30 16 10 10 10 100 评 分 一.填空题(每小题3分,共24分) 1.设1255,34,z i z i =-=+ 则)Re( 2 1z z =__-1/5___。 2. 复数 13i - 的主幅角为 3/π-。 3. 复数1i +的指数形式为i e 42π 。 4. ln(3)i +=6 2ln π i +。 5. 曲线|3||3|10z z -++=的直角坐标方程为116 252 2=+y x 。 6. 0=z 是3 sin z z 的 2 级极点。 7. dz z z z ?=-1 ||2= 0 。 8. 复数项级数 1 2n n n n z ∞ =∑的收敛半径R = 2 。

二.解答下列各题(每小题6分,共30分) 1.求方程 3 10z +=的全部解。 p.32. )31(2 1 , 1),31(2 1 i i --+ 2.设iy x z +=,判定函数i y x z f 2332)(+=在何处可导?何处解析? 答案: p.66. 在抛物线2x y =上可导,但在复平面上处处不解析。 3.计算积分2 ()C x iy dz +? , 其中C 为连接原点O 到i +1的线段。 p.99 i 6 561+- 4.计算积分3 3() C z dz z i -??? 其中C 为正向圆周:||2z =。 答案: p.89 π6- 5.计算积分 cos i z z dz ? 。 答案: p.83 11--e 三.解答下列各题(每小题8分,共16分) 1.判断级数2(1)1 []ln 3n n n i n ∞ =-+∑的收敛性与绝对收敛性。 答案: p.109 收敛、非绝对收敛 2.将函数1 ()(1)(2) f z z z = --在圆环域1||2z <<内展成洛朗级数。 答案: p.132 ------- --8 4211112 1 z z z z z n n 四.(10分)求 dz z z z )3 211( 4 ||-++? =的值。 答案: p.86 i π6

北京林业大学复变函数与积分变换结课论文

复变函数与积分变换 结课论文 题目:拉普拉斯变换及其在解微分方程(组)中的应用指导老师: 学号: 姓名: 班级: 学院:

拉普拉斯变换及其在解微分方程(组)中的应用 摘要 拉普拉斯变换是一种用来解线性微分方程的较简单的工具。它在电学、力学、控制论等很多工程技术与科学领域有着广泛的应用,由于它对像原函数f(t)要求的条件比傅氏变换要弱,故研究拉氏变换有极重要的意义。本文将简单介绍拉普拉斯变换的定义以及其性质,并对其在解微分方程(组)中的应用做了简单的归纳总结。 关键词:拉普拉斯变换,性质,微分方程

一、拉普拉斯变换的概念及其性质 1.1问题的提出 我们知道,一个函数当它除了满足狄氏条件外,还在(—∞,+∞)内满足绝对可积的条件时,就一定存在古典意义下的傅里叶变换。但绝对可积的条件是比较强的,许多函数(如单位阶跃函数、正弦、余弦函数等)都不满足这个条件;其次,可以进行傅里叶变换的函数必须在整个是数轴上有定义,但在物理、无线电技术等实际应用中,许多以时间t 作为自变量的函数往往在t<0时是无意义的或者不用考虑的,想这些函数都不能取傅里叶变换。 虽然在引入δ函数后,傅里叶变换的适用范围被拓宽了许多,使得“缓增”函数也能进行傅氏变换,但仍然无法解决以指数级增长的函数。[1] 对于任意一个函数φ(t ),若用单位阶跃函数u (t )乘φ(t ),则可以使积分区间由(—∞,+∞)换成[0,+∞),用指数衰减函数t β-e (β>0)乘φ(t )就有可能使其变得绝对可积,因 此只要β选的恰当,一般来说,任意函数φ(t )的傅氏变换是存在的,这样就产生了拉普拉斯变换。 1.2拉普拉斯变换的定义 当函数)(t f 满足条件:(1)当t<0时,)(t f =0;(2)当0≥t 时,函数)(t f 连续;(3)当∞→t 时,)( t f 的增长速度不超过某个指数函数,即存在常数M 及α,使得t Me t f α≤|)(|,则含参数s 的无穷积分 收敛。(s=β+jω)[2] 我们称F(s)为f(t)的拉普拉斯变换(或称为像函数),记为F(s)= )]( [t f L 。 相反的,从F(s)到f(t)的对应关系称为拉普拉斯逆变换(或称为像原函数)。即 )]([)(1s F L t f -=. 1.3拉普拉斯变换的性质 1、线性性质[3] 设α、β为常数,且)()]([),()]( [s G t g L s F t f L ==,则有 0 ()()st F s f t e dt +∞ -=?

复变函数测试试题库

复变函数试题库

————————————————————————————————作者:————————————————————————————————日期:

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内

《复变函数与积分变换》期末考试试卷A及答案详解

?复变函数与积分变换?期末试题(A )答案及评分标准 ?复变函数与积分变换?期末试题(A ) 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + ) ;3. 211)(z z f +=,=)0() 5(f ( 0 ); 4.0=z 是 4sin z z z -的(一级)极点;5. z z f 1 )(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在( C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;

(B) 如果)(z f 在C 所围成的区域内解析, 则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( D ). (A) 的可去奇点;为z 1 sin ∞ (B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算 ? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; (3)计算?=++33 42215 d )2()1(z z z z z (4)函数3 2 32) (sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 四、(本题14分)将函数) 1(1 )(2 -= z z z f 在以下区域内展开成罗朗级数; (1)110<-

复变函数解析的判定及其应用【开题报告】

毕业论文开题报告 数学与应用数学 复变函数解析的判定及其应用 一、 选题的背景、意义 复变函数论是数学中既古老又成熟的一门学科,复变函数论随着它的领域不断扩大而发展成为一门重要的数学分支,在复变函数的解析性质,多值性质,随机性质以及多复变函数方面都取得了重要成果。而复变函论研究的中心对象就是解析函数。 在18世纪,欧拉和达朗贝尔在研究水力学时已发现平面不可压缩流体的无旋场的势函数(,)x y Φ与流函数(,)x y ψ有连续的偏导数,且满足偏微分方程组 x y ?Φ?ψ=??,y x ?Φ?ψ=-??, 并指出()(,)(,)f z x y i x y =Φ+ψ是可微函数,这一命题的逆命题也成立。柯西把区域上处处可微的复变函数称为单演函数,后人又把它们称为全纯函数、解析函数。黎曼从这一定义出发对复变函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程(简称C.-R.方程),或柯西-黎曼条件。魏尔斯特拉斯将一个在圆盘上收敛的幂级数的和函数称为解析函数,而区域上的解析函数是指在区域内每一小圆邻域上都能表成幂级数的和的函数。关于解析函数的不同定义在20世纪初被证明是等价的。 解析函数的研究之所以如此至关重要,是因为它具有很好的性质,例如无穷可微性,唯一性以及可以用幂级数展开等,数学分析的工具几乎都可以对解析函数加以应用。解析函数的零点,奇异性质,边界值问题以及在边界附近的增长受到某种限制等问题都是复变函数论研究的主要内容和重要课题。 如果设函数()f z 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则()0c f z dz =?。这就是著名的柯西积分定理。这个定理告诉我们,解析函数在单连通区域 内的积分与路径无关。 解析函数在其定义域中某点领域内的取值情况完全决定着它在其他部分的值。有如下定

复变函数论文

复变函数论文复变函数与积分变换在自动控制原理中的应用 姓名:何缘鸽学号:092410101 学院(系):电气与电子工程系 专业:自动化 指导教师:秦志新 评阅人:

复变函数与积分变换在自动控制原理中的 应用 【摘要】: 复变函数与积分变换的理论和方法在数学、自然科学和工程技术中有着广泛的应用,是解决诸如流体力学、电磁学、热学、弹性理论中的平面问题的有力工具。而自然科学和生产技术的发展又极大地推动了复变函数的发展,丰富了它的内容。我们在学习的过程中,要正确理解和掌握复变函数中的数学概念和方法,逐步培养利用这些概念和方法解决实际问题的能力。文中简单地介绍了该门课程在自动控制理论中的应用。 【关键词】:线性系统 Z变换卷积拉普拉斯变换 【正文】: 提出问题: 众所周知,复变函数中的许多概念、理论和方法是实变函数在复数领域内的推广和发展,因而它们之间有许多相似之处。但由于其自身的一些特殊的性质而显得不同,特别是当它引进了taylor级数展开laplace变换和fourier变换后而使其显得更加重要了。 随着教育事业的不断发展与更新,一些新的处理数据的方法越来越多的应用于我们的日常专业学习中。当然复变函数在自动控制原理方面的应用也更大的加快了自动化的发展,自动控制与信号处理也更加离不开一套有效的处理方法。但是常规的Fourier变换的运算的范围还是有限的,如何去解决一些不能展开成Fourier级数的信号成了

我们的首要问题。 分析问题: 虽然常规的Fourier 变换的运算的范围是有限的,,但Laplace 变换、Z 变换等填补了Fourier 变换的不足之处,究竟其有什么好处呢?下面就介绍一些例子,从中就能看出。 例1: 如图1所示电路,原处于稳态,开关S 于t=0时由1端转向 2端,R=10 Ω ,L=1H,C=0.004F,求换路后电流i(t)。 解:因换路前电路已达稳态,故可知 ()=-0i 0, ()V u c 20=- 换路后,电路的微分方程为 ()()()+ ++-0c u dt t di L t Ri ?- t d i C 0)(1ττ=10)(t ε 对上式进行拉普拉斯变换,得

相关文档
相关文档 最新文档